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Abstract— MIMO-based systems have great potential to im-
prove network capacity for wireless mesh networks (WMNs).
Due to unique physical layer characteristics associated with
MIMO systems, network performance is tightly coupled with
mechanisms at physical layer and link layer. So far, research on
MIMO-based WMNs is still in its infancy and little results are
available in this important area. In this paper, we consider the
problem of jointly optimizing power and bandwidth allocation
at each node and multihop/multipath routing in a MIMO-based
WMN where links operate in orthogonal channels. To solve this
problem, we develop a mathematical solution procedure, which
combines Lagrangian dual decomposition, gradient projection,
and cutting-plane methods. We provide theoretical insights in
deriving gradient projection and cutting plane methods. We also
use simulations to verify the efficacy of our algorithm.

I. INTRODUCTION

Since Winters’s [1], Telatar’s [2] and Foschini’s [3] pioneer-
ing works predicting the potential of high spectral efficiency
provided by multiple antenna systems, the last decade has
witnessed the soar of research activity on Multiple-Input
Multiple-Output (MIMO) technologies. Without costs of extra
spectrum, MIMO technology, which exploits the rich scatter-
ing characteristic of wireless channels, is able to increase chan-
nel capacities substantially than conventional communication
systems.

However, compared to the research on the capacity of
single-user MIMO, for which many results are available (see
[4] and [5] and references therein), the capacity issue of
multiuser MIMO systems is much less studied and many fun-
damental problems remain unsolved [5]. With the emergence
of wireless mesh networks (WMNs), which are multiuser and
multihop in nature, the need to extend the MIMO communi-
cation concept from single-user systems to multiuser systems
has become increasingly compelling. In a WMN, however,
applying MIMO technique becomes far more complicated.
Power control and power allocation at each link as well as
multihop/multipath routing across the network all interact with
one and another, and cross-layer optimization is not only
desirable, but also necessary.

In this paper, we study the problem of cross-layer optimiza-
tion on multihop/multi-path routing, power control, power al-
location, and bandwidth allocation (CRPBA) for MIMO-based
mesh network where links operate in orthogonal channels.
Specifically, we consider how to support a set of user commu-
nication sessions by jointly optimizing power control, power

allocation, bandwidth allocation, and flow routing such that
some network utility (e.g., proportional fairness) is maximized.
This problem, to the best of the authors’ knowledge, has not
been studied thus far.

A. Main Contribution

The main contribution of this paper are the following:

1) We developed a mathematical solution procedure to
solve CRPBA by combining Lagrangian decomposition,
gradient projection, and cutting-plane algorithms.

2) For the challenging link layer subproblem, we develop
a rigorous gradient projection method as opposed to the
heuristic one in [6].

3) Our proposed cutting-plane method can not only solve
the Lagrangian dual, but also easily recover the optimal
primal feasible solutions, thus circumventing a major
difficulty of the popular subgradient-based approaches
for solving Lagrangian dual problems.

B. Paper Organization

The remainder of this paper is organized as follows. In
Section II, we review related work. In Section III, we discuss
the network model and problem formulation. Section IV
introduces the key components in our solution procedure,
including gradient projection, cutting-plane algorithm, and the
recovering of optimal primal feasible solutions. Numerical
results are presented in Section VI. Section VII concludes this
paper.

II. RELATED WORK

Research on applying MIMO to WMN is still in its infancy
and results remain extremely limited. In this section, we
provide a synopsis of related work on the MIMO research
evolution from single-hop ad hoc networks to mesh networks.
For single-hop MIMO ad hoc networks, in [6], Ye and Blum
introduced a gradient projection method to find a suboptimal
solution for the nonconvex optimization problem for single-
hop ad hoc networks. However, the way they handled gradient
projection is based on heuristic: in solving the constrained
Lagrangian dual problem in projection, they simply set the
first derivative to zero to get the solution. Such a method does
not work for general constrained optimization problem. For
multihop WMNs, Hu and Zhang [7] examined the problem of
joint medium access control and routing, and in particular,



considered the optimal hop distance to minimize the end-
to-end delay. However, power control and power allocation
were not considered in this work. In [8], the authors designed
different routing protocols for WMN to explore the tradeoff
between multiplexing gain and diversity gain [9]. However,
this work is largely based on simulation observations.

