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Abstract—Distributed joint congestion control and routing
optimization has received a significant amount of attention
recently. To date, however, most of the existing schemes follow
a key idea called the back-pressure algorithm. Despite having
many salient features, the first-order subgradient nature of the
back-pressure based schemes results in slow convergence and
poor delay performance. To overcome these limitations, in this
paper, we make a first attempt at developing a second-order
joint congestion control and routing optimization framework that
offers utility-optimality, queue-stability, fast convergence, and low
delays. Our contributions in this paper are three-fold: i) we
propose a new second-order joint congestion control and routing
framework based on a primal-dual interior-point approach; ii)
we establish utility-optimality and queue-stability of the proposed
second-order method; and iii) we show how to implement the
proposed second-order method in a distributed fashion.

Index Terms—Second-order distributed algorithm, multi-hop
routing, congestion control.

I. INTRODUCTION

With the rapid integration of new applications and tech-
nologies, recent years have witnessed a growing challenge in
making communication networks work more efficiently. To
date, while there exists a large body of work on optimization-
based dynamic joint congestion control and routing policy for
both wireline and wireless networks (see, e.g., [1]–[5]), most
of these schemes follow a key idea called the “back-pressure
algorithm,” which traces its roots to the celebrated paper
[6]. The enduring popularity of the back-pressure algorithm
is primarily due to: i) a provable throughput optimality, ii)
elegant cross-layer extensions, and iii) a distributed dynamic
queue-length differential based routing policy that stabilizes
all queues in the network. Researchers have also uncovered
a fundamental connection between the back-pressure based
congestion control and the Lagrangian dual decomposition
framework plus the subgradient method in classical nonlinear
optimization theory [1], [3], where (scaled) queue-lengths play
the role of Lagrangian dual variables and the queue-length up-
dates correspond to subgradient directions. This enlightening
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insight has unified techniques that originated independently
from control and optimization theory.

However, despite all the salient features, the subgradient
nature of the back-pressure based congestion control and
routing schemes turns out to be a factor that plagues their
performance in practice. Being a first-order method (subgra-
dients can be viewed as a first-order support of the dual
function), back-pressure based joint congestion control and
routing schemes neglect the curvature of the objective function
contour, which is characterized by the eigenvalue condition
number of the Hessian matrix that usually becomes increas-
ingly ill-conditioned as the iterates approach an optimal solu-
tion [7]. Hence, it necessitates a small update in each iteration
[1]–[4], [8], which subsequently slows down convergence and
undermines the performance of optimization. This limitation
motivates us to pursue a second-order design approach for
distributed dynamic congestion control and routing. The fun-
damental rationale behind our approach is that, as in classical
nonlinear optimization theory [7], by considering the second-
order Hessian information in congestion control anid routing,
we can expect to alleviate the inherent ill-conditioned behavior
of first-order methods, thus leading to much faster convergence
and hence better performance in practice.

However, developing a dynamic distributed second-order
congestion control and routing policy is highly challenging and
results in this area remain scarce. First, unlike the relatively
obvious queue-length connection between the back-pressure
based algorithms, it remains unclear how one can utilize
the insights from existing second-order network optimization
algorithms [9]–[12] to guide the design of an optimal dynamic
congestion control and routing policy. The main challenge is
that the existing work in [9]–[12] are “static” schemes that
operate with average rates and only yield fixed allocation
solutions, rather than dynamic policies that are able to evolve
with time instants to dynamically allocate resources. Also,
their connection to observable network state information (e.g.,
queue-length) is still missing. Second, after constructing a
second-order scheme, it remains a difficult task to prove its
utility-optimality and queue-stability (defined formally in Sec-
tion III). This is because the incorporation of the second-order
Hessian information significantly complicates the computa-
tional schemes and necessitates new theoretical approaches in
performance analysis. Lastly, how to implement the developed
second-order scheme in a distributed fashion (comparable to
first-order methods) is still an open question. Similar to the
second-order optimization algorithms in [9]–[12], one would
have to face the challenges arising from decentralizing the
Hessian and Laplacian matrix inverse computations.
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The key contribution of this paper is that, for the first
time, we successfully develop a second-order joint congestion
control and routing framework to address the aforementioned
technical difficulties and establish an analytical foundation
that offers fast convergence and high performance. The main
results and technical contributions of this paper are as follows:
• We propose a fast-converging second-order joint conges-

tion control and routing framework based on a primal-
dual interior-point approach with a simple step-size control
strategy, such that the resultant scheme is well-suited for
implementation in practice. Our primal-dual approach ex-
poses a deep connection between observable network state
information and the primal-dual interior-point optimization
theory, which itself is an active research field in operations
research today (see, e.g., [13] for a survey).

• We establish the utility-optimality and queue-stability of the
proposed second-order framework. Our theoretical analysis
unveils the fundamental reason behind the fast convergence
in the proposed second-order framework. Interestingly, our
analytical results naturally lead to a utility-optimality and
queue-length trade-off relationship governed by the barrier
parameter of the interior-point method. We compare this
trade-off relationship to those in first-order methods and
contrast their similarities and differences, thus further ad-
vancing our understanding of both first- and second-order
methods in network optimization theory.

• We suggest several approaches to implement the proposed
second-order method in a distributed fashion. In particular,
for the distributed dual Newton direction computation (the
most challenging part in our second-order method), we
propose a new Sherman-Morrison-Woodbury (SMW) based
iterative approach. We show that, on a L-link network, the
SMW-based approach obtains the precise solution in 2L
iterations, rather than asymptotically as in [9]–[11].
Collectively, our results in this paper contribute to an

exciting development of a cross-layer network control and op-
timization theory with second-order techniques. The remainder
of this paper is organized as follows. In Section II, we review
related works. Section III introduces the network model and
problem formulation. Section IV presents the algorithm and
performance analysis of our second-order scheme. Section V
develops the principal components of the distributed com-
putations. Section VI presents some numerical results, and
Section VII concludes the paper.

II. RELATED WORK

In this section, we review the state-of-the-art of both first-
and second-order methods that are closely related to this
paper. As mentioned earlier, there is a large body of work
on first-order back-pressure based joint congestion control
and routing (e.g., [1]–[4], [8], [14]) Among these works, the
scheme in [3] is the most related and can be directly compared
to our work since it is also a primal-dual based controller,
where the primal and dual variables are updated jointly (hence
relatively more convenient to implement in practice). Thanks
to the second-order structure, our approach requires a much
less conservative step-size selection, while achieving a steeper

negative Lyapunov drift rate and inducing a much faster (three
orders of magnitude numerically) convergence than in [3]. On
the other hand, the schemes in [1], [2], [4] can be categorized
as dual-based controllers, where an inner subproblem defined
in terms of primal variables needs to be solved for each
fixed set of dual variables. Thus, a counterpart of primal-dual
step-size selection does not exist. However, similar Lyapunov
drift rate analysis and numerical results also indicate a slow
convergence performance due to their first-order nature.

In the second-order domain, recent (centralized and dis-
tributed) interior-point based methods for network optimiza-
tion can be found in [10]–[12], [15]–[19]. In particular, sig-
nificant efforts have been made to decentralize the second-
order computations, including a Gaussian belief propagation
technique in [16]–[18] and a matrix-splitting approach in
[19] for flow control (with fixed routing); and a consensus-
based local averaging scheme for minimum cost routing (with
fixed source rates) in [12]. In our previous work [10], [11],
we developed distributed second-order methods for cross-
layer optimization (joint flow control, routing, and scheduling)
in both wireline and wireless networks. However, all these
second-order methods operate with long-term rates and do
not consider queue evolution and stability. Moreover, they
can be all categorized as the classical barrier interior-point
approach. Different from these previous work, this paper is
motivated by recent observations on the superior efficiency
of the primal-dual interior-point approach compared to the
barrier-based approach [13]. The main difference between the
barrier interior-point approach and the primal-dual interior-
point approach lies in different approaches in handling the
so-called perturbed KKT system (cf. Eqs. (13)–(16) in the
context of this paper). From the perspective of the perturbed
KKT system handling, the barrier approach can be interpreted
as a “restricted” version of the primal-dual approach (see
[20, Page 611]). Moreover, it has been widely observed in
practice that the barrier-based interior-point approach is less
efficient than the primal-dual method [13], [20], which is due
to the fact that the Newton-step obtained by the barrier-based
approach tends to produce infeasible primal solutions (see
[13, Sec. 4.3.3] for details). Therefore, the development of
our primal-dual second-order method in this paper follows a
more effective solution process. We also note that, recently,
the authors of [21] have proposed a second-order distributed
algorithm to accelerate the convergence of the back-pressure
algorithm. Our work differs from [21] in the following key
aspects. First, the algorithm in [21] only considers routing
without addressing congestion control for end-to-end utility
optimality. Second, the second-order acceleration in [21] is
applied only in the dual domain to adjust back-pressure
differentials, while the primal variables (routing decisions)
are determined by the “soft backpressure” policy in [22],
which is a waterfilling-type scheme for multiplexing different
sessions on each link. The waterfilling level does not have a
closed-form solution and has to be determined numerically.
In contrast, our scheme adjusts both primal and dual variables
by taking second-order Hessian information into consideration.
In each time-slot, the multiplexing fraction of each session on
each link naturally follows from the Hessian inverse, which
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Fig. 1. An illustrative example of the network model.

can be determined in closed-form distributively (cf. Eq. (35)).

III. NETWORK MODEL AND PROBLEM FORMULATION

We first introduce the notation style in this paper. We use
boldface to denote matrices and vectors. We let AT denote
the transpose of A. Diag {A1, . . . ,AN} represents the block
diagonal matrix with A1, . . . ,AN on its main diagonal. We
let (A)ij represent the entry in the i-th row and j-th column
of A and let (v)m represent the m-th entry of v. We let IK
denote the K-dimensional identity matrix, and let 1K and 0K
denote the K-dimensional vectors whose elements are all ones
and zeros (“K” may be omitted for brevity if the dimension is
clear from the context). We let λmin{A} and λmax{A} denote
the smallest and largest eigenvalues of A, respectively.

