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Abstract

With the rapid growth of scale and complexity in modern electric power grids, conventional

centralized load shedding schemes are being stretched to their limits when coping with disaster

recovery (e.g., fires, quake, storms, terrorist attacks, etc.). In this paper, we consider the prob-

lem of distributed load shedding optimization for disaster recovery in smart grids. We develop

distributed second-order interior-point based load shedding algorithms that enjoy a fast quadratic

convergence rate. Contrary to existing first-order gradient based algorithms that are not only slow

converging, but also could constantly violate the constraints, our interior-point based approach

guarantees feasibility at all times – a highly desired feature to ensure stability and reliability for

the power grid. Our main contributions are three-fold: (i) We propose a rooted spanning tree

based reformulation that enables our distributed algorithm design; (ii) Based on the spanning

tree reformulation, we propose a double Sherman-Morrison-Woodbury (SMW) scheme that yields

distributed computation schemes for primal Newton directions and dual variables; (iii) We design

an efficient scheme to initialize our second-order load shedding algorithm and propose a simplified

step-size selection strategy, which is well suited for implementations in practice and offers near-

optimality performance guarantee. Collectively, these results serve as an important first step in

load shedding and disaster recovery that uses second-order distributed techniques.

1 Introduction

As modern electric power grids evolve into increasingly complex networked systems, it becomes even

more important that they should be self-sustaining and self-healing after extreme disasters strike

(e.g., quakes, storms, fires, terrorist attacks, etc.). In post-disaster recovery, due to the significant

imbalance between power demand and supply as well as large deficits/stresses on the transmission

networks, the load must be rapidly dropped to prevent expensive damages to the power systems until

the completion of infrastructure repairs, which often takes days or even weeks to finish. On the other
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hand, post-disaster load shedding also needs to be performed in an intelligent and selective way to

minimize the impact of large-scale blackouts, which could lead not only to wide-spread inconvenience,

but also result in huge economic losses and even loss of lives. For example, priority should be given to

major hospitals/health care institutions, sewerage and water pumping stations, industries requiring

continuous power supply, and major public transportation such as traffic lights, train stations, air-

ports, etc. However, due to the constantly growing scale and complexity of power grids, traditional

centralized load shedding schemes are having difficulties in coping with single-point-of-failure and/or

islanding types of problems resulting from disastrous events, risking the entire power system being

unstable and vulnerable to a complete shut-down (i.e., “cascading failure,” recent examples include

the major power outage in northeast America and Canada in 2003 [1]). The limitations of centralized

load shedding will be even more pronounced in future smart grids that contain a large number of

unplanned and distributed renewable energy generations.

To address the above challenges, in this paper, we consider designing a distributed interior-point

based second-order load shedding algorithm. The salient features of our approach are: (i) Our algo-

rithm, being an interior-point method, can guarantee that the operating point of the electric power

grid stays feasible throughout all iterations. This is a highly desirable feature for ensuring stable and

reliable operations of the power system. In contrast, most first-order gradient based search schemes

have no such feasibility guarantee and would produce iterates that constantly violate the feasibility

region. (ii) By considering the second-order Hessian information in distributed load shedding, we

can expect, as in classical nonlinear optimization theory [2], to alleviate the inherent ill-conditioned

limitation of most conventional first-order gradient-based load shedding optimization schemes (see

Section 2 for detailed discussions), thus leading to a much faster convergence that is crucial in load

shedding.

However, developing distributed second-order load shedding algorithms is highly challenging and

results in this area remain elusive. Due to the unique nature of power flow equations and the very

different problem structure in power systems, techniques used for distributed second-order algorithms

in wireline/wireless communications networks [3–6] cannot be directly applied. Generally speaking,

to design a distributed second-order algorithm for load shedding optimization, one typically needs

to compute the primal Newton and dual search directions, which in turn requires decomposing the

inverses of the Hessian matrix and a weighted Laplacian matrix, and then distributing each piece to

the according network entity (i.e., a bus or a transmission line). Unfortunately, unlike communication

networks for which the Hessian matrix has a nice sparsity structure (e.g., diagonal [4], block diagonal

[5], “arrow-headed” [6]), the Hessian structure of the load shedding problem is non-separable because

of the line flows that are governed by the Kirchoff’s law. Moreover, not only are both the Hessian and

weighted Laplacian inversions cumbersome to compute in large-scale power networks, the obtained
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inverses also have little sparsity structure in general. As a result, designing distributed second-

order algorithms are far more difficult for power systems, which contain both cyber and physical

components.

The key contribution of this paper is the development of a set of new second-order techniques to

address all the aforementioned technical difficulties in distributed load shedding. The main results

and technical contributions of this paper are as follows:

• We first propose a rooted spanning tree based problem reformulation that not only reduces the

size of the problem, but also enables the uses of advanced distributed spanning tree networking

protocols for message passing in power systems – a highly desirable feature in future smart grids.

Further, we show how one can exploit the special structure of the inverse incidence matrix of the

rooted spanning tree to give rise to distributed second-order load shedding algorithm design.

• Based on the rooted spanning tree reformulation, we propose a double Sherman-Morrison-Woodbury

(SMW) approach that yields distributed computation schemes for primal Newton directions and

dual variables. For a power network with N buses and L lines, we show that the double SMW

approach obtains the precise solutions of Hessian and Laplacian inverse in L and N + 1 steps,

respectively, rather than asymptotically as in [4–6]. This makes our proposed algorithm a fully

second-order approach without the assumption of time-scale separation. It also significantly en-

hances the practicality of our second-order method in electric power grids.

• We design an efficient scheme to initialize our second-order load shedding algorithm and design a

relaxed step-size selection strategy, which is well-suited for distributed implementations in practice

and offers near optimality performance guarantee. We offer new insights and networking interpre-

tations for our proposed distributed second-order load shedding algorithms, as well as the connec-

tions with and differences from first-order approaches. This further advances our understanding of

second-order approaches in power systems optimization theory.

Collectively, these results serve as an important first step in load shedding and disaster recovery

that uses second-order distributed techniques. The remainder of this paper is organized as follows. In

Section 2, we review related works. Section 3 introduces the network model and problem formulations.

Section 4 presents the key components of our distributed load shedding schemes. Section 5 presents

numerical results and Section 6 concludes the paper.

2 Related Work

Load shedding optimization lies at the heart of several important related areas in power grids studies,

such as vulnerability and contingency analysis (see, e.g., [7–9]), cascading failure analysis [10–12], etc.
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To our knowledge, initial attempts on load shedding optimization appeared as early as in late ’60s,

when Hajdu et al. [13] developed centralized gradient techniques for load shedding. Because of its

importance in electric power grids, load shedding optimization continues to be an actively research

area today (see, e.g., [12,14,15] and references therein). However, the predominant approach so far in

this area is still first-order gradient based, which suffers from the long convergence time issue and, as

mentioned earlier, have no feasibility guarantee during their convergence processes. Moreover, existing

works in this area are mostly centralized, which are unsuitable for post-disaster recovery that calls for

fast-response and distributed schemes. On the other hand, most works on distributed load shedding

to date are based on heuristics, meta-heuristics, and the knowledge-based systems [16–20], which do

not offer performance guarantees. In contrast, in this paper, we seek to design fast and distributed

load shedding algorithms based on rigorous interior-point optimization theory that provides optimal

and fast convergence performances.

Our work is also related to the recent studies on distributed second-order methods for communi-

cations and networking systems [3–6]. However, due to the unique cyber-physical nature of electric

power networks, techniques developed in these works are not directly applicable here. In particular,

we note that the matrix-splitting scheme in [3–6], a key technique used for distributed Hessian and

Laplacian matrix inversions, is actually a first-order method and has a slow convergence speed (see

numerical studies in Section 5), which is impractical for load shedding under disasters. To overcome

these limitations, in this paper, we develop a new double SMW procedure for Hessian and Laplacian

matrix inversions, which efficiently determines precise solutions. This is in stark contrast to those

matrix-splitting based schemes in [3–6] that only converge asymptotically.

3 Problem Formulation

3.1 System Model and Problem Formulation

We first introduce the notation style in this paper. We use boldface to denote matrices and vectors.

We let AT denote the transpose of A. Diag {A1, . . . ,AN} represents the block diagonal matrix with

A1, . . . ,AN on its main diagonal. We let (A)ij represent the entry in the i-th row and j-th column

of A. We let (A)m and (v)m represent the m-th column and m-th entry of A and v, respectively.