III. NETWORK MODEL

We first introduce notation for matrices, vectors, and
complex scalars in this paper. We use boldface to de-
note matrices and vectors. For a matrix A, A† denotes
the conjugate transpose. Tr{A} denotes the trace of A.
Diag

[
A1 . . . An

]
represents the block diagonal matrix

with matrices A1, . . . ,An on its main diagonal. We let I
denote the identity matrix with dimension determined from
context. A � 0 represents that A is Hermitian and positive
semidefinite (PSD). 1 and 0 denote vectors whose elements
are all ones and zeros, respectively, and their dimensions are
determined from context. (v)m represents the mth entry of
vector v. For a real vector v and a real matrix A, v ≥ 0
and A ≥ 0 mean that all entries in v and A are nonnegative,
respectively. We let ei be the unit column vector where the ith

entry is 1 and all other entries are 0. The dimension of ei is
determined from context as well. The operator “〈, 〉” represents
vector or matrix inner product operation.

A. Link Capacity Model

In this paper, it is assumed that the system has perfect chan-
nel knowledge, that is, the transmitters have perfect channel
state information (CSI). Let the matrix Hl ∈ C

nr×nt represent
the wireless channel gain matrix from the transmitting node to
the receiving node of link l, where nt and nr are the numbers
of transmitting and receiving antenna elements at each node,
respectively. Although wireless channels in reality are time-
varying, we consider a “constant” channel model in this paper,
i.e., Hl’s coherence time is larger than the transmission period
we consider. This simplification is of much interest for the
insight it provides and its application in finding the ergodic
capacity for block-wise fading channels [5]. The received
complex base-band signal vector for MIMO link l with nt

transmitting antennas and nr receiving antennas in a Gaussian
channel is given by

rl =
√

ρlHltl + nl, (1)

where rl and tl represent the received and transmitted signal
vectors, nl is the normalized additive white Gaussian noise
vector, ρj captures path-loss effect. By adopting the path-
loss model with path-loss exponent being equal to α, ρl

can be computed as [10] ρl = (GtGrλ2

(4π)2 )/(N0WDα
l ), where

Dl denotes the length of link l, N0 represents the power
spectral density of white Gaussian noise, and W denotes the
communication bandwidth, Gt and Gr are transmit and receive
antenna gains, respectively, which are assumed to be 1 in this
paper, λ is the wavelength of the transmitted signal.

Let matrix Ql represent the covariance matrix of a zero-
mean Gaussian input symbol vector tl at link l, i.e., Ql =

E

{
tl · t†l

}
. The definition of Ql implies that it is Hermitian

and Ql � 0. Physically, Ql represents the power allocation in
different antenna elements in link l’s transmitter and correla-
tions between each of these elements. In this paper, we use the
complex matrix Q �

[
Q1 Q2 . . . QL

] ∈ C
nt×(nt·L)

to denote the collection of all input covariance matrices. The
link capacity of a MIMO link l in an AWGN channel can be
written as

Φl(Wl,Ql) � Wl log2 det
(
I + ρlHlQlH

†
l

)
, (2)

where Wl represents the communication bandwidth of link l.
It can be readily verified that Φl(Ql) is a monotone increasing
concave function in Wl and Ql.

B. Data Routing and Network Flows

One of the most challenging aspects of a WMN is that its
connectivity is highly dependent on the transmission power at
each node. As a result, the network topology is not fixed. Our
approach to handle this elusive network topology is to denote
the network by a directed graph consisting of N nodes and
L possible MIMO links. By saying that a link is possible we
mean the distance between its transmitting node and receiving
node is less than or equal to the transmission range by using
the maximum transmission power. We assume that the graph is
always connected. The network topology can be represented
by a node-arc incidence matrix (NAIM) [11] A ∈ R

N×L,
whose entry anl associating with node n and link l is defined
as

anl =




1 if n is the transmitting node of link l
−1 if n is the receiving node of link l

0 otherwise.

We define O (n) and I (n) as the sets of links that are
outgoing from and incoming to node n, respectively. We use
a multicommodity flow model for the routing of data packets
across the WMN.