Network model: We consider a time-slotted communi-
cation network system with time slot units being indexed by
t = 0, 1, 2, . . .. As shown in Fig. 1, we represent the communi-
cation network by a directed graph G = {N ,L}, where N and
L are the sets of nodes and links, with |N | = N and |L| = L,
respectively. We assume that G is connected. There are F end-
to-end sessions in the network, indexed by f = 1, . . . , F . Each
session f has a source node and a destination node, represented
by Src(f),Dst(f) ∈ N , respectively. To avoid triviality, we
assume that Src(f) 6= Dst(f) for all f . The data of session
f travel from Src(f) to Dst(f) through the network, possibly
via multi-hop and multi-path routing.

Congestion control: As in [2], [3], we assume that the
source node Src(f) has a continuously-backlogged transport
layer reservoir that contains session f ’s data, as illustrated in
Fig. 2. Similar to a valve, in each time-slot t, a transport layer
congestion controller determines the amount of data sf,[t] to
be released from this reservoir into a network layer source
queue, where the data awaits to be routed to node Dst(f)
through the network. In other words, {sf,[t]} acts as the arrival
process to the source queue. To control the burstiness, we let
sf,[t] ≤ smax

f , ∀t. We let s̄f ≥ 0 denote the time-average rate at
which data of session f is injected at Src(f) under congestion
control, i.e., s̄f = limT→∞

1
T

∑T−1
t=0 sf,[t]. Each session is

associated with a utility function Uf (s̄f ), which represents
the utility gained by session f when data is injected at rate
s̄f . We assume that Uf (·) is strictly concave, monotonically
increasing, and twice continuously differentiable.

Routing: We let x(f)
l,[t] ≥ 0 denote the rate offered to route

session f ’s data in time-slot t at link l, as shown in Fig. 3. We
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Fig. 2. An illustrative example of
source node congestion control.
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Fig. 3. An illustrative example of
routing at an intermediate node.

let x̄(f)
l , limT→∞

1
T

∑T−1
t=0 x

(f)
l,[t] represent the time-average

routing rate of session f at link l. We use s̄ , [s̄1, . . . , s̄F ]T

and x̄(f) , [x̄
(f)
1 , . . . , x̄

(f)
L ]T to group all congestion control

and session f ’s routing rates. We denote the capacity of link l
as Cl and assume that it is fixed, which is an appropriate model
for wireline networks or wireless networks with orthogonal
channels and fixed transmission power (see, e.g., [23], [24]).
As in [1], [3], [25], we define the network capacity region
as the largest set of congestion control rates s̄ such that there
exists a routing policy for which the time-average routing rates
{x̄(f), ∀f} satisfy the following constraints:∑
l∈O(n)

x̄
(f)
l ≥

∑
l∈I(n)

x̄
(f)
l + s̄f1f (n), ∀f, ∀n 6= Dst(f), (1)

F∑
f=1

x
(f)
l,[t] ≤ Cl, ∀l, t, (2)

where O (n) and I (n) represent the sets of outgoing and
incoming links at node n, respectively; 1f (n) is an indicator
function that takes the value 1 if n = Src(f) and 0 otherwise.

For convenience, we use a node-arc incidence matrix
(NAIM) [26] A(f) ∈ R(N−1)×L and a source vector b(f) ∈
RN−1 to represent the network topology. Let Tx(l) and
Rx(l) denote the transmitting and receiving nodes of link l,
respectively. The entries (A(f))nl and (b(f))n, n 6= Dst(f),
are defined as follows:

(A(f))nl=


1 if n = Tx(l),

−1 if n = Rx(l),

0 otherwise,
(b(f))n=

{
1 if n = Src(f),

0 otherwise.

Then, the constraint in (1) can be compactly written as:
A(f)x̄(f) − s̄fb(f) ≥ 0, ∀f = 1, 2, . . . , F .

Queue-stability: We assume that each node maintains a
separate queue for each session f , as shown in Fig. 3. We let
q

(f)
n,[t] ≥ 0 represent the amount of data in session f ’s queue at

node n at time t. Since data leave the network upon reaching
destinations, we have q

(f)
Dst(f),[t] = 0, ∀t. The evolution of

q
(f)
n,[t], n 6= Dst(f), is given by:

q
(f)
n,[t+1]=

(
q

(f)
n,[t] −

∑
l∈O(n)

x
(f)
l,[t]

)+
+
∑
l∈I(n)̂

x
(f)
l,[t] + sf,[t]1f (n), (3)

where (·)+ , max{0, ·} and x̂
(f)
l,[t] is the actual routing rate.

Note that x̂(f)
l,[t] ≤ x

(f)
l,[t] since Tx(l) may have less than

x
(f)
l,[t] amount of data to transmit. Let q[t] , [q

(f)
n,[t],∀f,∀n 6=

Dst(f)]T group all queue lengths at time t. In this paper, we
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adopt the following notion of queue-stability (same as in [3]):
Under a congestion control and routing scheme, we say that
the network is stable if the norm of steady-state queue-lengths
remains finite, i.e., lim supt→∞ ‖q[t]‖ <∞.

Problem formulation: In this paper, our goal is to de-
velop an optimal joint congestion control and routing scheme
to maximize the total utility

∑F
f=1 Uf (s̄f ), subject to the

network capacity region constraints and that the network is
stable. Putting together the models presented earlier yields
the following joint congestion control and routing (JCCR)
optimization problem:

JCCR:

Maximize
F∑
f=1

Uf (s̄f )

subject to 1) A(f)x̄(f) − s̄fb(f) ≥ 0, ∀f,

2)
F∑
f=1

x
(f)
l,[t] ≤ Cl, ∀l, t,

3) Stability of all network queues,

4) x(f)
l,[t] ≥ 0, ∀f, l, t; sf,[t] ≥ 0, ∀f, t.

As mentioned earlier, several first-order schemes based on
the back-pressure idea [6] have been proposed (e.g., [1]–[5]) to
solve Problem JCCR. However, the convergence of these first-
order schemes is slow, which could lead to poor performance
in practice. In what follows, we will investigate a new second-
order joint congestion control and routing framework.

IV. A SECOND-ORDER CONGESTION CONTROL AND
ROUTING OPTIMIZATION FRAMEWORK

In Section IV-A, we first present our second-order joint
congestion control and routing algorithm along with the main
results on utility-optimality and queue-stability. Then, in Sec-
tion IV-C, we explain the design rationale of our second-order
approach. Section IV-D focuses on performance analysis and
provides the proofs for the main theorems in Section IV-A. In
Section IV-B, we discuss the key insights and intuition related
to the results in Section IV-A.

A. The Algorithm and Main Theoretical Results

In this subsection, we present the main algorithm and
associated theoretical results. First, we use y[t] to denote all
instantaneous joint congestion control and routing decisions at
time t, which are arranged in the following link-based order:
y[t] ,

[
s1,[t] · · · sF,[t], x(1)

1,[t] · · ·x
(F )
1,[t], · · · , x

(1)
L,[t] · · ·x

(F )
L,[t]

]T
.

We use M ,
[

B A1 · · · AL

]
to group all network

topology information, where B and Al are defined as B ,
Diag{b(1), . . . ,b(F )}, and Al , Diag{−a

(1)
l , . . . ,−a

(F )
l },

and where in the definition of Al, the vector a
(f)
l is

the l-th column of the matrix A(f) in Problem JCCR
(i.e., A(f) =

[
a

(f)
1 ,a

(f)
2 , . . . ,a

(f)
L

]
). Also, we let N ,

Diag
{
0TF ,1

T
F , . . . ,1

T
F

}
∈ R(L+1)×(L+1)F and c ,

[0, C1, . . . , CL]T ∈ RL+1. Then, it can be verified that (1)
and (2) can be compactly written as My[t] ≤ 0 (in each time

slot rather than on average) and Ny[t] ≤ c. Next, we define
the following µ-scaled barrier augmented objective function:

fµ(y[t]) ,− µ
F∑
f=1

Uf (sf,[t])−
L∑
l=1

log

(
Cl −

F∑
f=1

x
(f)
l,[t]

)

−
F∑
f=1

log(sf,[t])−
L∑
l=1

F∑
f=1

log(x
(f)
l,[t]), (4)

where µ > 0 is called the barrier parameter (its meaning
will be clear soon in Section IV-C). We let g[t] , ∇fµ(y[t])

and H[t] , ∇2fµ(y[t]) denote the gradient vector and Hessian
matrix of fµ(·) evaluated at y[t], respectively.

Next, we associate with Constraint (1) the dual variables
p

(f)
n > 0, ∀f , ∀n 6= Dst(f), which play the role of prices

charged to session f for using node n. Accordingly, let p(f)
n,[t]

be the price in time slot t. For convenience, we let p[t] =

[p
(f)
n,[t], ∀f, ∀n 6= Dst(f)]T group all dual variables at time t

and define a diagonal matrix P[t] , Diag
{
p[t]

}
.

Now, we define a diagonal matrix Q[t] , Diag
{
My[t]

}
that reflects the intended queue-length evolution at time t. To
see this, we can expand My[t] to verify that each diagonal
entry of Q[t] is of the form: −∑l∈O(n) x

(f)
l,[t]+

∑
l∈I(n) x

(f)
l,[t]+

sf,[t]1f (n), which is almost identical to the actual queue-
length change in (3), except without the (·)+ projection and
that all x̂-variables are replaced by x-variables. With this
notation and given a strictly feasible initial solution at t = 0
(i.e., My[0] < 0, Ny[0] < c, p[0] > 0), our second-order
algorithm is illustrated in Algorithm 1.

In Algorithm 1, the primal variables y[t] and dual variables
p[t] are updated following the (Newton) directions ∆y[t] in (5)
and ∆p[t] in (6), respectively; both of which exploit not only
the first-order gradient information g[t], but also the second-
order Hessian information H[t], hence the name second-order
approach. Also, the primal variables y[t] and dual variables
p[t] are jointly updated in (7), thus being a primal-dual
scheme. Compared to dual-based controllers (e.g., [1], [2],
[4], [5], where a coupled subproblem defined in terms of
primal variables is solved in each dual iteration), a primal-dual
scheme is more convenient for implementation in practice.
Note that Algorithm 1 is a dynamic policy that evolves
with time instants and is based on the intended queue-length
evolution Q[t], which is an easily observable network state in
practice. Moreover, as opposed to first-order methods where
queue-length itself is directly used as a price, Eq. (6) shows
that our pricing scheme exploits Q[t], which corresponds to
the intended change of queue-length. Therefore, the “change
of queue-length” in our second-order method compared to
the “queue-length value itself” in first-order backpressure
methods can be viewed as one-order higher in the queue-
length variation sense, hence providing another perspective to
interpret the name “second-order.” Lastly, the step-size control
in (7) and (8) is used to ensure the utility-optimality result
and will be further explained in Section IV-C. In (7) and (8),
the parameter M > 0 could be set to some upper bound
of the average source session rate to reduce the burstiness.
The choice of the parameter ε will be addressed shortly in
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Algorithm 1 A second-order joint congestion control and
routing optimization algorithm (for a given µ).