We let IK denote the K-dimensional identity matrix, and let 1K and 0K denote the K-dimensional

vectors whose elements are all ones and zeros (“K” may be omitted for brevity if the dimension is

clear from the context). We let e
(k)
K denote the k-th vector in the natural basis of RK (i.e., the k-th

entry is “1” and other entries are “0”). We let λmin{A} and λmax{A} denote the smallest and largest

eigenvalues of A, respectively.
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a) The Power Grid Model: Consider a power grid with failed generators and transmission

lines after a diaster strikes such that it requires load shedding to avoid potentially large-scale cascading

failures. Without loss of generality, we consider a power (sub)network that remains connected upon

removal of the failed portion of the system, because otherwise we can perform load shedding on each

connected component individually. However, to model post-disaster recovery, we do not assume the

availability of any centralized controller in any sub-network. We represent the network by a connected

directed graph G = {N ,L}, where N and L are the sets of buses (i.e., nodes) and transmission lines

(i.e., links), with |N | = N and |L| = L, respectively. We use a node-arc incidence matrix (NAIM) [21]

A ∈ RN×L to represent the network topology. Let Tx(l) and Rx(l) denote the transmitting and

receiving buses of line l, respectively. The entries (A)nl are defined as follows:

(A)nl =


1 if n = Tx(l),

−1 if n = Rx(l),

0 otherwise.

(1)

We suppose that there are G generator buses in this power network and the remaining N −G buses

are load buses. We let K denote the set of generators, with |K| = G.

We assume that time is slotted and that each time slot is sufficiently long so that steady-state

stable operating point analysis is reasonable (e.g., 1 minute [22]). In this paper, we do not consider

the current and voltage transients ensuing load shedding, which quickly die away (typically lasting

a few system cycles). Instead, we refer interested readers to [23] for details in transient stability

analysis. In time slot t, we let pn[t] denote the random power demand at a load bus n /∈ K in

time slot t. The stochastic demand process {pn[t]} is assumed to be ergodic. Here, following the

convention in power system literature, we set pn[t] to be non-positive (i.e., pn[t] ≤ 0) to signify

that it represents power consumption rather than generation. For convenience, we use a vector

pl
[t] , [pG+1[t], . . . , pN [t]]T ∈ RN−G

− to group the stochastic power demands at all load buses in time

slot t. As in standard in contingency analysis, we assume that the load of each generator bus is

negligible. Therefore, we let p[t] , [0TG, (p
l
[t])

T ]T ∈ RN
− denote the expanded power demand vector at

all buses in the power grid.

b) The Load Shedding Model: We let zn[t] ≥ 0 denote the amount of power to be shed

at load bus n /∈ K in time slot t. Accordingly, we let zn[t] ≥ 0, n ∈ K, denote the corresponding

power generation at each generator to meet the demands after load-shedding. For convenience, we

use z[t] ,
[
z1[t], . . . , zN [t]

]T ∈ RN
+ to group all power generation and load-shedding variables in time

slot t. As in standard contingency analysis, we assume that the active power losses in transmission

lines are negligible (i.e., lines are purely reactive). Then, from the active power conservation law, we
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have
∑

n∈K zn[t] +
∑

n/∈K(pn[t] + zn[t]) = 0, ∀t, which can be further written in vector form as:

1T (p[t] + z[t]) = 0, ∀t. (2)

It is natural to require that

pn[t] + zn[t] ≤ 0, n /∈ K, (3)

which means that we will not shed more than the actual demand. Also, to model the output limit of

generators, we have

zn[t] ≤ Bmax
n , n ∈ K, (4)

where Bmax
n >0 represents the capacity limit of generator n.

We let fl[t] represent the electric power flow on line l in time slot t under load-shedding. We allow

fl[t] to be negative in the sense that when fl[t] < 0, it simply means that the direction of the power

flow is against the direction of the transmission line. Then, the power flow conservation law in the

electric power grid can be expressed as:∑
l∈I(n)

fl[t] = (pn[t] + zn[t]) +
∑

l∈O(n)

fl[t], ∀n,

where I (n) and O (n) represent the incoming and outgoing lines at bus n, respectively.

For convenience, we use f[t] , [f1[t], . . . , fL[t]]
T ∈ RL to group all line flow variables in time slot

t. With the node-arc-incidence matrix A, it can be readily verified that the power flow conservation

law can be compactly written as:

Af[t] − z[t] = p[t]. (5)

Further, since all rows of A sum up to zero, i.e., 1TA = 0T , we have 1T (p[t] + z[t]) = 1TAf[t] =

(1TA)f[t] = 0, which means that (5) implies (2). As a result, there is no need to explicitly list (2)

in our load shedding model. An important goal in load shedding and the associated power flow

distribution is to prevent overloaded transmission lines. Let fmax
l denote the upper limit of the line

flow for line l, beyond which a line outage is likely to happen. Then, the line outage constraint can

be written as:

−fmax
l ≤ fl[t] ≤ fmax

l , ∀l, t. (6)

As in the contingency analysis literature [7–9], we assume that the voltage magnitudes at all

buses are fixed at a nominal value and hence the real power flow distributions on all transmission

line are controlled by the phase angles of all buses, making the reactive power constraint unnecessary

(see [22, Chap. 16.4] for more details of this model). Let θn[t], n = 1, . . . , N , denote the operation

phase angle of bus n in time slot t. We use θ[t] , [θ1[t], . . . , θN [t]]T ∈ RN to group all phase angle

variables. We let bl ∈ R+ represent the admittance of line l. We further define a diagonal line
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admittance matrix B , Diag {b1, . . . , bL} ∈ RL×L. Then, the (DC) line flow model can be written

as:

f[t] = BATθ[t], (7)

−β1 ≤ ATθ[t] ≤ β1, ∀t, (8)

where β ∈ (0, π
2 ) is some appropriate bounding constant. Here, note that the relationship between

phase angles, admittance, and power flow in (7) is identical to that between voltages, conductance,

and current under the Kirchoff’s law, hence the name DC model. We note that the DC model in

(7) and (8) is an approximation of the exact line flow f[t] = B sin(ATθ[t]), −π
21 ≤ ATθ[t] ≤ π

21 in

AC systems (sin(ATθ[t]) ∈ RL is a vector whose entries are sin((ATθ[t])l), ∀l). This is based on the

fact that when |ATθ[t]| is small, we have sin(ATθ[t]) ≈ ATθ[t]. We note, however, that for disastrous

events that necessitate load shedding, the DC model is more preferable over the AC model [22]. This

is because great precision is not of high priority in such cases, and the primary interest is to quickly

cope with insecure or vulnerable conditions following any outages. The DC model alleviates the

non-convex difficulty of the AC model and yields a more computationally tractable model. However,

due to the coupled problem structure as we show later, it remains a very challenging task to design

distributed load shedding algorithm based on the DC model.

It is worth pointing out that, rather than just being an approximation of the AC model, the DC

model has theoretical and practical significance in its own right. In practice, it has been customary

to prescribe very conservative β-values so that other state variables (e.g., rates of change of angle

differences d(θTx(l) − θRx(l))/dt) are unlikely to cause instability [13].

c) Objective function: In this paper, our goal is to minimize the blackout impacts resulting

from load shedding in disaster recovery. The blackout impacts due to load shedding in diaster recovery

can be characterized as: ∑
n/∈K

Cn

(
lim
T→∞

1

T

T−1∑
t=0

zn[t]

)
, (9)

where Cn(·) is a cost function that is usually assumed to be strictly convex and twice-differentiable in

power system analysis [24]. For example, Cn(·) could be quadratic [25] with a non-negative weight,

which represents different priorities given to different loads in disaster recovery (e.g., higher priorities

are given to hospitals, water systems, transportation, etc.). We remark that in (9), T → ∞ models

the long and uncertain period of time (e.g., days or weeks) needed for infrastructure repairs in disaster

recovery relative to the short time slot unit in load shedding decisions.

Putting together all the modeling in a)–c) yields the following load shedding optimization problem
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Figure 1: An illustrative example of constructing a rooted spanning tree in an electric power grid:

(a) the original network, (b) a rooted spanning tree with an artificial arc incident upon the root at

bus n1.

(LSO):

LSO:

Minimize Objective in (9)

subject to Constraints in (3), (4), (5), (6), (7), and (8).

3.2 A Rooted Spanning Tree Based Reformulation

To solve Problem LSO, we first consider the following static optimization problem, where we drop

the time index “[t]” for now and all decision variables represent the long-term averages:

LSO-S:

Minimize
∑
n/∈K

Cn (zn)

subject to Af − z = p, (10a)

f −BATθ = 0, (10b)

− β1 ≤ ATθ ≤ β1, (10c)

− fmax
l ≤ fl ≤ fmax

l , ∀l, (10d)

0 ≤ zn ≤ Kn, ∀n, (10e)

where, for convenience, we define Kn , Bmax
n for n ∈ K and Kn , −pn for n /∈ K. Note that since

rank(A) = N − 1 [21], the linear equation systems in (10a) and (10b) are rank-deficient: Eq. (10a)

is not full row-rank and (10b) has more rows than varaibles. Therefore, in order for (10a) and (10b)

to be consistent (i.e., having solutions), one needs to resolve the rank-deficiency issue.