Suppose that there are F sessions in total in the network,
representing F different commodities. The source and des-
tination nodes of session f , 1 ≤ f ≤ F , are denoted as
src(f) and dst(f), respectively. For each session, we define a
source-destination vector sf ∈ R

N , whose entries, other than
at the positions of src(f) and dst(f), are all zeros. In addition,
from the flow conservation law, we must have (sf )src(f) =
−(sf )dst(f). Without loss of generality, we let(sf )src(f) ≥ 0
and simply denote it by a scalar sf . Therefore, we can further
write the source-destination vector of session f as

sf = sf

[ · · · 1 · · · −1 · · · ]T
, (3)

where the dots represent zeros, and 1 and −1 are in the posi-
tions of src(f) and dst(f), respectively1. Using the notation
“=x,y” to represent the component-wise equality of a vector
except at the xth and the yth entries, we have sf =src(f),dst(f)

0. Using matrix S �
[

s1 s2 . . . sF

] ∈ R
N×F to

1Note that for the source-destination vector of a flow f , 1 does not
necessarily appear before −1 as in (3), which is only for illustrative purpose.



denote the collection of all source-sink vectors sf , we further
have

Sef =src(f),dst(f) 0, 1 ≤ f ≤ F, (4)

〈1,Sef 〉 = 0, 1 ≤ f ≤ F, (5)

(Sef )src(f) = sf , 1 ≤ f ≤ F, (6)

where ef is the f th unit column vector.
On each link l, we let x

(f)
l ≥ 0 be the amount of flow

of session f . We define x(f) ∈ R
L as the flow vector for

session f . At each node n, components of the flow vector and
source-destination vector for the same session satisfy the flow
conservation law:∑
l∈O(n)

x
(f)
l −

∑
l∈I(n)

x
(f)
l = (sf )n, 1 ≤ n ≤ N, 1 ≤ f ≤ F.

With NAIM, the flow conservation law across the whole
network can be compactly written as Ax(f) = sf , 1 ≤ f ≤
F . We use matrix X �

[
x(1) x(2) . . . x(F )

] ∈ R
L×F

to denote the collection of flow vectors x(f). With X and S,
the flow conservation law can be further compactly written as

AX = S. (7)

C. Problem Formulation

The goal of this paper is to design an algorithm that
performs the cross-layer optimization on multihop/multipath
routing, power control, power allocation, and bandwidth al-
location (CRPBA) for a MIMO-based WMN. We consider
an FDMA MIMO-based WMN, where each node has been
assigned non-overlapping (possibly reused) frequency bands
for its incoming and outgoing links so that each node can
simultaneously transmit and receive, and cause no interference
to other nodes. How to perform channel assignments is a
huge research topic by itself, and there are a vast amount
of literature that discuss channel assignment problems. Thus
in this paper, we focus on how to jointly optimize routing
in the network layer and power control/allocation as well as
bandwidth allocation in the link layer.

We adopt the well-known proportional fairness utility func-
tion, i.e., ln(sf ) for flow f [12]. We wish to perform the cross-
layer optimization such that the sum of all utilities of flows is
maximized. Since the network flows in a link cannot exceed
the link’s capacity limit, we have

∑F
f=1 x

(f)
l ≤ Φl(Wl,Ql),

for 1 ≤ l ≤ L. Using matrix-vector notations, it can be further
compactly written as

〈1,XT el〉 ≤ Φl(Wl,Ql), 1 ≤ l ≤ L. (8)

In the link layer, since the total transmit power of each
node is subject to a maximum power constraint, we have∑

l∈O(n) Tr{Ql} ≤ P
(n)
max, 1 ≤ n ≤ N , where P

(n)
max

represents the maximum transmit power of node n. Also,
the sum of bandwidths of all the outgoing links for a node
n cannot exceed the assigned bandwidth for node n, i.e.,∑

l∈O(n) Wl ≤ Bn, 1 ≤ n ≤ N , where Bn is the assigned
transmission band for node n. We use the matrix W =[

W1 W2 . . . WL

]T ∈ R
L×1 to denote the collection

of the bands for links from 1 to L. Coupling the MIMO link
capacity model in Section III-A and the network flow model
in Section III-B, we have the problem formulation for CRPBA
as in (9).