1. In time-slot t, determine the second-order primal conges-
tion control and routing and dual price (Newton) directions
∆y[t] and ∆p[t] as follows:

∆y[t] =−(H[t]−MTQ−1
[t] P[t]M)−1(g[t]−MTQ−1

[t] 1), (5)

∆p[t] = −(MH−1
[t] MT −P−1

[t] Q[t])
−1×

[MH−1
[t] (g[t] + MTp[t])− (Q[t] + P−1

[t] )1]. (6)

2. Update primal and dual variables jointly as:[
y[t+1]

p[t+1]

]
=

([
y[t]

p[t]

]
+ π

[
∆y[t]

∆p[t]

])
SMε

, (7)

where π ∈ (0, 1] is a constant step-size, and (·)SMε
represents the projection onto the set SMε defined as:

SMε ,

{
(y,p)

∣∣∣∣ ε1 ≤ y ≤M1, My ≤ −ε1,
Ny ≤ c− ε1, p ≥ ε1.

}
, (8)

where the constant ε > 0 can be made arbitrarily close
to zero and the constant M > 0 is used for burstiness
reduction. Let t← t+ 1 and go to Step 1.

Theorem 3 below. Note that, for ease of performance analysis
in this section, the primal-dual Newton directions in (5) and (6)
are expressed in matrix form for now. Their explicit distributed
computational schemes will be derived later in Section V.

The following theorem says that the time-average conges-
tion control rates and routing rates obtained under Algorithm 1
can be made arbitrarily close to the optimal solution by
increasing the barrier parameter µ.

Theorem 1 (Utility-optimality). Let ȳ∗ represent the optimal
average rate solution to Problem JCCR. Under Algorithm 1
and for some given µ, if the step-size π scales as O( 1

µ ), then
there exists some constant B ∈ (0,∞) independent of µ such
that lim supT→∞

∣∣ 1
T

∑T−1
t=0 y[t] − ȳ∗

∣∣ ≤ B√
µ .

For a time-varying positive definite matrix A[t] (i.e., the
smallest eigenvalue is strictly positive for all t), we let
λmin{A} , inft

{
λmin

{
A[t]

}}
. The following result explains

why Algorithm 1 enjoys a fast convergence.

Theorem 2 (Lyapunov drift rate). If ȳ is outside of [ȳ∗ −
B√
µ , ȳ∗+ B√

µ ], where ȳ∗ and B are as defined in Theorem 1,
then there is a negative Lyapunov drift that drives ȳ toward
this interval, and the drift rate can be lower bounded by R ,

λmin{H}
λmin{H−MTQ−1PM} . Particularly, R ≥ 1 as µ→∞.

Theorem 2 indicates that the second-order scaling term
(H[t]−MTQ−1

[t] P[t]M)−1 in (5) is crucial to the convergence
of Algorithm 1. Without this term (replacing it by an identity
matrix I), we essentially “rediscover” a first-order back-
pressure method (with MTQ−1

[t] 1 being the “pressure differ-
ential”). Thanks to this second-order scaling term, the “pulling
force” of the negative Lyapunov drift is strong, allowing our
scheme to approach the desired region at least as fast as at a
rate R that is insensitive to the objective function contour.

TABLE I
PERFORMANCE SCALINGS COMPARISONS.

2nd-order 1st-order 1st-order
(Primal-dual: [3]) (Dual: [2], [5])

Optimality gap O( 1√
µ

) O( 1√
V

) O( 1
V

)

Queue-length O(µ) O(V ) O(V )

Step-size O( 1
µ

) O( 1
V 2 ) O( 1

V
)

In contrast, the Lyapunov drift rate in first-order methods
can be characterized by inft{λmin{Diag{−U ′′f (sf,[t]),∀f}}}
(see, e.g., [3, Eq.(32)] and discussions thereafter), which is
clearly sensitive to the objective function contour and could
be very small (i.e., induce stalling). The next theorem states
that, under Algorithm 1, the norm of steady-sate queue-lengths
q[t] remains finite, and hence inducing queue-stability.

Theorem 3 (Queue-stability). Under Algorithm 1 and for a
given µ, letting ε = O(1/µ), there exists a constant K < ∞
that scales as O(µ) such that lim supt→∞

∥∥q[t]

∥∥ ≤ K.

The proofs of Theorems 1, 2, and 3 will be given in Sec-
tion IV-D. In what follows, we first discuss the performance
scalings and the design rationale of Algorithm 1.

B. Performance Scalings of Algorithm 1

Similar to most first-order methods, Theorems 1 and 3 imply
a trade-off between optimality gap and queue-length (hence
delay). Specifically, although having a fundamentally different
algorithmic meaning, the barrier parameter µ in our second-
order method plays a similar role in characterizing the trade-
off compared to the subgradient step-size scaling factor of the
first-order methods (e.g., “V ” in [2], “K” in [3], and β in
[5]). Thus, we summarize the performance scalings of first-
and second-order methods in Table I (all parameters in first-
order methods are standardized to “V ”).

First, we see that all schemes have the same linear queue-
length scaling. Second, the optimality gap scaling in [3] and
our work are similar due to the common primal-dual nature.
However, the O( 1√

V
)-scaling in [3] is achieved at a slower

convergence performance and under a more restrictive step-
size scaling described next. For dual-based controllers in [2],
[5], the optimality gap scales as O( 1

V ). Although this result
appears to be better at first glance, a closer look reveals that
such a direct comparison cannot be made. In [2], [5], the gap is
measured by (in our notation)

∑
f Uf (s∗f )−∑f Uf (sf ), i.e.,

the gap of utility value. In contrast, Theorem 1 measures the
gap by ‖ 1

T

∑T−1
t=0 y[t]− ȳ∗‖, i.e., the closeness to the optimal

solution. For convenience, we let ȳ , 1
T

∑T−1
t=0 y[t]. As shown

in Fig. 4, for an increasing strictly concave function U(·), even
if U(ȳ) is in order sense close to U(ȳ∗), it is still unclear
how small ‖ȳ− ȳ∗‖ is in general, and this distance could be
large (e.g., if U = log(·)). In contrast, Theorem 1 directly
characterizes ‖ȳ− ȳ∗‖. Due to the concavity of U(·), a small
‖ȳ− ȳ∗‖ guarantees a near-optimality in the objective value.

For step-size scaling, we can see that, for the first-order
primal-dual scheme in [3] to approach optimality, the step-
size should scale as O( 1

V 2 ), which is much smaller than our
O( 1

µ )-scaling and implies a very slow convergence. For dual-
based controllers [1], [2], [4], [5], although there is no direct
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ȳ∗

y

U(·)
U(ȳ∗)
U(ȳ)

ȳ

Fig. 4. Illustration of a monotonically increasing strictly concave utility
function U(·) and the relationship between |U(ȳ)−U(ȳ∗)| and ‖ȳ− ȳ∗‖.

primal-dual step-size counterpart, the dual step-size scaling
therein can be understood as O( 1

V ), similar to our O( 1
µ ).

However, this O( 1
V )-scaling is obtained under the dual-based

architecture, which is more cumbersome to implement due to
the coupled inner primal subproblem.

Lastly, we remark that the O( 1
µ ) step-size scaling is not

restrictive in implementations since it is only a sufficient
condition to establish Theorem 1. Given that the proof of
Theorem 1 (see Section IV-D) is a limiting argument and the
constant B in Theorem 1 may not be tight, the choice of the
hidden constant in our O( 1

µ )-scaling does not have to be small.

C. The Rationale behind the Algorithmic Design

Algorithm 1 is inspired by, and mirrors, a primal-dual
interior-point method for directly solving Problem JCCR in
terms of average rates s̄f and x̄(f)

l . In what follows, we outline
the main steps in our algorithmic design.

Step 1) A perturbed KKT system: As in standard interior-
point methods [20], we first reformulate Problem JCCR by ap-
plying a logarithmic function to all inequality constraints and
then accommodating them in the objective function to obtain
the following barrier objective function (to be minimized):

f̂ (0)
µ (ȳ) = −

F∑
f=1

Uf (s̄f )− 1

µ

L∑
l=1

log

(
Cl −

F∑
f=1

x̄
(f)
l

)

− 1

µ

F∑
f=1

log(s̄f )− 1

µ

L∑
l=1

F∑
f=1

log(x̄
(f)
l )

− 1

µ

F∑
f=1

∑
n 6=Dst(f)

log

( ∑
l∈O(n)

x̄
(f)
l −

∑
l∈I(n)

x̄
(f)
l − s̄f1f (n)

)
,

Then, we can rewrite Problem JCCR as the following uncon-
strained optimization problem:

R-JCCR: Minimize f̂
(0)
µ (ȳ), (9)

where, as µ→∞, the original objective function of Problem
JCCR dominates the barrier functions, and hence the solu-
tion of Problem R-JCCR approaches that of Problem JCCR
asymptotically ( [13], [20]). Next, we take the first derivatives
of f̂ (0)

µ (ȳ) and set them equal to zero (i.e., by way of the
first-order Karush-Kuhn-Tucker (KKT) condition) to obtain:

∂f̂
(0)
µ (ȳ)

∂s̄(f)
= −U ′(s̄f )− 1

µs̄f
−

1

µ

( ∑
l∈O(Src(f))

x̄
(f)
l −

∑
l∈I(Src(f))

x̄
(f)
l − s̄f

)−1

= 0, (10)

∂f̂
(0)
µ (ȳ)

∂x̄
(f)
l

=
1

µ(Cl −
∑F
f ′=1 x̄

(f ′)
l )

− 1

µx
(f)
l

−

1

µ

( ∑
l∈O(Tx(l))

x̄
(f)
l −

∑
l∈I(Tx(l))

x̄
(f)
l − s̄f1f (Tx(l))

)−1

+

1

µ

( ∑
l∈O(Rx(l))

x̄
(f)
l −

∑
l∈I(Rx(l))

x̄
(f)
l − s̄f1f (Rx(l))

)−1

= 0. (11)

In (10) and (11), with respect to the final terms, we define
dual variables (also called “barrier multipliers”, see [13, Sec-
tion 3.1]) as follows:

p̂(f)
n =

1

µ
(∑

l∈O(n) x̄
(f)
l −

∑
l∈I(n) x̄

(f)
l − s̄f1f (n)

) . (12)

Note that when ȳ is strictly primal feasible, we have p̂(f)
n > 0.