Toward this end, we propose a rooted spanning tree approach inspired by the network simplex

algorithm for solving linear max-flow problems [21]. Without loss of generality, we assume that a
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generator bus is always labeled as bus 1 and we designate this bus to be the root node. Then, one can

add an artificial root arc (line) l0 to the root node (bus), and the root arc has arbitrary admittance

b0 with an artificial line flow f0 originating from space and terminating at bus 1 (see Figure 1 for an

illustrative example)1. Adding an artificial line flow is equivalent to adding a linearly independent

column to to (10a) to make it full row-rank. Moreover, it is not difficult to verify that as long as

the active power conservation in (2) holds, we have f(0) ≡ 0, implying that the resultant system is

equivalent.

Next, we let T = {N ,L′∪{l0}} be a spanning tree rooted at bus 1, where the link set L′ ⊆ L and

|L′| = N − 1. Pruning the network into a spanning tree corresponds to removing the redundant rows

in (10b). We let Ã , [−e(1)N (A)l∈L′ ] ∈ RN×N be the node-arc incidence matrix (NAIM) of the rooted

spanning tree. For convenience, we let L′0 , L′ ∪ {l0} denote all links of the rooted spanning tree

T . Accordingly, we let vector f̃ , [fl : l ∈ L′0]
T ∈ RN group all the line flows in the rooted spanning

tree. We let B̃ , Diag {bl : l ∈ L′0} ∈ RN×N be the diagonal line admittance matrix with respect to

T . Next, replacing A, f , and B in (10a) and (10b) with Ã, f̃ , and B̃, respectively; substituting (10b)

into (10a); and then combining (10c) and (10d) by noting f = BATθ, we arrive at the following

rooted spanning tree based problem formulation:

LSO-RST:

Minimize
∑
n/∈K

Cn (zn)

subject to (ÃB̃ÃT )θ − z = p, (11a)

1T (p+ z) = 0, (11b)

− βl ≤ θTx(l) − θRx(l) ≤ βl, ∀l, (11c)

0 ≤ zn ≤ Kn, ∀n, (11d)

where we explicitly expand ATθ in scalar form and let βl , min{β, fmax
l /bl} in (11c). The added

constraint in (11b) is to enforce that the artificial line flow f0 ≡ 0.

It is not difficult to show that Problem LSO-RST is equivalent to Problem LSO-S. In other words,

if LSO-S has a solution, then it must be a solution to LSO-RST, and vice versa. Thus, it suffices

to solve LSO-RST. More importantly, we will see in later sections that the rooted-spanning tree

reformulation enables us to derive a distributed solution.

Several remarks on the rooted spanning tree reformulation are in order. First, the rooted spanning

tree reformulation eliminates the line flow variables f and the O(N2) constraints in (10b), hence

significantly reducing the problem size. Second, the root node is not just an abstract mathematical

1In [21], the rooted spanning tree is constructed in a different but equivalent way: the root is chosen among the sink

nodes and the root arc originates from the root and terminates in space.

9



construct, but also has a physical meaning: it corresponds to the slack bus in power systems, which

balances the overall power production. Although in theory any generator can be selected as the root,

for power systems in reality, it is more preferable to choose a generator that has the largest output

limit. Third, although in general the rooted spanning tree is not unique, the specific choice of rooted

spanning tree does not affect our subsequent algorithm design. But from performance perspective,

it is more advantageous to use a spanning tree with a small network diameter (see discussions in

Section 4.2). Lastly, although the rooted spanning tree reformulation is inspired by the network

simplex algorithm, Problem LSO-RST has a nonlinear objective function and a far more complex

coefficient matrix ÃB̃ÃT , which can not be handled by the network simplex algorithm.

Since identifying spanning trees is a mature subject, its details are beyond the scope of this work.

We instead remark here that a spanning tree can be efficiently identified in a distributed fashion

and the state-of-the-art complexity is O(
√
N log(N)) [26]. In this work, we assume that after the

disaster, a new rooted spanning tree can be re-generated within the connected sub-network by a

distributed spanning tree algorithm (recall that we do not assume any centralized controller in any

sub-network). Further, as in standard outputs of all distributed spanning tree algorithms, every

bus knows which lines belong to the rooted spanning tree and which do not (i.e, the knowledge of

Ã). This assumption is reasonable since the topology of an electric power grid can be considered

stationary in the convergence time scale of spanning tree algorithms.

Further, due to the special structure of Ã, every bus can permute the rows and columns in Ã

in such a way that Ã is upper triangular with only ±1 and 0 elements [21]. As an example, for

the network in Figure 1(a), the rearranged upper triangular NAIM of the rooted spanning tree in

Figure 1(b) is as follows:

Ã =

l0 l2 l5 l1 l4

n1 −1 1 0 1 0

n2 0 −1 1 0 1

n3 0 0 −1 0 0

n4 0 0 0 −1 0

n5 0 0 0 0 −1

.

Next, we introduce a sparsity result about Ã−1 [21, Page 430], which will be useful in our efficient

distributed algorithm designs later.

Lemma 1 (Inverse of Ã). Let Ã be the NAIM of a rooted spanning tree that is arranged in an upper

triangular form. Then, Ã−1 is also an upper triangular matrix with only ±1 and 0 elements.
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4 A Distributed Second-Order Load Shedding Algorithm

A common approach to solve Problem LSO is to accommodate the constraints (3)–(8) into the

objective function by using Lagrangian dual variables (see, e.g., [12,14,15]), and then use the standard

(sub)gradient (steepest descent) method to determine the optimal dual variables in the dual problem

[2]. However, the solution to the dual problem typically approaches optimality from the exterior of the

feasible domain. That is, the constraints (3)–(8) could be constantly violated during the process. This

may not be a big issue for communications networks (thanks to buffering and delay tolerance), but is

not acceptable for power grids as it could lead to serious reliability and stability concerns. It is also

well-known that gradient based methods suffer from a slow convergence rate due to its first-order

nature. These limitations motivate us to develop an interior-point based distributed second-order

approach. The most attractive feature of the interior-point approach is that it guarantees feasibility

in all iterates, which is critical in power grids load shedding. In Sections 4.1 and 4.2, we present our

interior-point based second-order optimization algorithm and its distributed design, respectively. In

Section 4.3, we discuss strategies that can be used to quickly initialize our second-order algorithm.

Finally in Section 4.4, we show a simple step-size selection strategy that is well suited for practical

implementation and yet maintain the optimality guarantee of the algorithm in terms of average load

shedding.

4.1 An interior-point second-order approach

Following the standard interior-point approach [27], we apply a logarithmic barrier function to all

inequality constraints in Problem LSO-RST and then accommodate them into the objective function.

The resultant augmented objective function can be written as:

gµ(y) , µ
∑
n/∈K

Cn(zn)−
N∑

n=1

(log(zn) + log(Kn − zn))

−
L∑
l=1

(log(βl−θTx(l)+θRx(l)) + log(βl+θTx(l)−θRx(l))), (12)

where y ,
[
z1 · · · zN , θ1 · · · θN

]T ∈ R2N groups all variables. In (12), µ > 0 is a parameter that

is used to track the central path in the interior-point method as µ → ∞ [27]. Moreover, we let

M ,
[
−I ÃB̃ÃT

−1TN 0TN

]
∈ R(N+1)×2N and d , [p, 1Tp]T ∈ RN+1. Then, we obtain the following

µ-scaled approximating problem of Problem LSO-RST:

µ-LSO-RST: Minimize gµ(y)

subject to My = d,
(13)
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In gµ(y), note that as µ → ∞, the original objective function of Problem LSO-RST dominates the

barrier functions, and hence the solution to Problem (13) approaches that of Problem LSO-RST

asymptotically. Further, since µ can be increased exponentially (e.g., letting µk = 2k), it suffices to

focus on a second-order solution to the fµ(y) problem in order to achieve a second-order convergence

speed.

Next, we solve Problem (13) by the (centralized) Newton’s method, which is a second-order

algorithm. Starting from an initial feasible solution y0, the centralized Newton’s method iteratively

searches for an optimal solution as follows:

yk+1 = yk + sk∆yk, (14)

where sk > 0 is a positive step-size in the k-th iteration. In (14), ∆yk denotes the primal Newton

direction, which is the solution to the following linear equation system obtained by deriving the

Karush-Kuhn-Tucker (KKT) system of the second-order approximation of gµ(y) [2]:[
Hk MT

M 0

][
∆yk

wk

]
= −

[
∇gµ(yk)

0

]
, (15)

where Hk , ∇2gµ(y
k) ∈ R2N×2N is the Hessian matrix of gµ(y) at yk, and the vector wk ∈ RN+1

contains the dual variables with entries arranged as [wk
1 , . . . , w

k
N+1]

T , where wk
n is the k-th iteration

value of the dual variable associated with the n-th row in My = d. It can be readily verified that

the coefficient matrix of the linear equation in (15) is nonsingular. Therefore, the primal Newton

direction ∆yk and the dual variables wk can be uniquely determined by solving (15). Further, with

an appropriate step-size selection (to be discussed in more detail in Section 4.4), the second-order

convergence speed of the above second-order scheme follows from standard interior-point methods [27].

