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Abstract—In recent years, the famous wiretap channel has
been revisited by many researchers and information theoretic
secrecy has become an active area of research in this setting.
In this paper, we design a wireless communication system that
achieves constant bit rate data transmission over a block fading
channel, securely from an eavesdropper that listens to the
transmitter over another independent block fading channel. It
is well known that, the method of sending secure information
using the binning techniques inspired by the wiretap channel
fails to secure the information at times when the eavesdropper
channel has favorable conditions over the main channel. This
phenomenon is calledsecrecy outage. In our system, however, we
exploit the times at which the main channel is favorable over
the eavesdropper channel for us to be able to transmit some
random secret keybits along with the data bits. These key bits
are stored in a separate key buffer at the transmitter as wellas
the receiver, and are utilized to secure data bits, wheneverthe
channel conditions favor the eavesdropper. We show that, using
our system the outage probability can be made arbitrarily close
to 0 by jointly controlling the key buffer with the transmit powe r.
We show that the optimal power control involves a time sharing
betweensecure waterfillingand channel inversionstrategies and
the key buffer needs to operate in theheavy traffic regimeto
achieve the maximum delay limited rate possible, under a small
outage constraint. This work can be viewed as a first step in
providing a framework that combines both information theory
and queueing analysis for the study of information theoretic
security.

I. I NTRODUCTION

Secure communication is a topic that is becoming in-
creasingly important thanks to the proliferation of wireless
devices. There have been many appliedencryption mecha-
nisms proposed to secure data communication. However, as
new schemes are being developed, methods to counter the
specific encryption methods also appear. This competing effect
makesinformation theoretic secrecy a very attractive area
of research because it can provide hard guarantees that can
not be overcome regardless of the computation power of
the devices. For example, the famouswiretap channel of
Wyner [1] have been revisited recently by many researchers.
In a wiretap channel, an eavesdropperpassivelylistens to the
communication between a transmitter and a receiver over a
separate communication channel. Wyner defined thesecrecy
capacity of the main channel as the maximum data rate
achievable subject to a zero mutual information between the
message and the signal received by the eavesdropper. Hence,
information theoretic secrecy is “completely secure,” i.e., the
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message cannot be decoded at the eavesdropper, even with
unlimited computational power.

For the Additive White Gaussian Noise (AWGN) channel,
it was shown in [2] that the secrecy capacity is the difference
between the channel capacity of the main channel and the
eavesdropper channel. If the eavesdropper channel has a higher
channel gain, information theoretic secure communicationis
not possible over the main channel. For fading channels, on the
other hand, it was shown in [5] that secure communication may
be maintained at non-zero rate, even when the eavesdropper
channel has favorable conditions on average. The transmitter
simply exploits the times when the main channel has a higher
gain than the eavesdropper channel, to obtain a positive
secrecy rate. At all other times, a positive secrecy rate cannot
be achieved, resulting insecrecy outage.

In this paper, we design a wireless communication system
that achieves constant bit rate data transmission over a block
fading channel, securely from an eavesdropper that listensto
the transmitter over another independent block fading channel.
The channel gains of the main channel and the eavesdropper
channel, albeit random, remain unchanged over each block.
We assume that the transmitter has the perfect knowledge
of both main and eavesdropper channel gains. We require
that a certain fixed amount of data needs to be securely
transmitted in every single block. This model is motivated by
applications that require to secure communication at constant
bit rate. We assume that the channel gains are i.i.d. for both
the main channel and the eavesdropper channel and they
are independent from each other in each block. It is well
known that, the method of sending secure information using
the binning techniques inspired by the wiretap channel fails
to secure the information at times when the eavesdropper
channel has favorable conditions over the main channel, hence
the delay1-limited secrecy capacityis 0, since outages are
unavoidable. It was shown in [6] that, interestingly, a non-
zero secrecy rate could be achieved by introducingprivate
key queuesat both the transmitter and the receiver. The work
exploits the times at which the main channel is favorable over
the eavesdropper channel to transmit somerandom private key
bits along with the data bits. These key bits are stored in a
separate key queue at the transmitter as well as the receiver,
and are utilized to secure data bits, whenever the channel

1Note that, the term ‘delay’ refers to a single “decodable” block in infor-
mation theory. In this context, the delay limited capacity is first introduced
and analyzed in [4]. This notion of delay is fairly differentfrom the delay
experienced at the higher layers due to queueing, etc.
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conditions favor the eavesdropper. When the main channel
has a worse channel gain than the eavesdropper, by consuming
these shared keys (simply using bit-wise EXOR operation), the
transmitter can confuse the eavesdropper, despite the limited
main-channel rate. However, while [6] investigates the basic
limitations of such a system, the optimal power and rate
control policy and the queue dynamics of the key buffer are not
studied. Furthermore, the system only works for “invertible”
channels.

To that end, we develop a delay-limited secure communica-
tion system with private key queues similar to the ones in [6].
In particular, we investigate the optimal rate and power control
problem at the physical layer as well as the queueing dynamics
of the private key queue. We show that, using our system
the outage probability can be made arbitrarily close to0 by
jointly controlling the key buffer with the transmit power.Also,
we develop the key buffer and power control mechanisms to
achieve maximum secure constant bit rate achievable by the
system. We show that the optimal power control involves a
time sharing betweensecure waterfillingpolicies andchannel
inversionstrategies and the key buffer needs to operate in the
heavy traffic regimeto achieve the maximum delay limited rate
possible, under a small outage constraint. Our work provides
a natural framework tocombine both information theory and
queueing analysis for studying the problem of information
theoretic security.