The purpose of introducing the p̂
(f)
n -variables in (12) is to

render a “perturbed KKT” system, which enables the sub-
sequent queuing design and analysis. Toward this end, we
use the vector p̂ , [p̂

(f)
n ,∀f, ∀n 6= Dst(f)]T to group all

dual variables. Also, we let f̂µ(ȳ) , 1
µfµ(ȳ) (cf. (4) for the

definition of fµ(·)). Substituting (12) in (10) and (11) and
then using f̂µ(ȳ), along with p̂ and the property of M, we
arrive at the following perturbed KKT system that contains
stationarity (ST), primal feasibility (PF), dual feasibility (DF),
and perturbed complementary slackness (CS) conditions:

(ST): ∇f̂µ(ȳ) + MT p̂ = 0,

(PF): ȳ > 0, Mȳ < 0,

(DF): p̂ > 0,

(CS): −Diag {Mȳ} p̂ = (1/µ)1.

Compared to the standard form of KKT conditions [7], the
only difference in this perturbed KKT system is that the right-
hand side (RHS) of the CS condition is changed from 0 to
1
µ1. As a result, as µ → ∞, the perturbed KKT point (ȳ, p̂)
“almost” satisfies the standard KKT conditions, implying near-
optimality. For more convenient algebraic derivations, we let
p = µp̂ absorb the µ-factor and work with the following µ-
scaled perturbed KKT system in the rest of the paper:

(µ-ST): ∇fµ(ȳ) + MTp = 0, (13)
(µ-PF): ȳ > 0, Mȳ < 0, (14)
(µ-DF): p > 0, (15)
(µ-CS): −Diag {Mȳ}p = 1. (16)

Step 2) Second-order Newton’s method: We will now
apply primal-dual-based Newton’s method (a second-order
method) to determine a primal-dual pair (ȳ,p) that satisfies
the perturbed KKT conditions (13)–(16). Simply speaking, for
our problem, the primal-dual Newton’s method works as the
following iterative search scheme starting from some initial
feasible solution (ȳ0,p0):[

ȳk+1

pk+1

]
=

[
ȳk

pk

]
+ πk

[
∆ȳk

∆pk

]
, k ≥ 0, (17)

where πk is a step-size; ∆ȳk and ∆pk denote the primal and
dual Newton directions, respectively.
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We first work with the µ-ST and µ-CS conditions, while
the µ-PF and µ-DF conditions will be handled later explicitly
when determining the step-size. Note that finding a primal-
dual pair (ȳ,p) that satisfies the µ-ST and µ-CS conditions
amounts to computing the roots of a nonlinear equality system
consisting of (13) and (16), which does not have analytic
solutions in general and necessitates numerical methods. By
using the Newton’s method for root-finding [20], one can
compute the Newton direction [(∆ȳk)T , (∆pk)T ]T as:[

Hk MT

−PkM −Qk

][
∆ȳk

∆pk

]
=−

[
gk + MTpk

−(PkQk + I)1

]
,(18)

where we let gk , ∇fµ(ȳk), Hk , ∇2fµ(ȳk), Pk ,
Diag

{
pk
}

, and Qk , Diag
{
Mȳk

}
. Note that, due to the

perturbed KKT conditions, (18) is different from the Newton
systems in existing second-order methods (cf. [9, Eq.(4)], [10,
Eq.(8)], [11, Eq.(9)]). Also, directly solving (18) is undesirable
due to its complex structure. A better way for solving (18) is
to derive a reduced linear system by Gaussian elimination to
obtain (assuming pk > 0 and hence Pk is non-singular, which
can be ensured by the step-size control described next):

∆ȳk =− (Hk −MTQ−1
k PkM)−1(gk −MTQ−1

k 1), (19)

∆pk =− (MH−1
k MT −P−1

k Qk)−1

× [MH−1
k (gk + MTpk)− (Qk + P−1

k )1]. (20)

Now, it is not difficult to recognize the structural similarity
between (5)–(6) and (19)–(20).

Next, we handle the µ-PF and µ-DF conditions by step-size
control. In standard primal-dual interior-point methods [13],
the step-size control is based on two rules: The first one is to
satisfy primal-dual feasibility by finding:

πk=max

π ∈ [0, 1]

∣∣∣∣∣∣∣∣
ȳk + π∆ȳk ≥ ε1,
M(ȳk + π∆ȳk) ≤ −ε1,
N(ȳk + π∆ȳk) ≤ c− ε1,
pk + π∆pk ≥ ε1,

 , (21)

where ε > 0 is some arbitrarily small constant. Note that a full
Newton step is taken if πk = 1. The second step-size selection
rule is to guarantee a decreasing residual: Let rµ(ȳk,pk) ,
[(gk +MTpk)T , (−PkQk1−1)T ]T be the residual of µ-ST
and µ-CS at ȳk (i.e., the right-hand side (RHS) of (18)). The
second rule is to choose πk to satisfy [13]:

‖rµ(ȳk+1,pk+1)‖ < ‖rµ(ȳk,pk)‖. (22)

Under the step-size rules in (21) and (22), the second-order
convergence speed analysis follow from standard primal-dual
interior-point methods (see [13, Chap. 5] and [27]).

Step 3) Back to Algorithm 1: Now, we can see that Al-
gorithm 1 indeed mimics the foregoing approach to adjust y[t]

in every time-slot, rather than the average rate ȳk. Moreover,
Algorithm 1 has a much simplified step-size selection rule:
We do not require a delicate line search to determine πk as
in (21) and have the residuals rµ(ȳk,pk) decrease as in (22),
both of which are expensive to check due to a large number of
gradient and constraint evaluations in each time-slot. Rather,
we use a fixed step-size π ∈ (0, 1] and a projection to maintain

primal-dual feasibility (a basic requirement in an interior-
point method). Surprisingly, even with this much simplified
and relaxed step-size rule, we are still able to show that the
time-average of {y[t],p[t]}∞t=0 converges to a bounded region
around the optimal solution as indicated in Theorem 1, which
is exactly the goal of Problem JCCR.

D. Proofs of the Main Theorems
In this section, we provide (sketched) proofs for the the-

orems in Section IV-A for better readability. More detailed
proof derivations can be found in the appendices.

Sketch of the proof of Theorem 1. The main idea and key
steps for proving Theorem 1 are as follows. First, we consider
the one-slot drift of the following particular choice of quadratic
Lyapunov function:

V
(
y[t],p[t]

)
,

1

2π

∥∥y[t] − ȳ∗
∥∥2

+
1

2µ3π

∥∥p[t] − p∗
∥∥2
,

which can be interpreted as measuring the (unscaled) distance
between a primal-dual iterate (y[t],p[t]) and a perturbed KKT
point (ȳ∗,p∗) satisfying (13)–(16). For simplicity, we let F[t]

and G[t] be defined as follows: F[t] , H[t] −MTQ−1
[t] P[t]M

and G[t] , MH−1
[t] MT−P−1

[t] Q[t]. Then, after some algebraic
derivations and upper-bounding (see Appendices A-A and A-B
for detailed derivations), we obtain the following relationship:

∆V
(
y[t],p[t]

)
, V

(
y[t+1],p[t+1]

)
− V

(
y[t],p[t]

)
≤ −R‖y[t] − ȳ∗‖2 + πB1 +

1

µ
B2 +

1

µ
B3, (23)

where R , λmin{H}
λmin{F} > 0 (see Eq. (55) in Appendix A-A for

detailed derivations) and B1, B2, and B3 are some positive
constants as defined in (59), (69), and (72) in Appendix A, re-
spectively. Also, based on (59), (69), and (72) in Appendix A,
we can conclude that B1, B2, and B3 are independent of
µ. It can be seen from (23) that if π = O(1/µ), we have
V (y[t+1],p[t+1]) − V (y[t],p[t]) ≤ −R‖y[t] − ȳ∗‖2 + 1

µ B̂,
where B̂ , αB1 + B2 + B3 for some α > 0. Telescoping
T via one-slot drift expressions for t = 0, . . . , T − 1 yields:
V
(
y[T ],p[T ]

)
− V

(
y[0],p[0]

)
≤ −R∑T−1

t=0 ‖y[t] − ȳ∗‖2 +
T
µ B̂. Next, dividing both sides by TR, rearranging terms, and
taking T to infinity, we have lim supT→∞

1
T

∑T−1
t=0 ‖y[t] −

ȳ∗‖2 ≤ B2

µ , where we let B2 , B̂/R. Then, the proof is
complete because when T is large, we have∣∣∣ 1

T

T−1∑
t=0

(
y[t] − ȳ∗

)∣∣∣ (a)

≤
( 1

T

T−1∑
t=0

‖y[t] − ȳ∗‖2
) 1

2 ≤ B√
µ
,

where inequality (a) follows from the triangular inequality and
the basic relationship between l1- and l2-norms. We note that
the most challenging step in the proof lies in the one-slot drift
analysis, where we repeatedly exploit the key relationships
in the perturbed KKT system in (13)–(16). We relegate the
derivation details to Appendix A.

Proof of Theorem 2. First, from (23), we have that the drift
rate R is given by:

R ,
λmin{H}
λmin{F}

=
inft{λmin{H[t]}}
inft{λmin{F[t]}}

.
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Recall that F[t] is defined as F[t] , H[t] −MTQ−1
[t] P[t]M.

From (4), it is clear that all entries in H[t] (i.e., the Hessian
matrix of fµ(y[t])) grow to infinity as µ → ∞. However,
from the µ-CS condition, where we have let p = µp̂ to
absorb the µ-factor, we have that Q−1

[t] P[t] is independent of
µ. Also, the matrix M is determined by network topology and
independent of µ. Hence, we have that the term H[t] dominates
MTQ−1

[t] P[t]M as µ grows to infinity. That is, F[t] → H[t]

as µ → ∞. Also, from the strict convexity of fµ(·) and the
boundedness of y[t], we have that H[t] is positive definite for
all t, i.e., λmin{H} > 0. Hence, we have λmin{H}

λmin{F} → 1 as
µ→∞.