However, we note that the above second-order approach creates many challenges for a distributed

algorithm design since solving for ∆yk and wk simultaneously via (15) requires global information.

In what follows, we focus on designing distributed computation schemes for ∆yk and wk.

4.2 Distributed Algorithm Design

Our first step towards solving (15) in a decentralized manner is to derive a reduced linear system of

(15) by Gaussian elimination as follows:

∆yk = −H−1
k (∇gµ(yk) +MTwk), (16)

wk = (MH−1
k MT )−1(−MH−1

k ∇gµ(y
k)). (17)

Thus, at a given yk, we can solve for wk from (17), which can be used to solve for ∆yk from (16).

Then, the next iterate yk+1 can computed by (14) along with an appropriate step-size sk. However,
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as we shall see shortly, the distributed computations of H−1
k and (MH−1

k MT )−1 (which can be viewed

as a Laplacian-type matrix [28] weighted by H−1
k ) remain difficult due to the non-separable structures

in Hk and MH−1
k MT . This is in stark contrast to those problems in communications networks [3–5],

where the Hessian matrices are (block) diagonal and their distributed inverse computations are much

easier. In what follows, we will further exploit the special structure of Hk and MH−1
k MT in power

systems to design a new iterative scheme to compute ∆yk and wk in a distributed fashion.

a) Distributed computation of primal Newton directions. For simplicity, here we

introduce several notations. We let Ψ(n) , I (n) ∪ O (n) denote the set of lines that incident upon

bus n. If bus n is one of the two end buses of line l, we use the notation E(l)\n to represent the other

end bus of line l (where E(l) denotes the set of two end buses of l). Also, we let Cn(·) ≡ 0 for n ∈ K.
To see the non-separable structure of Hk, we evaluate the first and second partial derivatives of

gµ(y), for which the non-zero ones are:

∂gµ
∂zn

= µC ′
n(zn) +

1

Kn − zn
− 1

zn
, ∀n,

∂2gµ
∂z2n

= µC ′′
n(zn) +

1

(Kn − zn)2
+

1

z2n
, ∀n,

∂gµ
∂θn

=
∑

l∈Ψ(n)

2(θn − θE(l)\n)

β2
l − (θn − θE(l)\n)2

, ∀n,

∂2gµ
∂θn∂θn′

=


∑

l∈Ψ(n)

2[β2
l +(θn−θE(l)\n)

2]
[β2

l −(θn−θE(l)\n)2]
2 , if n = n′,

−2[β2
l +(θn−θn′ )2]

[β2
l −(θn−θn′ )2]

2 , if n, n′ is connected by l.

We further define a diagonal matrix Z , Diag{∂g
2
µ

∂z2n
, n = 1, . . . , N} ∈ RN×N and a matrix Θ ∈ RN×N

with entries (Θ)nn′ =
∂2gµ

∂θn∂θn′
. Then, Hk can be written in a block diagonal form: Hk = Diag {Z,Θ},

and it follows that:

H−1
k = Diag

{
Z−1, Θ−1

}
.

Since Z is diagonal, we have Z−1 = Diag{1/∂g2µ
∂z2n

, ∀n}, which clearly can be computed at each bus

distributedly. Thus, the distributed computation of H−1
k is reduced to computing the block Θ−1 in

a distributed fashion. However, this remains a challenging task since Θ is dense and computing Θ−1

require global information. One possible approach to handle this challenge is to borrow the matrix-

splitting idea from [4–6] to compute Θ−1 iteratively. However, the main drawbacks of this approach

are: (i) The matrix-splitting scheme itself is a first-order method [29] and converges rather slowly (see

numerical results in Section 5). This would defeat the whole purpose of our second-order algorithmic

framework. (ii) The obtained solution under matrix-splitting is an approximation and only converges
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to the precise value asymptotically. This issue entails a time-scale separation assumption and it is

impractical for implementations in power systems.

To overcome the limitations of matrix-splitting, we propose a new iterative approach based on

the Sherman-Morrison-Woodbury (SMW) inversion lemma [2] stated as follows:

Lemma 2 (SMW matrix inversion). For any invertible matrix P and vectors u,v of conformable

dimension, if 1 + vTP−1u ̸= 0, then (P+ uvT )−1 can be computed as:

(P+ uvT )−1 = P−1 − P−1uvTP−1

1 + vTP−1u
. (18)

Note that if P−1 is known and the target matrix can be written as P coupled with a rank-1

update, then the formula in (18) provides a numerically cheap way to compute the result by a rank-1

correction based on P−1.

Now, upon a closer examination, we note that Θ is not an arbitrary dense matrix but actually

a weighted Laplacian matrix [28] of the underlying power grid network topology. To see this, we let

γl ,
2[β2

l +(θTx(l)−θRx(l))
2]

[β2
l −(θTx(l)−θRx(l))

2]2
. Then, it can be verified that Θ can be written as follows:

Θ = [−e(1)N A]×Diag {γl, l = 0, . . . , L}×[−e(1)N A]T . (19)

which shows that Θ is a Laplacian matrix weighted by the γl-variables. Moreover, by expanding and

collecting elements in (19) with respect to the rooted spanning tree, we can further decompose Θ as

follows:

Θ = ÃDiag
{
γl, l ∈ L′0

}
ÃT︸ ︷︷ ︸

rooted spanning tree T

+
∑
l /∈L′

0

γl(A)l[(A)l]
T . (20)

Now, it is important to recognize that (20) can be viewed as a weighted Laplacian matrix (weighted

by γl, l ∈ L′0) of the rooted spanning tree T plus L − (N − 1) rank-1 updates. Thus, Θ−1 can be

obtained by performing SMW-corrections L− (N − 1) times on the inverse of the first term in (20).

This motivates us to propose the first iterative SMW scheme to compute Θ−1 as follows.

First, to handle the two parts of (20), we let σ(k), k = 0, . . . , L denote a line ordering (fixing

σ(0) = 0), where σ(k) = l represents that the k-th position corresponding to line index l in the

electric power grid. The first N positions in σ(·) correspond to the first part in (20), i.e., we let

σ(k) ∈ L′0 for k = 0, . . . , N − 1. In addition, we let σ(k) be such that Ã is upper triangular if its

columns are arranged following σ(k). As an example, for the Ã of the network in Figure 1(b), we

have σ(0) = 0, σ(1) = 2, σ(2) = 5, σ(3) = 1, σ(4) = 4. Note that, once T (and hence Ã) is given, the

first N positions in σ(·) is uniquely specified because Ã corresponds to a unique basis of the original

matrix A [21]. Thus, the first N positions in σ(·) can be determined by each bus on its own since

they know Ã. The remaining L−N + 1 positions in σ(·) correspond to the second part in (20) and
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can be simply based on the row-ordering of Ã. For example, for the network in Figure 1, the last

6 − (5 − 1) = 2 positions are for the non-spanning-tree lines l3 and l6. Note that l3 starts from n4

and l6 starts from n5. In Ã of this example, the row for n4 is above the row of n5, thus we place l3

before l6, i.e., σ(5) = 3 and σ(6) = 6. Note that since each bus knows Ã, the last L−N +1 positions

of σ(·) can also be assigned by each bus on its own. With σ(·), (20) can be rewritten as:

Θ = ÃDiag
{
γσ(k), k = 0, . . . , N − 1

}
ÃT

+
L−N+1∑

i=1

γσ(N−1+i)(A)σ(N−1+i)[(A)σ(N−1+i)]
T . (21)

Now, we let

Θ−1
(0) ,

[
ÃDiag

{
γσ(k), k = 0, . . . , N − 1

}
ÃT
]−1

, (22)

be the inverse of the first term in (21). Then, for i = 1, . . . , L − N + 1, we can iteratively update

Θ−1
(i) using the SMW inversion lemma as follows:

Θ−1
(i) = Θ−1

(i−1) −
γσ(N−1+i)Θ

−1
(i−1)(A)σ(N−1+i)(A)Tσ(N−1+i)Θ

−1
(i−1)

1 + γσ(N−1+i)(A)Tσ(N−1+i)Θ
−1
(i−1)(A)σ(N−1+i)

. (23)

Then, after (L − N + 1) iterations, we have Θ−1 = Θ−1
(L−N+1). Two remarks on the SMW scheme

in (23) are in order: (i) From the σ(·)-ordering definition, the last L − (N − 1) positions in σ(·)
correspond to l /∈ T . However, the SMW scheme in (23) can still be performed on T bus-by-bus

sequentially since T is a spanning tree and each bus knows exactly which lines incident on it are

not in T and then handle those lines. (ii) Since Θ−1
(0) (cf. (22)) is symmetric and each SMW-update

is symmetric (cf. (23)), Θ−1
(i) are symmetric, ∀i. Also, in each update in (23), since (A)σ(N−1+i)

has exactly two non-zero elements 1 and −1, whose positions correspond to the two end nodes of

line σ(N − 1 + i), it will only pick up two rows in Θ−1
(i−1) corresponding to the two end nodes of

line σ(N − 1 + i) (see Appendix A for an illustrative example). As a result, we can let each bus n

store only the n-th row of Θ−1
(i) (columns are not needed since Θ−1

(i) is symmetric) and then the SMW

scheme in (23) can be carried out as shown in Algorithm 1.