CRPBA :Maximize
∑F

f=1 ln(sf )
subject to AX = S

X ≥ 0
〈1,XT el〉 ≤ Φl(Wl,Ql) ∀ l
Sef =src(f),dst(f) 0 ∀ f
〈1,Sef 〉 = 0 ∀ f
(Sef )src(f) = sf ∀ f∑

l∈O(n) Tr{Ql} ≤ P
(n)
max ∀n

Ql � 0 ∀ l∑
l∈O(n) Wl ≤ Bn ∀n

Variables: S, X, Q,W

(9)

IV. SOLUTION PROCEDURE

It can be observed that the CRPBA possesses a special
structure: the network layer variables and the link layer
variables are coupled through the link capacity constraints
〈1,XT el〉 ≤ Φl(Wl,Ql). Thus, we can exploit this spe-
cial structure using Lagrangian dual decomposition to solve
CRPBA efficiently. In [13], the authors used a similar decom-
position technique to solve simultaneous routing and resource
allocation problems. However, their routing setting was very
different to our work and their link layer was not MIMO-
based. Due to the spatial dimension resulted from MIMO, the
link layer subproblem in this paper is completely different and
substantially more challenging. Generally, given a nonlinear
programming problem, several different Lagrangian dual prob-
lems can be constructed depending on which constraints are
associated with Lagrangian dual variables [14]. For CRPBA,
we associate Lagrangian multipliers ui to the link capacity
coupling constraints 〈1,XT el〉 ≤ Φl(Wl,Ql). Hence, the
Lagrangian can be written as [14]

Θ(u) = sup
S,X,Q,W

{L(S,X,Q,W,u)|(S,X,Q,W) ∈ Γ} ,

where

L(S,X,Q,W,u) =
∑

f

ln (sf ) +
∑

l

ul (Φl(Wl,Ql)

−〈1,XT el〉
)

(10)

and Γ is defined as

Γ �




(S,X,Q,W)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AX = S
X ≥ 0
Sef =src(f),dst(f) 0 ∀ f
〈1,Sef 〉 = 0 ∀ f
(Sef )src(f) = sf ∀ f∑

l∈O(n) Tr{Ql} ≤ P
(n)
max ∀n

Ql � 0 ∀ l∑
l∈O(n) Wl ≤ Bn ∀n




The Lagrangian dual problem of CRPBA can thus be written
as [14]:

DCRPBA : Minimize Θ(u)
subject to u ≥ 0.



It is easy to recognize that, for any given Lagrangian multiplier
u, the Lagrangian in (10) can be separated into two terms:

Θ(u) = Θnet(u) + Θlink(u),

where Θnet and Θlink are two subproblems respectively cor-
responding to network layer and link layer:

DCRPBA
net : Θnet(u) � Maximize

∑
f ln (sf )

−∑
l ul〈1,XT el〉

subject to AX = S
X ≥ 0
Sef =src(f),dst(f) 0 ∀ f
〈1,Sef 〉 = 0 ∀ f
(Sef )src(f) = sf ∀ f

Variables: S, X

DCRPBA
link : Θlink(u) � Maximize

∑
l ulΦl(Wl,Ql)

subject to
∑

l∈O(n) Tr{Ql} ≤ P
(n)
max ∀n∑

l∈O(n) Wl ≤ Bn ∀n

Ql � 0 ∀ l
Variables: Q, W

The CRPBA Lagrangian dual problem can be thus trans-
formed into the following master dual problem:

MDCRPBA : Minimize Θnet(u) + Θlink(u)
subject to u ≥ 0

Now, the task of solving the decomposed Lagrangian dual
problem boils down to how to evaluate the subproblems
DCRPBA

net and DCRPBA
link , and how to handle the master prob-

lem. Note that in the network layer subproblem DCRPBA
net , the

objective function is concave and all constraints are affine.
Therefore, DCRPBA

net is readily solvable by using many poly-
nomial time convex programming methods. However, solving
DCRPBA

link is not trivial because the objective function and
constraints involve many complex matrices variables, even
though it can be shown that DCRPBA

link is a convex problem. In
the following subsections, we will discuss each techniques we
use to solve the link layer subproblem and the master problem
in detail.