Proof of Theorem 3. The basic idea to prove Theorem 3 is
based on analyzing the one-slot drift of the following Lya-
punov function: V̂

(
q[t]

)
, 1

2

∥∥q[t]

∥∥2
. For convenience, we

let ŷ[t] ,
[
s1,[t] · · · sF,[t], x̂(1)

1,[t] · · · x̂
(F )
1,[t], · · · , x̂

(1)
L,[t] · · · x̂

(F )
L,[t]

]T
group all source and actual routing rates. Note that ŷ[t] ≤ y[t]

since x̂(f)
l,[t] ≤ x

(f)
l,[t]. Then, the queuing dynamic can be written

as q[t+1] = q[t] + Mŷ[t] and the one-slot drift ∆V̂ can be
bounded as:

∆V̂ =
1

2
‖q[t+1]‖2−

1

2
‖q[t]‖2=qT[t]Mŷ[t]+

1

2
ŷT[t](M

TM)ŷ[t]

≤ qT[t]Mŷ[t] +
1

2
yT[t](M

TM)y[t]

(a)

≤ qT[t]My[t]+NLmax
∀l
{Cl}+

1

2
yT[t](M

TM)y[t], (24)

where inequality (a) is due to [3, Lemma 1]. Now, we let B4 ,
NLmax∀l{Cl} + 1

2λmax{MTM} supt{‖y[t]‖2}. Note that
NLmax∀l{Cl} and λmax{MTM} are determined by the net-
work topology and supt{‖y[t]‖2} ≤ (max{M,max∀l Cl})2.
As a result, B4 depends only on the network and is inde-
pendent of µ. On the other hand, according to our step-size
control in (8) and that ε = O( 1

µ ), we have My[t] ≤ −βµ1 for
some β > 0. Therefore, we have

∆V̂ ≤ qT[t]My[t] +B4 ≤ −
β

µ
qT[t]1 +B4

= −β
µ

∑F

f=1

∑
n 6=Dst(f)

q(f)
n [t] +B4. (25)

So it follows that when
∑F
f=1

∑
n 6=Dst(f) q

(f)
n [t] ≥ µ

β (B4 +

ε1), where ε1 > 0 is some constant, we have ∆V̂ (q[t]) ≤
−ε1, i.e., the first term in (25) dominates B4 and results in a
negative drift when the total queue length is large.

Next, we claim that the following relationship is true:

lim sup
t→∞

V̂ (q[t]) ≤
µ2

2β2
(B4 + ε1)2 +B4. (26)

This claim can be shown by the following argument: First,
suppose that V̂ (q[t]) ≤ µ2

2β2 (B4 + ε1)2. From (25), we know
that qT[t]My[t] ≤ 0, which further implies that ∆V̂ (q[t]) < B4.
As a result, we have

V̂ (q[t+1]) = V̂ (q[t]) + ∆V̂ (q[t]) ≤
µ2

2β2
(B4 + ε1)2 +B4,

i.e., (26) is true. On the other hand, suppose that V̂ (q[t]) >
µ2

2β2 (B4 + ε1)2. From the basic relationship between l1- and

l2-norms, we have (2V̂ (q[t]))
1
2 ≤ ∑F

f=1

∑
n 6=Dst(f) q

(f)
n [t].

This implies that if V̂ (q[t]) > µ2

2β2 (B4 + ε1)2, we have
∆V̂ (q[t]) ≤ −ε1. This means that V̂ (q[t+1]) < V̂ (q[t]) and
that the sequence {V̂ (q[t])} will monotonically decrease at
a rate at least ε1. Therefore, there exists a time t′ such that
V̂ (q[t′]) ≤ µ2

2β2 (B4 + ε1)2, and then the rest follows from the

earlier discussions in the case where V̂ (q[t]) ≤ µ2

2β2 (B4+ε1)2.

Finally, we let K2 , 2
[
µ2

2β2 (B4 + ε1)2 + B4

]
and note that

K2 scales as O(µ2). Then, the result stated in the theorem
follows by multiplying both sides of (26) by two and taking
the square root. This completes the proof.

So far, we have designed a second-order joint conges-
tion control and routing algorithm and established its utility-
optimality and queue-stability. However, given the more com-
plex computational scheme in Algorithm 1, one question begs
to be answered: Can we design a distributed algorithm based
on the proposed second-order method? Moreover, although
it is convenient to express (5) and (6) in matrix equations,
they are cumbersome to use and more explicit scalar-based
expressions are desired for implementations in practice. These
issues constitute the main discussions in the next section.

V. SECOND-ORDER DISTRIBUTED ALGORITHM DESIGN

In this section, our main goal is to decentralize the proposed
second-order method in Section IV. Note that the main compu-
tational complexity in (5) and (6) stems from the following two
dense matrix inverse computations that require global network
information:

F−1
[t] =

(
H[t] −MTQ−1

[t] P[t]M
)−1

, (27)

G−1
[t] =

(
MH−1

[t] MT −P−1
[t] Q[t]

)−1

. (28)

Thus, our effort in this section is centered around tackling
these two challenges. We first derive an alternative way for
computing the primal and dual Newton directions in Sec-
tion V-A. Next, we develop distributed computational schemes
for the primal and dual Newton directions in Sections V-B
and V-C, respectively.

A. Alternative Computational Scheme for Newton Directions

Our first step towards designing a second-order distributed
method is to simplify the computational schemes in (5) and
(6). The rationale behind this simplification is due to the
following observation: While (5) and (6) “cleanly” express
y[t+1] and p[t+1] in terms of y[t] and p[t] and enable all
the subsequent utility-optimality and queue-stability analysis,
they also make the computational schemes unnecessarily more
complex for practical implementations. Toward this end, we
establish the following lemma that will be useful in Sec-
tions V-B and V-C:

Lemma 4. The primal and dual Newton directions in (5) and
(6) can be alternatively computed as follows:

∆y[t] = −H−1
[t]

(
g[t] + MT p̃[t+1]

)
, (29)

∆p[t] = p̃[t+1] − p[t], (30)
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where p̃[t+1] is obtained by starting from p[t] and taking a
full Newton step (i.e., π = 1) and can be computed as:

p̃[t+1] = G−1
[t]

[
MH−1

[t] (−g[t]) + P−1
[t] 1

]
. (31)

The basic idea here is that, through the use of an auxiliary
variable p̃[t+1], we obtain simpler expressions in (29) and
(30). Clearly, (30) follows from the definition of p̃[t+1]. The
expressions in (29) and (31) can be derived by solving for
∆y[t] and ∆p[t] from (18) (changing the indices from “k” to
“[t]”) and replacing p[t] + ∆p[t] by p̃[t+1]. With Lemma 4,
we are now in a position to derive a distributed scheme for
computing primal and dual Newton directions.

B. Distributed Computation of the Primal Newton Direction

The first advantage of using the new scheme in (29) is that,
instead of having to deal with F[t], which is an unstructured
and dense matrix, we are now faced with H[t], which has the
following nice block diagonal structure:

H[t] = Diag
{
S[t],X1,[t], . . . ,XL,[t]

}
,

where S[t] ∈ RF×F is a diagonal matrix defined as

S[t] , Diag

{
−µU ′′f (sf,[t]) +

1

s2
f,[t]

, f = 1, . . . , F

}
, (32)

and where Xl ∈ RF×F is a symmetric matrix with entries
defined as follows:

(Xl,[t])f1,f2 =


1

δ2l [t]
+ 1(

x
(f1)

l [t]
)2 if f1 = f2,

1
δ2l [t]

if f1 6= f2,
(33)

where δl[t] , Cl −
∑F
f=1 x

(f)
l [t] represents the unused link

capacity of link l in time-slot t. It then follows from the block
diagonal structure of H[t] that

H−1
[t] = Diag

{
S−1

[t] ,X
−1
1,[t], . . . ,X

−1
L,[t]

}
. (34)

We note that this block diagonal structure of the Hessian is
exactly the same as that in [10, Section V-C] (after replacing
the long-term average rates by instantaneous rates in each
time-slot t). Due to the same structure as their counterparts
in [10], S−1

[t] and X−1
l,[t] can be computed in closed-form by

using Lemma 4 and Theorem 5 in [10]. Furthermore, by
noting the similarity in structure between (29) and the primal
Newton direction scheme in [10, Eq. (9)], we immediately
have the following result for second-order congestion control
and routing update directions (the proof mirrors that of [10,
Theorem 6] and is omitted for brevity):

Theorem 5. Let x̂l be defined as in [10, Theorem 6]. Given
dual prices p̃[t+1], the congestion control and routing direc-
tions ∆sf,[t] and ∆x

(f)
l,[t] can be computed in closed-form using

local information at each source and each link as follows
(omitting time-slot indexes “[t]” and “[t+ 1]” for simplicity):

∆sf =
sf
(
µsfU

′
f (sf ) + 1− sf p̃(f)

Src(f)

)
1− µs2

fU
′′
f (sf )

, ∀f, (35)

∆x
(f)
l =

(
x

(f)
l

)2[(
1− (x

(f)
l )2

‖x̂l‖2
)( 1

x
(f)
l

− 1

δl
+ p̃

(f)
Tx(l)− p̃

(f)
Rx(l)

)
+

F∑
f ′=1,6=f

(x
(f ′)
l )2

‖x̂l‖2
( 1

x
(f ′)
l

− 1

δl
+p̃

(f ′)
Tx(l)−p̃

(f ′)
Rx(l)

)]
, ∀l, f. (36)

Remark 1. Theorem 5 has two interesting networking inter-
pretations. First, the dual price differential (p̃

(f)
Tx(l)− p̃

(f)
Rx(l)) in

(36) plays a similar role of the queuing backlog differential in
the back-pressure schemes. The main difference is that ∆x

(f)
l

(i.e., to increase or decrease x(f)
l,[t]) is based on not only the

pressure differential of session f , but that of all sessions
in link l. Moreover, unlike the “winner-take-all” policy in
the back-pressure schemes (i.e., the session with the largest
backlog differential uses up the link capacity), our second-
order approach is more “democratic” in that every session
gets a share of the link capacity as indicated in (36).