We can see from Algorithm 1 that the information exchange scale of the SMW scheme is dependent

on the network diameter of T . Thus, in rooted spanning tree generation, it is more advantageous

to choose a T with small network diameter. We note that, although the information exchange scale

of the SMW scheme is larger than matrix-splitting (1-hop [4]), the efficiency of the SMW scheme

far outweighs matrix-splitting (see numerical results in Section 5). Thus, in the end, the amount of

information exchanges under our SMW scheme is still much less than that of the matrix-splitting

scheme.
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Algorithm 1 A bus-based sequential distributed scheme for computing Θ−1
(i) .

Initialization:

1. Given line ordering σ(·) where the last (L − N + 1) positions correspond to l /∈ T . Given that

the n-th row of Θ−1
(0) is available at bus n, ∀n. Let γl be available at Tx(l), ∀l. Let i = 1.

Main Iteration:

2. In the i-th iteration, at the transmitting bus of line σ(N−1+i), use γσ(N−1+i), the Tx(σ(N−1+i))-

th row of Θ−1
(i−1) (both locally available) and the Rx(σ(N − 1 + i))-th row of Θ−1

(i−1) (available

one-hop away) to compute Θ−1
(i) using (23).

3. Send the n-th row of Θ−1
(i) to bus n for each n. Send the complete Θ−1

(i) to the transmitting bus

of σ(N − i). Let i← i+ 1. If i = L−N , stop; otherwise, repeat Step 2.

For the SMW scheme (23) to work, it remains to develop the distributed computations for Θ−1
(0)

in (22). Note that

Θ−1
(0) = (Ã−1)TDiag

{
1

γσ(k)
, k = 0, . . . , N − 1

}
Ã−1 (24)

is a symmetric matrix. Due to the upper triangular structure of Ã by Lemma 1, by expanding (24),

we have (
Θ−1

(0)

)
nn′
=
(
Θ−1

(0)

)
n′n
=

n∑
k=1

γσ(k−1)(Ã
−1)kn(Ã

−1)kn′ , (25)

where n ≤ n′. Using the structure in (25) and the properties of Ã−1 in Lemma 1, we are able to

develop a distributed scheme to compute Θ−1
(0) as follows: First, it is clear from the summation in (25)

that bus n only needs γσ(0), . . . , γσ(n−1) in order to compute the n-th row of Θ−1
(0). Such information

can be piggybacked starting from the artificial line σ(0) = 0 as follows: line σ(0) sends (γσ(0)) to

line σ(1), line σ(1) sends (γσ(0), γσ(1)) to line σ(2), so on and so forth. Since there are N lines in T
(including the artificial line), at most N −1 such γ-variables need to be piggybacked in the end. Also

from Lemma 1, we have that Ã−1 only has ±1 and 0 elements. The above observations give rise to a

bus-based sequential distributed scheme to compute Θ−1
(0) as illustrated in Algoirthm 2. As we can see

in Algorithm 2, in the n-th iteration, bus n only needs to compute entries (Θ−1
(0))nn′ in the n-th row

of Θ−1
(0), with n ≤ n′. The remaining n− 1 have been computed by buses 1, . . . , n− 1 and relayed to

bus n. In particular, we can see from Step 2 that to compute (Θ−1
(0))nn′ , bus n just needs to compare

signs of the elements (since the elements are ±1 and 0 only) in the n-th and n′-th columns of Ã−1,

and then decide whether to add or subtract γσ(k−1). Therefore, Algorithm 2 is highly efficient and

finishes computing Θ−1
(0) in N iterations.

Finally, combining Algorithm 1 and Algorithm 2, we get the precise solution of Θ−1 in exactly L
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Algorithm 2 A bus-based sequential distributed scheme for computing Θ−1
(0).

Initialization:

1. Given a line ordering σ(·) such that Ã with its columns arranged in σ(·) is upper triangular. Let
n = 1.

Main Iteration:

2. In the n-th iteration, bus n does: for k = 1, . . . , n and for all n′ ≥ n, if (Ã−1)kn, (Ã
−1)kn′ ̸= 0

and (Ã−1)kn and (Ã−1)kn′ are of the same sign, then

(Θ−1
(0))nn′ = (Θ−1

(0))nn′ + γσ(k−1).

Otherwise, if (Ã−1)kn, (Ã
−1)kn′ ̸= 0 and (Ã−1)kn and (Ã−1)kn′ are of the opposite sign, then

(Θ−1
(0))nn′ = (Θ−1

(0))nn′ − γσ(k−1).

3. If n = N stop. Otherwise, send (Θ−1
(0))nn′ , n ≤ n′, and γσ(k−1), k = 1, . . . , n, to bus n + 1; let

n← n+ 1 and repeat Step 2.

iterations. With Θ−1, the primal Newton directions of Problem (13) can be computed distributedly

as shown in the following theorem:

Theorem 3. Given dual variables wk, the primal Newton directions ∆zkn and ∆θkn can be computed

using local information at each bus n. More specifically, ∆zkn and ∆θkn can be computed as follows:

for n = 1, . . . , N ,

∆zkn =
zn(Kn − zn)

z2n + (Kn − zn)2
(Kn − 2zn + zn(Kn − zn)×

(wn − µC ′
n(zn))), (26)

∆θkn =
N∑

n′=1

(Θ−1)nn′

( ∑
l∈Ψ(n)

γl +
∑

l∈Ψ(n)∪L′
0

bl(w
k
E(l)\n− wk

n)
)
. (27)

Proof. It can be verified that the results in (26) and (27) follow from expanding (16) and exploiting

the structure of M to simplify the expansion of (16). Also, we can see that (26) and (27) only involve

local information zn, γl, l ∈ Ψ(n), and wn and wE(l)\n that are either available at bus n or at one-hop

neighbor of bus n. This completes the proof.

Remark 1. In (27), we can think of the difference of dual variables (wk
E(l)\n−wk

n) as being analogous

to the “nodal potential differential” in the network simplex algorithm [21], which is in essence a first-

order gradient-based steepest descent method for linear max-flow problems. However, unlike first-order

methods, our decision to change θkn considers not just the “potential differential” of one line, but all
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lines incident upon bus n. This observation shows the key connection and difference between first-

and second-order methods.

b) Distributed computation of dual variables. Recall that, given a primal solution yk

at the k-th iteration, the dual variables wk can be computed using (17). However, as mentioned

earlier, it remains unclear how to solve for wk in a distributed fashion because (MHkM
T )−1 is dense

and computing (MHkM
T )−1 requires global information. In what follows, we will first examine the

structure of MHkM
T . From the definitions of M and H−1

k , MHkM
T can be written in blockwise

form as:

MHkM
T=

[
(ÃB̃ÃT )Θ−1(ÃB̃ÃT ) + Z−1 Z−11

1TZ−1 1TZ−11

]
. (28)

Using the blockwise matrix inversion theorem [30], we have that:

(MHkM
T )−1=

[
S−1 Q1

QT
1 Q2

]
, (29)

where Q1 = −S−1Z−11(1TZ−11)−1 and

Q2=(1TZ−11)−1+ (1TZ−11)−11TZ−1S−1Z−11(1TZ−11)−1.

In (29), S is the Schur complement [30] of MHkM
T and can be further written as:

S=(ÃB̃ÃT)Θ−1(ÃB̃ÃT)+Z−1−Z−11(1TZ−11)−11Z−1. (30)

In (29), since Z is diagonal and due to the simple structure of 1, the computations of Q1 and Q2 can

be decentralized to each node once S is known. Thus, the distributed computation of (MHkM
T )−1

boils down to decentralizing the inverse of the Schur complement S.

Note that since the quantity (1TZ−11)−1 is a scalar, the last term in (30) can be written as a

rank-1 update as follows: (1TZ−11)−1(Z−11)(Z−11)T . Then, we have the following decomposition of

S by noting Z is diagonal:

S = (ÃB̃ÃT )Θ−1(ÃB̃ÃT ) +

N∑
n=1

(Z−1)nne
(n)
N (e

(n)
N )T − (1TZ−11)−1(Z−11)(Z−11)T . (31)

Now, it is important to recognize from (31) that S can be viewed as (ÃB̃ÃT )Θ−1(ÃB̃ÃT ) coupled

with N + 1 rank-1 updates. Thus, we can use a second layer of SMW scheme to compute S−1 as

follows. First, we let

S−1
(0) =

[
(ÃB̃ÃT )Θ−1(ÃB̃ÃT )

]−1
, (32)
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which can be further written as:[
(ÃB̃ÃT )Θ−1(ÃB̃ÃT )

]−1 (a)
= (Ã−1)T B̃−1Ã−1×[

ÃDiag
{
γl, l ∈ L′0

}
ÃT+

∑
l∈L′

0

γl(A)l(A)Tl

]
(ÃT )−1B̃−1Ã−1

= (Ã−1)TDiag

{
γl
b2l
, l ∈ L′0

}
Ã−1+∑

l /∈L′
0

γl(Ã
−1)T B̃−1Ã−1(A)l(A)Tl (Ã

−1)T B̃−1Ã−1, (33)

where the equality (a) follows from (20). Note that every bus has the knowledge of Ã (and hence

Ã−1) and B̃ after the rooted spanning tree identification. Again, note that the column vector (A)l in

the second term in (33) has exactly two non-zero elements 1 and −1 that correspond to buses Tx(l)

and Rx(l) respectively. Further, due to the same decomposition structure between (33) and (20), we

have that (33) can be computed along with Θ−1 in (22) and (23), thus saving a significant amount

of extra message passings.