A. Modified Gradient Projection Method (MGP)

In this paper, we propose a modified “gradient projec-
tion” (MGP) method to solve the link subproblem. Gradient
projection, originally proposed by Rosen [15], is a classical
nonlinear programming method aiming at solving constrained
optimization problems. But its formal convergence proof has
not been established until very recently [14]. The framework
of MGP is shown in Algorithm 1. Due to the complexity
of the objective function, we cannot afford the luxury of
performing an exact line search which requires the expense of
excessive objective function evaluations. Therefore, we adopt
the “Armijo rule” inexact line search method [14], which still
enjoys provable convergence. The basic idea of Armijo rule
is that at each step of the line search, we sacrifice accuracy
for efficiency as long as we have sufficient improvement.
According to Armijo rule, we choose sk = 1 and αk = βmk

Algorithm 1 Modified Gradient Projection Method
Initialization:

Choose the initial conditions W(0) = [W
(0)
1 ,W

(0)
2 , . . . ,W

(0)
L ]T ,

Q(0) = [Q
(0)
1 ,Q

(0)
2 , . . . ,Q

(0)
L ]T . Let k = 0.

Main Loop:
1. Calculate the gradients G(k)

Wl
= ∇Wl

Θlink(u,W(k),Q(k)) and

G
(k)
Ql

= ∇Ql
Θlink(u,W(k),Q(k)), for l = 1, 2, . . . , L.

2. Choose an appropriate step size sk . Let W (k)′
l = W

(k)
l + skG

(k)
Wl

,

Q
(k)′
l = Q

(k)
l + skG

(k)
Ql

, for l = 1, 2, . . . , L.

3. Let [W̄
(k)
n , Q̄

(k)
n ]T be the projection of [W

(k)′
n ,Q

(k)′
n ]T onto

Ω+(n), where Ω+(n) � {(Wl,Ql)|l ∈ O (n) ,Wl ≥ 0,Ql �
0,

∑
l∈O(n)Wl ≤ Bn,

∑
l∈O(n) Tr{Ql} ≤ P

(n)
max}.

4. Choose appropriate step size αk . Let W (k+1)
l = W

(k)
l +αk(W̄

(k)
l −

W
(k)
l ), Q

(k+1)
l = Q

(k)
l + αk(Q̄

(k)
l − Ql(k)), l = 1, 2, . . . , L.

5. k = k+1. If the maximum absolute value of the elements in Q
(k)
l −

Q
(k−1)
l < ε and W (k)

l −W
(k−1)
l < ε, for l = 1, 2, . . . , L, then

stop; else go to step 1.

(the same as in [6]), where mk is the first non-negative that
satisfies

Θlink(Q(k+1)) − Θlink(Q(k))

≥ σβmk

L∑
l=1

Tr
[
∇Ql

Θlink(Q(k))†
(
Q̄(k)

l − Q(k)
l

)]
,

where 0 < β < 1 and 0 < σ < 1 are fixed scalars. It is
evident that the gradient GWl

� ∇Wl
Θlink = ul log2 det(I +

ρlHlQlH
†
l ). By using the formula ∂

∂X ln det(A + BXC) =[
C(A + BXC)−1B

]T
[6], [16], where matrices A ∈ C

p×p,
B ∈ C

p×m, X ∈ C
m×n, C ∈ C

n×p, and (A + BXC) is
invertible , we are able to derive the gradient GQl

� ∇Ql
Θlink

as follows [17]:

GQl
=

2Wlulρl

ln 2
H†

l

(
I + ρlHlQlH

†
l

)−1

Hl. (11)

Noting that GQl
are Hermitian, we have that Q

′
l(k) is Her-

mitian as well. Then, for a node n having |O (n) | outgoing
links, the projection problem becomes how to simultaneously
project the |O (n) | W -scalars and |O (n) | Q-covariance ma-
trices onto Ω+(n) � {(Wl,Ql)|l ∈ O (n) ,Wl ≥ 0,Ql �
0,

∑
l∈O(n) Wl ≤ Bn,

∑
l∈O(n) Tr{Ql} ≤ P

(n)
max}.

We construct a block diagonal matrix Dn as follows:

Dn =
[

Wn 0
0 Qn

]
∈ C

|O(n)|(nt+1)×|O(n)|(nt+1)

where Wn � Diag
[

Wl : l ∈ O (n)
] ∈ C

|O(n)|×|O(n)|,
and Qn � Diag

[
Ql : l ∈ O (n)

] ∈ C
|O(n)|nt×|O(n)|nt .

Moreover, we introduce two more matrices E(n)
1 and E(n)

2

as follows:

E(n)
1 =

[
I|O(n)| 0

0 0

]
∈ C

|O(n)|(nt+1)×|O(n)|(nt+1),

E(n)
2 =

[
0 0
0 I|O(n)|nt

]
∈ C

|O(n)|(nt+1)×|O(n)|(nt+1).