C. Distributed Computation of the Dual Newton Direction

Recall that the dual Newton direction ∆p[t] can be com-
puted by first solving for p̃[t+1] in (31). However, one tech-
nical challenge remains: the term MH−1

[t] MT in G[t] (cf.
(28)) is a dense weighted Laplacian matrix [28]. Thus, it
is intractable to derive a distributed closed-form expression
for G−1

[t] . One possible approach to handle this challenge is
to borrow the matrix-splitting idea from [9]–[11] to compute
p̃[t+1] iteratively. This is because the term P−1

[t] Q[t] in (28)
is diagonal and can be absorbed into MH−1

[t] MT . Thus, the
matrix-splitting scheme in [10], [11] can be adopted with some
minor modifications. The most appealing feature of the matrix-
splitting scheme is that it only requires one-hop information
exchange. However, the main drawback of this approach is that
the obtained solution is an approximation and only converges
to the precise value asymptotically. This issue is even more
pronounced in a time-slotted system as it entails a time-scale
separation assumption. To overcome this limitation, in this
paper, we propose a new iterative approach based on the
Sherman-Morrison-Woodbury (SMW) matrix inversion.

Sherman-Morrison-Woodbury matrix inversion ap-
proach. The basic idea of the SMW-based approach is that,
instead of computing G−1

[t] indirectly by splitting, we directly
update G−1

[t] using the SMW matrix inversion lemma [7]
restated as follows:

Lemma 6 (SMW matrix inversion). For any invertible ma-
trix Ω and vectors u,v of conformable dimension, if 1 +
vTΩ−1u 6= 0, then (Ω + uvT )−1 can be computed as:

(Ω + uvT )−1 = Ω−1 − Ω−1uvTΩ−1

1 + vTΩ−1u
. (37)

Note that if Ω−1 is known and the target matrix can be
written as Ω coupled with a rank-1 update, then the formula
in (37) provides a numerically cheap way to compute the result
by a rank-1 correction based on Ω−1.
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In what follows, we outline the key steps of our SMW
approach (omitting time-slot index “[t]” for simplicity). First,
we decompose G as

G =
(
BS−1BT −P−1Q

)
+

L∑
l=1

AlX
−1
l AT

l (38)

using the structures of M and H−1 (cf. (34)). Note that the
term BS−1BT −P−1Q in (38) is diagonal and can be written
as:

BS−1BT −P−1Q = Diag

{
1

p
(f)
n

( ∑
l∈O(n)

x
(f)
l −

∑
l∈I(n)

x
(f)
l

− sf1f (n)
)

+
(
− µU ′′f (sf ) +

1

s2
f

)
1f (n), 1 ≤ f ≤ F

}
. (39)

We let D = BS−1BT−P−1Q = Diag
{
D1, . . . ,DF

}
denote

this diagonal matrix. Then, D
−1

can be readily computed at
each source node in a distributed fashion.

Next, we note that the term
∑L
l=1 AlX

−1
l AT

l in (38) can
be further decomposed as:

L∑
l=1

AlX
−1
l AT

l =

L∑
l=1

{
Diag

{
x

(f)
l a

(f)
l (a

(f)
l )T, ∀f

}
− 1

‖x̂l‖2
ulu

T
l

}
,

where a
(f)
l is as defined in Section IV-A and ul ,[

(x
(f)
l )2(a

(f)
l )T , f = 1, . . . , F

]T
. Note that the first

term
∑L
l=1 Diag{x(f)

l a
(f)
l (a

(f)
l )T , ∀f} has exactly the same

block-diagonal structure as in D. Thus, we can merge
it with D to obtain a new block-diagonal matrix D =
Diag {D1, . . . ,DF }, where each block Df is of the form:

Df = Df +

L∑
l=1

(x
(f)
l )2a

(f)
l (a

(f)
l )T . (40)

Now, it is important to recognize from (40) that Df can
be viewed as applying rank-1 updates L times to Df . This
motivates us to start from D

−1

f and apply the SMW inversion
L times to compute D−1

f . Let D−1
f,[l−1] denote the intermediate

result before applying the l-th SMW-correction. Also, let
D−1
f,[0] = D

−1

f . Then, we have the following computational
scheme based on Lemma 6: For links l = 1, . . . , L,

D−1
f,[l] = D−1

f,[l−1]−
D−1
f,[l−1](x

(f)
l )2a

(f)
l (a

(f)
l )TD−1

f,[l−1]

1 + (x
(f)
l )2(a

(f)
l )TD−1

f,[l−1]a
(f)
l

. (41)

Clearly, after L times of SMW-corrections, we achieve D−1 =
Diag

{
D−1

1 , . . . ,D−1
F

}
. Next, it is important to recognize that

G = D−
L∑
l=1

1

‖x̂l‖2
ulu

T
l , (42)

which can be viewed as applying rank-1 updates L times for
D. Given that D−1 has just been computed, we can apply
the SWM inversion lemma another L times to compute G−1

starting from D−1. Toward this end, let K−1
[l−1] denote the

intermediate result before applying the l-th SMW-correction.

Also, let K−1
[0] = D−1. Then, we have the following compu-

tational scheme:

K−1
[l] =K−1

[l−1]+
K−1

[l−1]ul(ul)
TK−1

[l−1]

‖x̂l‖2 − (ul)TK−1
[l−1]ul

, l = 1, . . . , L. (43)

Finally, with the aforementioned 2L SMW-corrections in
total, we achieve the precise value of G−1

[t] , which can in
turn be used to compute p̃[t+1] and ∆p[t]. We summarize the
SMW-based approach in Algorithm 2.

Algorithm 2 SMW-based approach for dual Newton direction.
Initialization:

1. For each node, compute the corresponding entries in
D = Diag

{
Df , ∀f

}
using (39) and input the result to

the starting link.
Main Iteration:

2. For all f = 1, . . . , F , let D−1
f,[0] = D

−1

f . For links
l = 1, . . . , L, update Df,[l], ∀f , using (41). Let D−1 =
Diag{D−1

1,[L], . . . ,D
−1
F,[L]}.

3. Let K−1
[0] = D−1. For links l = 1, . . . , L, update K−1

[l]

using (43). Let G−1
[t] = K−1

[L] and stop.

Remark 2. Since each SMW-correction only involves infor-
mation locally available at one link, the scheme can proceed
following any pre-determined link ordering in a distributed
fashion. Unlike the matrix-splitting approach that converges
asymptotically, we require exactly 2L SWM-corrections to ob-
tain the precise value of G−1

[t] . Thus, the SMW-based approach
is far more efficient. However, since the SMW-based approach
involves all L links, the scale of information exchange is larger
than the 1-hop scale required by the matrix-splitting approach
and depends on the network diameter. To see this, without loss
of generality, let the links be ordered such that they simply
follow the link labels 1, . . . , L. Consider the l-th step in (41) or
(43), which only requires intermediate result from the (l− 1)-
st step and the local x(f)

l -information at link l. In the next
step, link l needs to send its computed result to link l + 1.
Consider the extreme case where link l and link l + 1 are
separated from each other by the largest possible number of
hops in this network. In this case, it is clear that the required
number of hops for sending information from link l to link
l+ 1 is equal to the network diameter, i.e., the largest number
of hops between any pair of nodes in the network. Fortunately,
many communications networks in practice are constructed in
a hierarchical fashion such that the network diameter is small.

VI. NUMERICAL RESULTS

In this section, we conduct numerical studies to verify
the efficacy of our proposed second-order joint congestion
control and routing algorithm. To illustrate the details of our
second-order approach, we first use a small five-node two-
session network example as shown in Fig. 5: there are two
sessions in the network: N1 to N3 and N4 to N2. Each
link in the network has unit capacity. We use log(sf ) as
the utility function, i.e., the well-known proportional fairness
metric [29]. We set µ = 1000, meaning that the accuracy
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Fig. 5. A five-node two-session network.
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Fig. 6. The routing solutions for session N1→ N3.
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Fig. 7. The routing solutions for session N4→ N2.

5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Time Slots

S
o
u
rc

e
 R

a
te

s

 

 

Session 1: N1 → N3

Session 2: N4 → N2

2nd−order

Fig. 8. Convergence process of the second-order
algorithm (µ = 1000).
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Fig. 9. Convergence process of the first-order meth-
ods (V =1000).
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Fig. 10. Convergence process of the second-order
algorithm (µ = 50).
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Fig. 11. Convergence process of the first-order
methods (V =50).
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Fig. 12. Performance comparison between the SMW
and matrix-splitting inversion schemes.
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Fig. 13. Average total queue-length vs. mean arrival
rate (µ = V = 1000).

of the µ-CS condition is on the order of 10−3. First, the
routing solutions for Sessions 1 and 2 are shown in Fig. 6 and
Fig. 7, respectively. The convergence behavior is illustrated
in Fig. 8. It can be seen from Fig. 8 that the source rates
(not just the average source rates) rapidly converge to the
following pair (s1 = 0.9634, s2 = 1.0247) in approximately
15 iterations. This shows the efficiency of our proposed
second-order algorithm.

To compare the convergence performance with the first-
order schemes, we also used the same network example in
Fig. 5 to experiment with both primal-dual [3] and dual based
first-order schemes [1], [2]. For a fair comparison, both first-
order back-pressure based schemes were started from the
same primal and dual initial points. Targeting approximately
the same level of accuracy, we set the step-size scaling
factor, denoted as V , as V = 1000 (see the discussions in
Section IV-B). The convergence performances of both primal-
dual and dual based first-order schemes are illustrated in Fig. 9.
We can see from Fig. 9 that in order to achieve solutions with
high accuracy, both the first-order primal-dual and dual based
schemes converge after approximately 15000 iterations. This

shows that our second-order scheme converges at least three
orders of magnitude faster than the first-order schemes. We can
also observe that the iterates of the primal-dual based scheme
in the first-order domain evolve less abruptly as compared to
the dual-based scheme, but also converge more slowly.