Next, given S−1
(0) and following the SMW matrix inversion lemma, we have for n = 1, . . . , N ,

S−1
(n) = S−1

(n−1) −
(Z−1)nnS

−1
(n−1)e

(n)
N (e

(n)
N )TS−1

(n−1)

1 + (Z−1)nneTnS
−1
(n−1)en

. (34)

After N iterations, we perform the final rank-1 correction to incorporate the last term in (31) to

obtain:

S−1 = S−1
(N) +

(1TZ−11)Z−111TZ−1

1− (1TZ−11)1TZ−11
. (35)

With the computation scheme in (29), (34), and (35), we have the precise result of (MH−1
k MT )−1

in exactly N + 1 iterations. Finally, combining all related discussions, we can derive the following

result:

Theorem 4. Given primal variables yk, the dual variables wk can be computed at each bus n as

follows:

wk
n =

N∑
n′=1

[
((MH−1

k MT )−1)nn′

(
− qn′ −

∑
l∈Ψ(n′)∩L′

0

bl(ηn′ − ηE(l)\n′)
)]

, n = 1, . . . , N, (36)

where we define qn , 2zn+pn−µzn(zn+pn)C′
n(zn)

z2n+(zn+pn)2+µz2n(zn+pn)2C′′
n(zn)

zn(zn + pn) and ηn ,
∑

n∈Ψ(n)

∑N
n′=1 γn(Θ

−1)nn′.

Proof. The result in (36) follows from the entry-wise expansion of (17) and exploiting the structure

of M to simplify the term −MH−1
k ∇gµ(y

k). We omit the detailed derivations here due to space
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Algorithm 3 A double SMW distributed algorithm for computing primal Newton directions and

dual variables.
Initialization:

1. Identify a rooted spanning tree, for which the NAIM is denoted as Ã. Given a line ordering σ(·)
such that Ã with its columns arranged in σ(·) is upper triangular.

Main Iteration:

2. Primal Newton directions: ComputeΘ−1
(0) by using Algorithm 2. For i = 1, . . . , L−N+1, compute

Θ−1 using the SMW scheme in (23) by Algorithm 1. Then, update ∆zkn and ∆θkn using (26) and

(27) in Theorem 3. Meanwhile, compute the initial Schur complement value S−1
(0) using (33) for

later use in Step 3.

3. Dual variables updates: For n = 1, . . . , N , compute (MH−1
k MT )−1 using the SMW scheme in

(29), (34), and (35) in a bus-by-bus sequential fashion. Then, update wk
n using (36) in Theorem 4.

limitation. To see how (36) can be carried out in a distributed fashion, note that since the computation

scheme (34) for (MH−1
k MT )−1 can be done in a node-by-node fashion on the rooted spanning tree T ,

the qn- and ηn-information (both involves local information only) can be piggybacked along with S−1
(n)

in (34) at the same time. Hence, by the time the computation of S−1 is complete, the required qn-

and ηn-information is also available at each bus, which further suggests that (36) can be computed

at each bus.

To conclude the discussions of distributed algorithm design, we summarize the computation

schemes of primal Newton directions and dual variables in Algorithm 3. In Algorithm 3, after initial-

ization in Step 1, Steps 2 is the first layer of SMW scheme for computing primal Newton directions

∆yk in (16); while Step 3 is the second layer of SMW scheme for dual updates wk in (17).

4.3 Algorithm Initialization

So far, we have developed a distributed double SMW scheme to compute the primal Newton directions

and dual variables. Another design element remained to be addressed is to identify a starting point.

In this paper, we propose a maximum scaling factor scheme to bootstrap our second-order distributed

scheme.

Toward this end, we let θ̂ = [θ̂1, . . . , θ̂N ]T ∈ RN be the phase angles before load shedding. Since θ̂

may cause power overflow, a set of initial operating angles within the new feasible domain is needed for

our interior-point based load-shedding scheme. Thanks to the linearity of the DC model, a simple way

of initialization is to shrink all θ̂-variables by the same scaling factor 0 < α < 1, i.e., f = BAT (αθ̂).

Clearly, there always exists a small enough α such that f will not exceed any line capacity (i.e., in

the interior of the new feasible domain). However, for a small blackout impact at the initial point,
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we hope to find the maximum α while not exceeding bounding limits. This can be formulated as:

Maximize α

subject to f = BAT θ̂α, (37a)

|fl| ≤ min{fmax
l , blβ}, ∀l, (37b)

(Af)n ≤ Bmax
n , ∀n ∈ K. (37c)

Rewriting (37a) in scalar form and substituting it into (37b) and (37c), we have αbl|θ̂Tx(l)− θ̂Rx(l)| ≤
max{fmax

l , blβ}, ∀l, and α
∑

Ψ(n)∩L′
0
bl(θ̂n − θ̂E(l)\n) ≤ Bmax

n . It then follows that the optimal scaling

factor α∗ can be computed as:

α∗=min
∀l

n∈K

{
min{fmax

l , blβ}
bl|θ̂Tx(l)−θ̂Rx(l)|

,
Bmax

n∑
Ψ(n)∩L′

0
bl(θ̂n−θ̂E(l)\n)

}
. (38)

Note that α∗ can be rewritten as: α∗ = min{min∀n{α∗
n,1}, minn∈K{αn,2}}, where

α∗
n,1 , min

l∈O(n)

{
min{fmax

l , blβ}
bl|θ̂Tx(l)−θ̂Rx(l)|

}

and αn,2 = Bmax
n∑

Ψ(n)∩L′
0
bl(θ̂n−θ̂E(l)\n)

. This implies that each bus can first determine α∗
n,1 and αn,2 locally,

and then broadcasts α∗
n,1 and αn,2 onto the rooted spanning tree T . After hearing all α∗

n,1- and

αn,2-information, each bus can determine the optimal scaling factor α∗.

4.4 Step-Size Control and Problem LSO

In this subsection, we consider step-size selection strategy and show how to use step-size control

to obtain solutions to the original Problem LSO. First, we note that to solve the original Problem

LSO using our proposed second-order distributed approach, we can replace the iteration index “k”

in (16) and (17) by time-slot index “[t]” and with a statistical estimate of p based on time-average

(or historical data if the demands are predictable). Then, we have

∆y[t] = −H−1
[t] (∇gµ(y[t]) +MTw[t]), (39)

w[t] = (MH−1
[t] M

T )−1(−MH−1
[t] ∇gµ(y[t])), (40)

and the algorithm evolves with time as:

y[t+1] = y[t] + s[t]∆y[t]. (41)

Clearly, as the time average approaches the true value of p (recall that p[t] is ergodic), the solution

obtained under (39), (40), and (41) with some appropriate step-size selection s[t] also approaches
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the optimal solution. In the interior-point methods literature [27], there are two standard step-size

selection rules. The first one is to guarantee that the iterates stay inside the interior of the feasible

domain. In the context of our problem, this means choosing s[t] as:

sup

{
s ∈ (0, 1]

∣∣∣∣∣ zn[t] + s∆zn[t] < Kn, ∀n,
|AT (θ[t] + s∆θ[t])| < β.

}
, (42)

where β , [β1, . . . , βL]
T ∈ RL. The second rule is to guarantee a “decreasing merit function” [27].

More specifically, let rµ(y[t],w[t]) , ∇gµ(y[t])+MTw[t] denote the residual of the stationarity condi-

tion in the Karash-Kuhn-Tucker (KKT) system at the current iterate (y[t],w[t]), which measures close-

ness between (y[t],w[t]) and the optimal primal-dual pair (y∗,w∗) that satisfies∇gµ(y∗)+MTw∗ = 0.

Then, we choose s[t] to enforce ∥rµ(y[t+1],w[t+1])∥ ≤ ∥rµ(y[t],w[t])∥. Under these two step-size rules,

the convergence and the second-order convergence rate analysis follow from standard interior point

methods [27].

However, we note that in practical implementations, the second step-size selection rule, i.e., the

“decreasing merit function,” is expensive to check and hard to decentralize due to a large number of

gradient and dual evaluations in each time slot. Thus, in this paper, we relax the decreasing residual

rule, while keeping the feasibility rule only (a basic requirement in an interior-point method). Note

that, due to this relaxed step-size rule, the sequence (y[t])
∞
t=0 is not guaranteed to converge. However,

we can show that their long-term average does converge to a bounded region around the optimal

solution y∗ as indicated in Theorem 5, which is exactly the objective in Problem LSO.