It is easy to recognize that if Dn ∈ Ω+(n), we have
Tr(E(n)

1 Dn) =
∑

l∈O(n) Wl ≤ Bn, Tr(E(n)
2 Dn) =



∑
l∈O(n) Tr (Ql) ≤ P

(n)
max, and Dn � 0. In our projection,

given a block diagonal matrix Dn, we wish to find a matrix
D̃n ∈ Ω+(n) such that D̃n minimizes ‖D̃n − Dn‖F , where
‖ · ‖F denotes Frobenius norm. For more convenient algebraic
manipulations, we instead study the following equivalent op-
timization problem:

Minimize 1
2‖D̃n − Dn‖2

F

subject to Tr(E(n)
1 D̃n) ≤ Bn

Tr(E(n)
2 D̃n) ≤ P

(n)
max

D̃n � 0

(12)

Notice that the problem is a convex minimization problem
and we can solve this minimization problem by solving
its Lagrangian dual. Associating Hermitian matrix X to the
constraint D̃n � 0, ν to the constraint Tr(E(n)

1 D̃n) ≤ Bn,
and µ to the constraint Tr(E(n)

2 D̃n) ≤ P
(n)
max, we can write

the Lagrangian as

g(X, ν, µ) = min
D̃n

{
(1/2)‖D̃n − Dn‖2

F − Tr(X†D̃n)

+ ν
(
Tr[E(n)

1 D̃n] − Bn

)
+ µ

(
Tr[E(n)

2 D̃n] − P (n)
max

)}
.(13)

Since D̃n becomes unconstrained after removing its positive
semidefinite constraint (correspondingly, adding a penalty term
to the Lagrangian), we can compute the minimizer of (13) by
simply setting the derivative of (13) to zero. Thus, we have
D̃n = Dn + X − νE(n)

1 − µE(n)
2 . Substituting D̃n back into

(13), and after some algebraic simplifications, we can rewrite
the Lagrangian dual problem as

Maximize − 1
2‖Dn − νE(n)

1 − µE(n)
2 + X‖2

F−
νBn − µP

(n)
max + 1

2‖Dn‖2

subject to X � 0, ν ≥ 0, µ ≥ 0.

(14)

Eq. (14) belongs the class of so-called matrix nearness prob-
lems, which are not easy to solve in general (see [18], [19] and
references therein). However, based on the special structure
in E(n)

1 and E(n)
2 , we are able to design a polynomial time

algorithm to solve (14) Due to space limitation, we only give
the pseudo-codes in Algorithm 2 and Algorithm 3 and refer
readers to [17] for more details.

Algorithm 2 Projection onto Ω+(n)
1. Construct a block diagonal matrix Dn. Perform eigenvalue decomposi-

tion Dn = UnΛnU†
n, separate the eigenvalues in two groups corre-

sponding to Wn and Qn, and sort them in non-increasing order within
each group, respectively.

2. For each group of eigenvalues, call Algorithm 3 to find the optimal dual
variable ν∗ and µ∗.

3 Compute D̃n = Un(Λn − ν∗E(n)
1 − µ∗E(n)

2 )+U†.

V. CUTTING-PLANE METHOD FOR SOLVING DCRPBA

Compared to the popular subgradient-based approaches for
solving Lagrangian dual problems, the attractive feature of
the cutting-plane method is its speed of convergence and its
simplicity in recovering optimal primal feasible solutions. As

Algorithm 3 Search the Optimal Dual Variable
Initiation:

Introduce λ0 = ∞ and λK = −∞. Let Î = 0. Let endpoint objective
value ψÎ (λ0) = 0, φ∗ = ψÎ (λ0), and µ∗ = λ0.

Main Loop:
1. If Î > K, return µ∗; else let µ∗

Î
= (

∑ Î
j=1 λj − P )/Î .

2. If µ∗
Î
∈ [λÎ+1, λÎ ] ∩ R+, then let µ∗ = µ∗

Î
and return µ∗.

3. Compute ψÎ(λÎ+1). If ψÎ(λÎ+1) < φ∗, then return µ∗; else let

µ∗ = λÎ+1, φ∗ = ψÎ(λÎ+1), Î = Î + 1 and continue.

opposed to the cumbersomeness of subgradient method, in
cutting-plane method, primal optimal feasible solutions can be
exactly computed by averaging all the primal solutions (may
or may not be primal feasible) using the dual variables as
weights [17].