To see the impacts of µ and V on the second-order and
first-order methods, we let µ = 50, V = 50, and run another
experiment on the network in Fig. 5. As shown in Fig. 10,
we can see that when µ is smaller, our second-order scheme
converges even faster (less than 10 iterations) but at the cost of
a larger optimality gap. On the other hand, as shown in Fig. 11,
with V = 50, the convergence of the first-order methods can
be made faster (approximately 900 iterations), but this yet
exhibits much larger fluctuations. In this case, we can still
observe that our second-order scheme converges almost two
orders of magnitude faster than the first-order schemes. Again,
we see that the iterates in the primal-dual based scheme evolve
less abruptly with fewer fluctuations, but converge slower.
However, regardless of the choice of first-order scheme and the
value of V , the evolution of the iterates under both first-order
schemes are much less efficient compared to that obtained
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under our proposed second-order scheme.
Next, we compare the convergence performance between

our proposed SMW-based matrix inversion scheme with the
matrix-splitting scheme [9]–[11] in computing dual price up-
dates. For the netwrok example in Fig. 5, the convergence
processes of our SMW and the matrix-splitting schemes are
illustrated in Fig. 12 (the top and bottom halves are in linear
and log scales, respectively). As expected, for this 7-link
example, the SWM scheme obtains the precise solution in
2×7 = 14 iterations. In contrast, due to its asymptotic nature,
matrix-splitting takes over 400 iterations for the approximation
error to reach the 10−6 precision, which is not very satisfactory
even in this small-sized network example.

Lastly, the simulation results of average total queue-lengths
vs. mean arrive rates are illustrated in Fig. 13, where we can
see that the delay performance of our second-order scheme
significantly outperforms that of the first-order methods – more
than three orders of magnitude lower. This large delay perfor-
mance gap is a direct consequence of the slow convergence
of the first-order methods.

VII. CONCLUSION

In this paper, we have developed a new second-order
algorithmic framework for joint congestion control and routing
optimization. Unlike most joint congestion control and routing
methods in the literature, our proposed algorithmic framework
fundamentally deviates from the classical back-pressure idea
to offer not only utility-optimality and queue-stability, but
also fast convergence and low delay. Our main contributions
in this paper are three-fold: i) We have proposed a second-
order joint congestion control and routing framework based
on a primal-dual interior-point approach that is well-suited
for implementation in practice; ii) we have rigorously estab-
lished the utility-optimality and queue-stability of the proposed
second-order joint congestion control and routing framework;
and iii) we have proposed several novel approaches for the
distributed implementation of our second-order joint conges-
tion control and routing optimization algorithm. Collectively,
these results serve as an exciting first step toward an analytical
foundation for a second-order joint congestion control and
optimization theory that offers fast convergence performance.
Second-order cross-layer optimization for network system sis
an important and yet under-explored area. Future research
topics may include extending and generalizing our proposed
second-order algorithmic framework to applications in other
network systems, such as wireless networks with stochastic
channel models, cloud computing resource allocations, and
energy production scheduling in the smart electric power grid.

APPENDIX A
PROOF OF THEOREM 1

We first show a basic property of the dual sequence
{p[t]}∞t=0 that will be useful in proving Theorems 1.

Lemma 7. For a given µ and under Algorithm 1, if ‖p[0]‖ <
∞, then ‖p[t]‖ <∞ for all t.

Proof. We prove Lemma 7 result by induction. For t = 0, the
result is trivially true by assumption. Suppose that at time slot

t we have ‖p[t]‖ < B < ∞; we will show that ‖p[t+1]‖ is
also bounded. We let p̃[t+1] , p[t] + ∆p[t], i.e., we let π = 1.
After some algebraic derivations, we have:

p̃[t+1] =
(
MH−1

[t] MT−P−1
[t] Q[t]

)−1[
MH−1

[t] (−g[t]) + P−1
[t] 1

]
.

Now, we claim that ‖p̃[t+1]‖ is bounded. This is true because

‖p̃[t+1]‖≤
∥∥∥(MH−1

[t] MT−P−1
[t] Q[t]

)−1[
−MH−1

[t] g[t]+P−1
[t] 1

]∥∥∥
(a)

≤
∥∥∥(MH−1

[t] MT )−1
[
−MH−1

[t] g[t] + P−1
[t] 1

]∥∥∥
(b)

≤ λ−1
min{MH−1

[t] MT }
(∥∥−MH−1

[t] g[t]

∥∥+
∥∥P−1

[t] 1
∥∥)

(c)

≤ λ−1
min{MH−1

[t] MT }
(
λ−1

min{H[t]}‖Mg[t]‖+‖P−1
[t] 1‖

)
,(44)

where (a) holds because of the strict feasibility of y[t] and p[t]

(and hence −P−1
[t] Q[t] is a positive definite diagonal matrix,

which can only increase the eigenvalues of MH−1
[t] MT ); (b)

follows from triangular inequality and taking the smallest
eigenvalue of MH−1

[t] MT and factoring it outside the norm;
and (c) follows from factoring λ−1

min {H[t]} outside the norm.
Since g[t] is continuous, the spectral radius ρ(H[t]) is bounded.
Also, since M is constructed by the NAIM of a connected
graph, ρ(H[t]) is also finite. As a result, λ−1

min{MH−1
[t] MT }

must be finite. Also, since sf,[t] and x
(f)
l [t] are strictly bounded

away from zero (due to the step-size selection rule), we have
that ‖g[t]‖ is bounded. Likewise, since p[t] is also strictly
bounded away from 0, we have that

∥∥∥P−1
[t] 1

∥∥∥ is bounded
from above. Therefore, we can conclude that the RHS of
inequality (c) is bounded, i.e., ‖p̃[t+1]‖ is bounded. Finally,
note that ‖p[t+1]‖ =

∥∥(1− π[t])p[t] + π[t]p̂[t+1]

∥∥ ≤ (1 −
π[t])‖p[t]‖+ π[t]‖p̂[t+1]‖, where the inequality follows again
from triangular inequality. Hence, we conclude that ‖p[t+1]‖
is also bounded. This completes the proof.

As mentioned in Section IV-D, the main idea and the key
steps for proving Theorem 1 are based on the drift analysis of
the following Lyapunov function:

V
(
y[t],p[t]

)
,

1

2π

∥∥y[t] − ȳ∗
∥∥2

+
1

2µ3π

∥∥p[t] − p∗
∥∥2
,

The one-slot drift analysis reveals the following key relation-
ship: ∆V

(
y[t],p[t]

)
= V

(
y[t+1],p[t+1]

)
− V

(
y[t],p[t]

)
≤

−R‖y[t]− ȳ∗‖+ 1
µB, where R and B are both some positive

finite quantities independent of µ. Based on this relationship,
the result stated in Theorem 1 follows from telescoping T via
one-slot drifts and then letting T go to infinity. We begin with
evaluating the one-slot Lyapunov drift ∆V

(
y[t],p[t]

)
:

∆V (y[t],p[t])=V (y[t+1],p[t+1])− V (y[t],p[t])

=
1

2π

(
y[t+1] + y[t] − 2ȳ∗

)T (
y[t+1] − y[t]

)
(45)

+
1

2µ3π

(
p[t+1] + p[t] − 2p∗

)T (
p[t+1] − p[t]

)
. (46)

In what follows, we will bound the two expressions in (45)
and (46) in Appendices A-A and A-B, respectively.
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A. One-slot Lyapunov drift of (45)

Note that (45) can be further expanded as:

(45) =
[ 1

π

(
y[t] − ȳ∗

)
− 1

2
F−1

[t]

(
g[t] −MTQ−1

[t] 1
)]T

×
[
− πF−1

[t]

(
g[t] −MTQ−1

[t] 1
)]

= −
(
y[t] − ȳ∗

)T
F−1

[t]

(
g[t] −MTQ−1

[t] 1
)

(47)

+
π

2

(
g[t] −MTQ−1

[t] 1
)T

F−2
[t]

(
g[t] −MTQ−1

[t] 1
)
. (48)

We first examine (47), which can be computed as follows:

(47) = −
(
y[t] − ȳ∗

)T
F−1

[t]

(
g[t] −MTQ−1

[t] 1
)

(a)
= −

(
y[t]−ȳ∗

)T
F−1

[t]

(
g[t]−g∗−MTp∗−MTQ−1

[t] 1
)

(b)
=−

(
y[t]−ȳ∗

)T
F−1

[t]

(
g[t]−g∗+ MTQ−1

∗ 1−MTQ−1
[t] 1

)
= −

(
y[t] − ȳ∗

)T
F−1

[t] (g[t] − g∗) (49)

−
(
y[t] − ȳ∗

)T
F−1

[t] MT
(
Q−1
∗ −Q−1

[t]

)
1, (50)

where (a) follows from the fact that g∗ + MTp∗ = 0 (i.e.,
the µ-ST condition) and (b) follows from the fact that p∗ =
−Q−1

∗ 1 (i.e., the µ-CS condition). Note that the following
relationship follows from (49) and the convexity of fµ(·):

(49) ≤ − 1

λmin{F}
(
y[t] − ȳ∗

)T (
g[t] − g∗

)
. (51)

By the Mean-Value Theorem, we have the following pair of
relationships:

fµ
(
y[t]

)
= fµ(ȳ∗) + (g∗)

T (
y[t] − ȳ∗

)
+

1

2

(
y[t] − ȳ∗

)T
H[ỹ1]

(
y[t] − ȳ∗

)
, (52)

fµ(ȳ∗) = fµ
(
y[t]

)
+
(
g[t]

)T (
ȳ∗ − y[t]

)
+

1

2

(
ȳ∗ − y[t]

)T
H[ỹ2]

(
ȳ∗ − y[t]

)
. (53)

In (52) and (53), H[ỹ1] and H[ỹ2] represent the matrices
evaluated at points ỹ1 and ỹ2, where ỹ1 = (1−α1)y[t]+α1ȳ

∗

and ỹ2 = (1−α2)y[t]+α2ȳ
∗, for some 0 ≤ α1, α2 ≤ 1. Next,

adding (52) and (53) yields:(
g[t] − g∗

)T (
y[t] − ȳ∗

)
=

1

2

(
y[t] − ȳ∗

)T ×
(H[ỹ1]+H[ỹ2])

(
y[t]−ȳ∗

)
≥λmin(H)

∥∥y[t]−ȳ∗
∥∥2
. (54)

Combining (51) and (54), we conclude that

(49) ≤ −R
∥∥y[t] − ȳ∗

∥∥2
, (55)

where we let R , λmin{H}
λmin{F} . Noting that the µ-factors in

λmin{H} and λmin{F} cancel each other, we have that R
is independent of µ.