Theorem 5. Let y∗ represent an optimal solution to Problem LSO. Let µ be a given central-path

tracking parameter. Under the second-order scheme in (39), (40), and (41) with the step-size selection

rule (42), there exists a constant B <∞ such that lim supT→∞ | 1T
∑T−1

t=0 y[t] − y∗| ≤ B.

Proof. The main idea and key steps for proving Theorem 5 are as follows. First, we consider the

following choice of Lyapunov function: V (y[t]) , 1
2∥y[t]−y∗∥2, which can be interpreted as measuring

the distance between the current iterate y[t] to the optimal solution y∗. Then, after some algebraic

derivations and upper-bounding (see Appendix B), we obtain the following relationship:

∆V (y[t]) , V (y[t+1])− V (y[t])

≤ −smin∥y[t] − y∗∥2 +B1 +B2, (43)

where smin , inft{s[t]} > 0 represents the lower bound of the step-sizes. Note that such a lower bound

must exist since the iterates {y[t]}∞t=1 always take s[t] = 1 (i.e., a full Newton step) when they are far

from the feasible domain boundary, and s[t] starts to decrease when {y[t]}∞t=1 approach the boundary.

However, due to the barrier terms in (12), there exists a point close to the boundary, beyond which
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the barrier terms dominate the original objective function and yield a (Hessian-deflected) gradient

direction pointing inward away from the boundary. When this happens, a full Newton step will be

taken again, implying that s[t] cannot decrease to zero asymptotically. In (43), B1 and B2 are some

positive constants defined as follows:

B1 ,
smin

λmin(H)
sup
t
{∥y[t] − y∗∥∥MT (w[t] −w∗)∥}.

B2 ,
1

2λ2
min(H)

sup
t

(
∥gµ(y[t])− gµ(y

∗)∥

+∥MT (w[t] −w∗)∥
)2

.

Telescoping T inequalities in (43) for t = 0, . . . , T − 1 yields:

V (y[T ])− V (y[0]) ≤ −smin
T−1∑
t=0

∥y[t] − y∗∥2 + T (B1 +B2).

Dividing both sides by Tsmin, rearranging terms, and taking T to infinity, we have

lim sup
T→∞

1

T

T−1∑
t=0

∥y[t] − y∗∥2 ≤ B2,

where we define B2 , B1+B2

smin . Then, the proof is complete because when T is large, we have

∣∣∣ 1
T

T−1∑
t=0

(y[t] − y∗)
∣∣∣ (a)≤ ( 1

T

T−1∑
t=0

∥y[t] − y∗∥2
) 1

2 ≤ B,

where (a) follows from the triangular inequality and the basic relationship between l1- and l2-norms.

We note that the most involved step in the proof lies in the one-slot drift analysis, where we repeatedly

exploit the KKT stationary condition∇gµ(y∗)+MTw∗ = 0. We relegate the full proof to Appendix B.

Remark 2. Theorems 5 shows that even with the relaxed step-size selection strategy (more suitable

for implementation in practice), our proposed distributed second-order load shedding scheme can still

achieve a near optimal performance in average sense. We note that this relaxed step-size strategy

is one of the main novelties in this work and, to the best of our knowledge, the performance guar-

antee result under this relaxed step-size strategy has not been reported in the interior-point methods

literature.

5 Numerical Results

In this section, we present some numerical results to demonstrate the practicality and efficacy of

our proposed distributed second-order load shedding algorithm. To illustrate the convergence speed
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of our algorithm, we use the IEEE 30-bus benchmark system [31] as illustrated in Figure 2. The

IEEE 30-bus system is a portion of the American Electric Power System (AEP) in the midwest of

US [31]. In this 30-bus benchmark system, the generator buses are 1, 2, 5, 8, 11, 13, and the data for

this benchmark system (in per-unit with base power rating 1 MVA) are extracted from the software

toolbox “MATPOWER” [24]. The demand at each remaining load buses is randomly generated

with mean equal to 1 unit. Here, we suppose that this 30-bus system loses both its electric and

communication connections from the centralized controller after a disaster strike. As a result, the

30-bus system has to perform distributed load shedding on its own in a decentralized fashion. The

cost of load shedding at each load bus n is measured by a positively weighted quadratic function

ωnz
2
n with weights ωn randomly generated between 0 and 1.

For this 30-bus benchmark system, the convergence processes of our proposed distributed second-

order load shedding algorithm with different choices of initial scaling factors α are illustrated in

Figure 3. We can see that, in all cases, our distributed second-order method converges in less than 35

iterations, which demonstrates the powerful second-order convergence speed. From Figure 3, we can

also observe that the choice of initial starting points (controlled by the scaling factor α) can further

affect the convergence speed of the algorithm. In this example, the maximum scaling factor turns out

to be 0.62, which corresponds to the black curve in Figure 3. We can see that, with the maximum

scaling factor, the algorithm converges in less than 25 time slots.

To see the effect of load shedding optimization, we use bus 6 as an example. After optimization,

the load shedding amount is reduced by 0.26 unit (260 KW). To put this number into perspective, 260

KW is more than enough for the combined consumption of emergency communications department,

fire department, and the traffic and transportation department in Cambridge, Massachusetts (170

KW in total [32]), all of which are critical in disaster recovery.

Next, we compare the convergence performance between our proposed double SMW scheme with

the matrix-splitting scheme in [4]. For the IEEE 30-bus benchmark system (41 lines), the convergence

processes of our double SMW and the matrix-splitting scheme are illustrated in Figure 4, where the

top portion is for primal Newton directions and the bottom portion is is for dual variables. In

Figure 4, the matrix-splitting algorithm is terminated when the errors with respect to the true values

of ∆y and w are less than 10−6. We can see from Figure 4 that, as expected, our double SMW

scheme obtain the precise solution of ∆y and w in 41 and 31 iterations, respectively. In contrast, for

the 30-bus benchmark system, the matrix-splitting scheme takes nearly 104 and more than 8 × 104

iterations to reach the 10−6 precision. In other words, the numbers of iterations required by the

matrix-splitting scheme are three orders of magnitude larger than those of the double SMW scheme.

This suggests that the matrix-splitting scheme is impractical for fast distributed load shedding in

practice.
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Figure 2: The network topology of the IEEE 30-bus benchmark system taken from [31].
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Figure 3: The convergence process of the proposed distributed second-order load shedding algorithm

with different choices of initial scaling factors.

To compare the convergence performances between our distributed second-order scheme with the

first-order gradient based search scheme, we randomly generated 50 60-bus network examples. The

numbers of iterations for both algorithms are plotted in Figure 5. For these 60-bus test systems,

the average numbers of iterations for our proposed distributed second-order method and the first-

order subgradient method are 55.2 and 9351.2, respectively. This shows that our proposed algorithm

converges more than two orders of magnitude faster. Such a fast convergence speed is not only
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desirable but also necessary for post-disaster load shedding.
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6 Conclusion

In this paper, we developed a new distributed second-order load shedding optimization algorithm for

disaster recovery in electric power grids, We first proposed a rooted spanning tree based reformulation

that reduces the problem size and enables our distributed second-order algorithm design. Then, based

on the problem structure of the rooted spanning tree reformulation, we developed a double Sherman-

Morrison-Woodbury (SMW) scheme that yields distributed computation solutions for primal Newton

directions and dual variables. Further, we designed an efficient distributed scaling factor scheme to

initialize our second-order load shedding scheme. Finally, we propose a relaxed step-size selection

strategy, which is well-suited for distributed implementation in practice and still provides optimality

performance guarantee. To verify the efficacy of our proposed algorithm, we conduct extensive

numerical studies. Our results showed that the proposed converges more than two orders of magnitude

faster than the first-order gradient based search methods. Collectively, our results serve as the first

building block of a new second-order theoretical framework for distributed optimization in future

smart grids.
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TIP1RESULTS-Final.ashx

A An Illustrative Example of the SMW Scheme in (23) and Algo-

rithm 1

Here, we give an illustrative example to further explain the remarks for the SMW scheme in (23) and

Algorithm 1. Let l = σ(N − i+ 1) and consider a 3-dimensional symmetric matrix Θ−1
(i−1) and (A)l

as shown below:

Θ−1
(i) =


a b c

b d e

c e f

 and (A)l =


1

0

−1

.
This means that Tx(l) and Rx(l) are nodes 1 and 3, respectively. Then, it is easy to check that

1 + γl(A)Tl Θ
−1
(i−1)(A)l = 1 + af − c2.

That is, (A)l only picks up elements a, f , and c. Also, note that 1 + af − c2 > 0 due to the positive

definiteness and hence the diagonal dominance of Θ−1
(i−1).