We briefly introduce the basic idea of cutting-plane
method as follows. Letting z = Θ(u), the inequality z ≥∑

f ln (sf ) +
∑

l ul

(
Φl(Wl,Ql) − 〈1,XT el〉

)
must hold for

all (S,X,Q,W) ∈ Γ. Thus, the dual problem is equivalent
to

Minimize z
subject to z ≥ ∑

f ln (sf ) +∑
l ul

(
Φl(Wl,Ql) − 〈1,XT el〉

)
u ≥ 0,

(15)

where (S,X,Q,W) ∈ Γ. Although (15) is a linear program
with infinite constraints not known explicitly, we can consider
the following approximating problem:

Minimize z

subject to z ≥ ∑
f ln

(
s
(j)
f

)
+∑

l ul

(
Φl(W

(j)
l ,Q(j)

l ) − 〈1,X(j)T el〉
)

u ≥ 0,

(16)

where the points (S(j),X(j)),Q(j),W(j)) ∈ Γ, j =
1, . . . , k − 1. The problem in (16) is a linear program with
a finite number of constraints and can be solved efficiently.
Let (z(k),u(k)) be an optimal solution to the approximating
problem, which we refer to as the master program. If the
solution is feasible to (15), then it is an optimal solution to the
Lagrangian dual problem. To check the feasibility, we consider
the following subproblem:

Maximize
∑

f ln (sf ) +
∑

l u
(k)
l

(
Φl(Wl,Ql) − 〈1,XT el〉

)
subject to (S,X,Q,W) ∈ Γ

(17)
Suppose that (S(k),X(k),Q(k),W(k)) is an optimal solution
to the subproblem (17) and Θ∗(u(k)) is the corresponding
optimal objective value. If zk ≥ Θ∗(u(k)), then u(k) is an
optimal solution to the Lagrangian dual problem. Otherwise,
for u = u(k), the inequality constraint in (15) is not satisfied
for (S(j),X(j),Q(j),W(j)). Thus, we can add the constraint

z ≥
∑

f

ln
(
s
(k)
f

)
+

∑
l

ul

(
Φl(W

(k)
l ,Q(k)

l ) − 〈1,X(k)T el〉
)

(18)



to (16), and re-solve the master linear program. Obviously,
(z(k),u(k)) violates (18) and will be cut off by (18). The
cutting plane algorithm is summarized in Algorithm 4.

Algorithm 4 Cutting Plane Algorithm for Solving DCRPBA

Initialization:
Find a point (S(0),X(0),Q(0),W(0)) ∈ Γ. Let k = 1.

Main Loop:
1. Solve the master program in (16). Let (z(k),u(k)) be an optimal

solution.
2. Solve the subproblem in (17). Let (S(k),X(k),Q(k),W(k)) be an

optimal point, and let Θ∗(u(k)) be the corresponding optimal objec-
tive value.

3. If z(k) ≥ Θ(u(k)), then stop with u(k) as the optimal dual solution.
Otherwise, add the constraint (18) to the master program, replace k

by k + 1, and go to step 1.

VI. NUMERICAL RESULTS

We present some numerical results through simulations to
provide further insights on solving CRPBA. We use a 15-
node network example, as shown in Fig. 1(a), to show the
convergence process of the cutting-plane algorithm for solving
DCRPBA. Each node in the network is equipped with two
antennas and assigned a unit transmit bandwidth. In this
example, there are three flows transmitting across the network:
N14 to N1, N6 to N10, and N5 to N4, respectively. The
convergence process is illustrated in Fig. 1(b). It is seen that
the cutting-plane method only takes 72 iterations to converge.
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Fig. 1. A simple example illustrating the need of scheduling to improve
performance.

VII. CONCLUSION

In this paper, we investigated the problem of cross-layer
optimization of routing, power control, power allocation,
and bandwidth allocation for MIMO-based mesh networks.
We developed a mathematical solution procedure, which
combines Lagrangian decomposition, gradient projection, and
cutting-plane methods. We provided the theoretical insights
of our proposed algorithms and conducted simulations to
verify their efficacy. Our results show that the nice decoupled

structure and the high efficiency of our proposed algorithm

make it an attractive method for optimizing the performance
of MIMO-based mesh networks.
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