Now, we evaluate the term in (50), which is non-positive
because:

(50) ≤ 1

λmin(F)Γ

(
y[t] − ȳ∗

)T
MTDiag

{
M
(
y[t] − ȳ∗

)}
1

=
1

λmin(F)Γ

∥∥Diag
{
M
(
y[t] − ȳ∗

)}
1
∥∥2 ≤ 0, (56)

where Γ is defined as Γ , inft{(
∑
l∈I(n) x

(f)
l,[t] +sf,[t]1f (n)−∑

l∈O(n) x
(f)
l,[t])(

∑
l∈I(n) x̄

(f),∗
l + s̄∗f1f (n)−∑l∈O(n) x̄

(f,∗)
l )}.

By combining (55) and (56), we have that

(47) ≤ −R
∥∥y[t] − ȳ∗

∥∥2
. (57)

Next, by upper-bounding the quadratic term (48), we have:

(48) ≤ π

2λ2
min{F}

∥∥∥g[t] −MTQ−1
[t] 1

∥∥∥2

(a)
=

π

2λ2
min{F}

∥∥∥g[t] − g∗ −MTp∗ −MTQ−1
[t] 1

∥∥∥2

(b)
=

π

2λ2
min{F}

∥∥∥g[t] − g∗ −MT
(
Q−1

[t] −Q−1
∗
)
1
∥∥∥2

(c)

≤ π

2λ2
min{F}

[∥∥g[t]−g∗
∥∥2

+
∥∥MT

(
Q−1

[t] −Q−1
∗
)
1
∥∥2
]
, (58)

where inequality (a) utilizes the µ-ST condition g∗+MTp∗ =
0 (cf. (13)); equality (b) utilizes the µ-CS condition p∗ =
−Q−1

∗ 1 (cf. (16)); and inequality (c) follows from triangle
inequality. Note that the µ-factors in (58) cancel each other.
Also, due to the boundedness of y[t] under the algorithmic
design and the assumption that Uf (·) is differentiable, we
conclude that (58) is upper-bounded by some constant. By
letting

B1 ,
1

2λ2
min{F}

sup
t
{[‖g[t]−g∗‖2 + ‖MT (Q−1

[t] −Q−1
∗ )‖2]}

(59)
(cf. B1 in (23)) and using (57) and (58), we have

(45) = (47) + (48) ≤ −R
∥∥y[t] − ȳ∗

∥∥2
+ πB1. (60)

So far, we have finished the one-slot drift analysis for (45).

B. One-slot Lyapunov drift of (46)

Now, we move on to analyzing the other term (46) in the
one-slot drift, which can be further expanded as follows:

(46) = − 1

µ3
(p[t] − p∗)TG−1

[t]

[
MH−1

[t]

(
g[t] + MTp[t]

)
− (Q[t] + P−1

[t] )1
]

(61)

+
π

2µ3

[
MH−1

[t]

(
g[t] + MTp[t]

)
− (Q[t] + P−1

[t] )1
]T

G−2
[t]

×
[
MH−1

[t]

(
g[t] + MTp[t]

)
− (Q[t] + P−1

[t] )1
]
. (62)

Note that due to the H−1
[t] term in G[t], G−1

[t] scales as O(µ).
We first analyze (61), which can be further decomposed as:

(61)
(a)
= − 1

µ3
(p[t] − p∗)TG−1

[t] MH−1
[t] (g[t] − g∗)

− 1

µ3
(p[t] − p∗)TG−1MH−1

[t] MT (p[t] − p∗)

+
1

µ3
(p[t] − p∗)TG−1

[t]

(
Q[t] + P−1

[t]

)
1

(b)

≤ − 1

µ3
(p[t] − p∗)TG−1

[t] MH−1
[t] (g[t] − g∗) (63)

+
1

µ3
(p[t] − p∗)TG−1

[t]

(
Q[t] + P−1

[t]

)
1, (64)
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where (a) follows from subtracting the µ-ST condition g∗ +
MTp∗ = 0 and then collecting terms; while (b) holds because
G−1

[t] MH−1
[t] MT is positive semidefinite, which implies that

− 1
µ2

(
p[t] − p∗

)T
G−1

[t] MH−1
[t] MT

(
p[t] − p∗

)
≤ 0. To study

the boundedness of (61), we begin with (64), which can be
further computed as follows:

(64)
(a)
=

1

µ3
(p[t] − p∗)TG−1

[t]

[
Q[t] −Q∗ −P−1

∗ + P−1
[t]

]
1

(b)
=

1

µ3

(
p[t] − p∗

)T
G−1

[t] M
(
y[t] − y∗

)
+

1

µ3

(
p[t] − p∗

)T
G−1(P−1

[t] −P−1
∗ )1

(c)

≤ 1

µ3

(
p[t] − p∗

)T
G−1

[t] M
(
y[t] − y∗

)
, (65)

where equality (a) utilizes the µ-CS condition Q∗P∗ = −I
(i.e., Q∗ = −P−1

∗ ), equality (b) utilizes My = Q1, and
inequality (c) holds because 1

µ2 (p[t] − p∗)TG−1
[t] (P−1

[t] −
P−1
∗ )1 ≤ − 1

µ2Φλmin{G[t]}
(p[t] − p∗)T (p[t] − p∗) ≤ 0, where

we let Φ , inft,n,f{p(f)
n,[t]p

(f),∗
n }. Next, combining (65) with

(63), we have

(61)≤−1

µ3
(p[t]−p∗)TG−1

[t] M
[
H−1

[t] (g[t]−g∗)−(y[t]−ȳ∗)
]
. (66)

By the vector-valued Taylor expansion of g [30], we have

g∗ = g[t] + H[t]

(
ȳ∗ − y[t]

)
+ o(‖y[t] − ȳ∗‖)1,

which further implies that

H−1
[t]

(
g[t] − g∗

)
−
(
y[t] − ȳ∗

)
= o(‖y[t] − ȳ∗‖)1. (67)

Therefore, we have

(66) ≤ 1

µ3

(
p[t] − p∗

)T
G−1

[t] M‖y[t] − ȳ∗‖1
(a)

≤ ‖y[t] − ȳ∗‖‖p[t] − p∗‖‖M1‖
µ3λmin{G}

, (68)

where inequality (a) follows from Cauchy-Schwarz inequal-
ity. From the boundedness result of p in Lemma 7, we
have that ‖p[t] − p∗‖ is bounded. From our control scheme
design, we know that the entries in y[t] is upper bounded
by min{M, Cl,∀l}. Also, it can be shown that ‖M1‖ =∑F
f=1

∑
n6=Dst(f)

∣∣|O (n) | − |I (n) | + 1f (n)
∣∣, which is a

network-specific constant. Hence, we conclude that (68) is
upper-bounded by some constant. By letting

B2 ,
‖M1‖

µ2λmin{G}
sup
t

{∥∥y[t]− ȳ∗
∥∥ ∥∥p[t]−p∗

∥∥}, (69)

(cf. B2 in (23)) where we leave a µ2 inside the denominator
to cancel out the µ-factors in ‖p[t] − p∗‖ and 1

λmin{G} , we
have (66) ≤ 1

µB2. As a result, we can finally bound (61) as:

(61) ≤ (63) + (64) ≤ (66) ≤ 1

µ
B2. (70)

Lastly, we evaluate (62). Noting that π ∈ (0, 1], we have

(62) ≤ 1

2µ3

[
MH−1

[t]

(
g[t]+MTp[t]

)
−(Q[t]+P−1

[t] )1
]T

G−2
[t]

×
[
MH−1

[t]

(
g[t] + MTp[t]

)
− (Q[t] + P−1

[t] )1
]

≤ 1

2µ3λ2
min{G}

∥∥∥MH−1
[t]

(
g[t]+MTp[t]

)
− (Q[t] + P−1

[t] )1
∥∥∥2

(a)
=

1

2µ3λ2
min{G}

∥∥∥M(
H−1

[t] g[t]−y[t]

)
+MH−1

[t] MTp[t]−P−1
[t] 1
∥∥∥2

(b)

≤ 1

2µ3λ2
min{G}

[∥∥M(H−1
[t] g[t] − y[t])

∥∥+
∥∥MH−1

[t] MTp[t]

∥∥
+
∥∥P−1

[t] 1
∥∥]2

=
1

2µ3λ2
min{G[t]}

[∥∥M(H−1
[t] (g[t] − g∗)− (y[t] − ȳ∗))

+ M(H−1
[t] g∗ − ȳ∗)

∥∥+ ‖MH−1
[t] MTp[t]‖+ ‖P−1

[t] 1‖
]2

(c)

≤ 1

2µ3λ2
min{G}

[
‖y[t] − ȳ∗‖‖M1‖+ ‖M(H−1

[t] g∗ − ȳ∗)‖

+ ‖MH−1
[t] MTp[t]‖+ ‖P−1

[t] 1‖
]2
, (71)

where (a) uses Q[t]1 = My[t]; (b) is due to the triangular
inequality; and (c) follows from the same argument in (67) and
(68). Note that in (71), ‖y[t]−ȳ∗‖‖M1‖ is upper-bounded due
to the same argument used for defining B2; ‖M(H−1

[t] g∗−ȳ∗)‖
is upper-bounded due to the µ-factor cancellation between
H−1

[t] and g∗; and ‖MH−1
[t] MTp[t]‖ is upper-bounded due

to: i) the boundedness of ‖p[t]‖ from Lemma 7, and ii) the
µ- factor cancellation between H−1

[t] and p[t]. Also, ‖P−1
[t] 1‖

diminishes as µ increases. Thus, from the above discussions,
we conclude that (71) is upper-bounded. By letting

B3 ,
1

2µ2λ2
min{G}

sup
t

{[
‖y[t] − ȳ∗‖‖M1‖

+ ‖M(H−1
[t] g∗ − ȳ∗)‖‖MH−1

[t] MTp[t]‖+ ‖P−1
[t] 1‖

]}
,

(72)

we have (62) ≤ 1
µB3. Finally, combining this with results in

(57), (60), and (70), we arrive at the following result for the
one-slot drift analysis:

V
(
y[t+1],p[t+1]

)
− V

(
y[t],p[t]

)
≤ −R‖y[t] − ȳ∗‖2 + πB1 +

1

µ
B2 +

1

µ
B3. (73)

The remaining steps of the proof include telescoping via T ,
rearranging, and taking limit over T , and can be found in
Section IV-D. This completes the proof of Theorem 1.
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