Likewise, it is easy to check that

γlΘ
−1
(i−1)(A)l(A)Tl Θ

−1
(i−1) =


(a− c)2 (a− c)(b− e) (a− c)(c− f)

(a− c)(b− e) (b− e)2 (b− e)(c− f)

(a− c)(c− f) (b− e)(c− f) (c− f)2

,
which means that (A)l only picks up elements in the 1st and 3rd rows as well as 1st and 3rd columns.

Further, since Θ−1
i−1 is symmetric, (A)l in fact just picks up the elements in 1st and 3rd rows only.

Therefore, when doing computation for each line l, it suffices for nodes Tx(l) and Rx(l) to only store

the Tx(l)-th row and Rx(l)-th row of Θ−1
(i−1).
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B Proof of Theorem 5

To prove Theorem 5, we first show the boundedness property of w[t], i.e., ∥w[t]∥ < ∞ for all t. To

prove this result, we have from (40) that

∥w[t]∥ = ∥(MH−1
[t] M

T )−1[−MH−1
[t] ∇gµ(y[t])]∥

(a)

≤ λ−1
min

{
MH−1

[t] M
T
}∥∥∥−MH−1

[t] ∇gµ(y[t])
∥∥∥

(b)

≤ λ−1
min

{
MH−1

[t] M
T
}
λ−1
min{H[t]}∥M(−∇gµ(y[t]))∥, (44)

where (a) follows from taking the smallest eigenvalue of MH−1
[t] M

T and factoring it outside the norm;

and (b) follows from factoring λ−1
min{H[t]} outside the norm. By assumption, since gµ(y[t]) is Lipschitz

continuous, implying that the spectral radius ρ(H[t]) is bounded. Also, since M is constructed by

the node-arc incidence matrix of a connected graph, implying that ρ(H[t]) is finite. As a result,

λ−1
min

{
MH−1

[t] M
T
}

must be finite. Therefore, we can conclude that the RHS of (44) is bounded.

With the boundedness of w[t], we now prove Theorem 5. The main idea and the key steps of

the proof are as follows. First, we analyze the one-slot drift of the following quadratic Lyapunov

function V (y[t]) , 1
2∥y[t] − y∗∥2, which can be interpreted as measuring the distance between the

current iterate y[t] to the optimal solution y∗. The one-slot drift analysis will reveal the following

relationship:

∆V (y[t]) , V (y[t+1])− V (y[t])

≤ −smin∥y[t] − y∗∥+B1 +B2,

where smin
µ , inft{s[t]} represents the lower bound of the step-sizes under µ and B1 and B2 are some

positive constants. Based on this relationship, the result in Theorem 5 follows from telescoping T

one-slot drifts and then letting T go to infinity. We now begin with evaluating the one-slot Lyapunov

drift ∆V (y[t]):

∆V (y[t]) =
1

2
∥y[t+1] − y∗∥2 − 1

2
∥y[t] − y∗∥2

=
1

2

(
y[t+1] + y[t] − 2y∗)T (y[t+1] − y[t]

)
= −s[t](y[t] − y∗)H−1

[t] (∇gµ(y[t]) +MTw[t]) (45)

+
s2[t]

2
(∇gµ(y[t])+MTw[t])

TH−2
[t] (∇gµ(y[t])+MTw[t]). (46)
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In what follows, we will bound the two expressions in (45) and (46), respectively. For (45), we have

(45) = −s[t](y[t] − y∗)H−1
[t] (∇gµ(y[t]) +MTw[t])

(a)
= −s[t](y[t] − y∗)TH−1

[t] (∇gµ(y[t])−∇gµ(y∗)) (47)

− s[t](y[t] − y∗)TH−1
[t] (M

Tw[t] −MTw∗), (48)

where (a) follows from the fact that ∇gµ(y∗) +MTw∗ = 0.

Next, we evaluate (47) and (48) separately. First, by mean-value theorem, we have the following

pair of relationships:

gµ(y[t]) = gµ(y
∗) + (∇gµ(y∗))(y[t] − y∗)

+
1

2
(y[t] − y∗)TH[ỹ1](y[t] − y∗), (49)

gµ(y
∗) = gµ(y[t]) + (∇gµ(y[t]))(y

∗ − y[t])

+
1

2
(y∗ − y[t])

TH[ỹ2](y
∗ − y[t]). (50)

In (49) and (50), H[ỹ1] and H[ỹ2] represent the matrices evaluated at points ỹ1 and ỹ2, where

ỹ1 = (1 − α1)y[t] + α1ȳ
∗ and ỹ2 = (1 − α2)y[t] + α2ȳ

∗, for some 0 ≤ α1, α2 ≤ 1. Next, adding (49)

and (50) yields:

(
∇gµ(y[t])−∇gµ(y∗)

)T (
ȳ∗ − y[t]

)
+

1

2

(
y[t] − ȳ∗)T (H[ỹ1] + H[ỹ2])

(
y[t] − ȳ∗) = 0,

which further implies that (
∇gµ(y[t])−∇gµ(y∗)

)T (
y[t] − ȳ∗)

=
1

2

(
y[t] − ȳ∗)T (H[ỹ1] +H[ỹ2])

(
y[t] − ȳ∗)

≥ λmin(H)
∥∥y[t] − ȳ∗∥∥2 > 0. (51)

where the last inequality follows from the strict convexity of gµ(·). Also due to the strict convexity

of gµ(·), Hk is positive definite, we have (y[t] − y∗)TH−1
[t] (∇gµ(y[t]) − ∇gµ(y∗)) > 0. Note that

s[t] ∈ (0, 1]. Let smin = inft{s[t]} (see the main text for the existence proof of smin). It then follows

that

(47) ≤ −smin(y[t] − y∗)TH−1
[t] (∇gµ(y[t])−∇gµ(y∗))

≤ − smin

λmin(H)
(y[t] − y∗)T (∇gµ(y[t])−∇gµ(y∗)). (52)

Combining (52) and (51), we can conclude that

(47) ≤ −smin
∥∥y[t] − ȳ∗∥∥2 . (53)

32



Now, we evaluate (48):

(48) = −smin(y[t] − y∗)TH−1
[t] M

T (w[t] −w∗)

≤ smin

λmin(H)
∥(y[t] − y∗)TMT (w[t] −w∗)∥

≤ smin

λmin(H)
∥y[t] − y∗∥∥MT (w[t] −w∗)∥ (54)

Since y[t] is bounded, ∥y[t] − y∗∥ is bounded. Note also that w[t] is bounded, which implies that

∥MT (w[t] −w∗)∥ is bounded. Thus, we define

B1 ,
smin

λmin(H)
sup
t
{∥y[t] − y∗∥∥MT (w[t] −w∗)∥}. (55)

Lastly, we evaluate (46) as follows:

(46) =
s2[t]

2
(∇gµ(y[t]) +MTw[t])

TH−2
[t] (∇gµ(y[t]) +MTw[t])

(a)

≤ 1

2λ2
min(H)

∥gµ(y[t]) +MTw[t]∥2

(b)

≤ 1

2λ2
min(H)

∥gµ(y[t])− gµ(y
∗)−MTw∗ +MTw[t]∥2

(c)

≤ 1

2λ2
min(H)

(
∥gµ(y[t])− gµ(y

∗)∥+ ∥MT (w[t] −w∗)∥
)2

,

where (a) follows from s[t] ≤ 1, (b) follows from ∇gµ(y∗)+MTw∗ = 0, and (c) follows from triangular

inequality. Since gµ(·) is Lipschitz continuous, we have ∥gµ(y[t]) − gµ(y
∗)∥ is bounded. Also, since

∥w[t]∥ is bounded, we have ∥MT (w[t] −w∗)∥ is bounded. As a result, we define

B2 ,
1

2λ2
min(H)

sup
t

(
∥gµ(y[t])− gµ(y

∗)∥

+∥MT (w[t] −w∗)∥
)2

. (56)

Finally, combining (53), (55), and (56), we have

∆V (y[t]) , V (y[t+1])− V (y[t])

≤ −smin∥y[t] − y∗∥+B1 +B2, (57)

Telescoping T one-slot drift expressions for t = 0, . . . , T − 1 yields:

V (y[T ])− V (y[0]) ≤ −smin
T−1∑
t=0

∥y[t] − y∗∥2 + T (B1 +B2). (58)
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Next, dividing both sides by Tsmin, rearranging terms, and taking T to infinity, we have

lim sup
T→∞

1

T

T−1∑
t=0

∥y[t] − y∗∥2 ≤ B2
µ,

where we define B2
µ , B1+B2

smin . Therefore, as T gets large, we have

∣∣∣∣∣ 1T
T−1∑
t=0

(y[t] − y∗)

∣∣∣∣∣ (a)≤
(

1

T

T−1∑
t=0

∥y[t] − y∗∥2
) 1

2

≤ Bµ,

where (a) follows from the triangular inequality and the basic relationship between l1- and l2-norms.

Then, the result stated in Theorem 5 follows by taking limsup and liminf, respectively. This completes

the proof of Theorem 5.
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