We also present simulations to support our results. We
specifically focus on scenarios that are difficult to analyze. For
example, the upper bound of the delay limited secrecy capacity
derived in [6] only depends on main channel and eavesdropper
channel gains without any power constraint. However, with a
finite average power constraint, there is significant difference
between the upper and lower bound, especially in the low
power region, to delay limited capacity. We show through
simulations that, our scheme achieves better performance than
the lower bound given in [6].

The rest of this paper is organized as follows. We formally
introduce our system model in Section II, which consists of
the physical layer model (relying on information theory) and
the key queue model (relying on queueing analysis). Then,
in Section II-A, we derive the optimal power control for the
physical layer model under the assumption that there are no
key outages. However, this solution makes the key queue
unstable. Hence, in Section II-B, we introduce a small key
outage probability to the system, and show that the key queue
can be made stable. In this setting, we derive the workload
distribution for the key queue in the heavy-traffic region.
Finally, we provide simulations to support our main resultsin
Section V, which is followed by the conclusion in Section VI.

II. SYSTEM MODEL

Since our system involves both the physical channel and the
private key queue dynamics, we present them in Sections II-A
and II-B, respectively. Within this setting, we briefly describe
the problem that will be addressed and analyzed in this paper

in Section II-C. We use “
d
=” and “

d

≤(
d

≥)” to denote equal

in distribution and less (greater) or equal in distribution,
respectively.

A. Channel Model

The physical layer channel dynamics are modeled by a
slotted system. In each time slot, a block of data is transmitted
overN channel uses. At the end of the transmission of block
t, the observed signals at the receiver and at the eavesdropper
are:

y(t) = gm(t)x(t) + wm(t)

and

z(t) = ge(t)x(t) + we(t),

respectively, wherex(t) ∈ CN is the transmitted signal,
y(t) ∈ C

N is the received signal by the legitimate receiver,
andz(t) ∈ CN is the received signal by the eavesdropper. Flat
fading channel gains,gm(t) for the main channel andge(t)
for the eavesdropper channel are two independent complex
random variables. Furthermore, we assume that{gm(t), t ≥ 1}
and {ge(t), t ≥ 1} are i.i.d. processes that are also indepen-
dent from each other. The transmitted signal is corrupted by
circularly symmetric complex Gaussian Noise vectors with
zero mean and unit sample variances at both the receiver
wm(t) and the eavesdropperwe(t). The power gains of
the fading channels are denoted byhm(t) = ‖gm(t)‖2 and
he(t) = ‖ge(t)‖

2.
We restrict ourselves to a class of power policies that

only depend on the instantaneous channel stateh(t) =
(hm(t), he(t)) in block t. Since {h(t)} is i.i.d., we drop
the indext and use the notationh for simplicity. We focus
on power allocation functionsP (h), that depend on the
instantaneous channel gains only. In this paper, we focus on
the long term power constraint (or average power constraint),
which is defined by

E[P (h)] ≤ P̄ (1)

for someP̄ > 0.
We assume full channel state information (CSI), i.e., the

transmitter has full causal knowledge ofh(t). We also as-
sume that, the eavesdropper knows the coding strategy of the
transmitter for each block. We defineinstantaneous achievable
rates for the legitimate receiver,Rm(t) and eavesdropper,
Re(t), as:

Rm(t) = log (1 + P (h)hm(t)) (2)

and

Re(t) = log (1 + P (h)he(t)) . (3)

For each blockt, using Wyner’s result [1], we can achieve a
secrecy rateof

Rs(t) = [Rm(t) − Re(t)]
+, (4)

where [x]+ = max {0, x}. The secrecy rate is the number
of bits that the receiver can decode per channel use, subject
to no decodable bits at the eavesdropper. Since the secrecy
rate Rs(t) and the main channel rateRm(t) are completely
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determined by the power allocation functionP (h) and channel
gainsh, we use the notationsRs(t) ≡ Rs(h, P ) andRm(t) ≡
Rm(h, P ).

Finally, we assume that the application requires a constant
amount,b bits/channel use of data (which corresponds toNb
bits/block2) to besecurelytransmitted ineveryblock over the
main channel. IfNb bits cannot be transmitted securely over
a given blockt, we say that asecrecy outagehas occurred.

B. Key Queue Model

From Equation (4), we know that the secrecy rateRs(t) = 0
regardless ofP (h), wheneverhm(t) < he(t). It was shown
in [6] that, one can avoid a secrecy outage over blockt, even
when Rs(t) = 0 by introducingprivate key queuesat the
transmitter and the receiver. Our system, depicted in Fig. 1,
is motivated by this idea. The idea is to exploit the times at
which the main channel is favorable over the eavesdropper
channel to transmit somerandom private keybits along with
the data bits. These key bits are stored in a separate key
queue at the transmitter as well as the receiver; we denote
by Qk(t) the number of bits stored in the key queue at time
t. When the main channel has a worse channel gain than
the eavesdropper, by consuming these shared keys (simply
using bit-wise EXOR operation), the transmitter can confuse
the eavesdropper, despite the limited main-channel rate. Using
Shannon’s result [3], in order to fully encryptNb bits of data,
the total number of key bits should be at least equal toNb.
To that end, even with a key buffer, one may not be able to
avoid secrecy outages, which can be caused by the occurrence
of either one of the following two events:

share
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Fig. 1. System model with a private key queue at the transmitter and the
receiver.

I. Channel outage:Rm(t) < b. In case of this event, the
desired rate ofb bits/channel use cannot be achieved (even
without a secrecy constraint), regardless of the key queue
state,Qk(t).

II. Key outage: Qk(t) + Rs(t) − b < 0. In this case,Rs(t)
is too low to supportb bits/channel use even with the aid
of all stored key bits.

In case of an outage over blockt, we assume that no data is
transmitted over that block. InsteadNRs(t) private key bits

2To achieve the theoretical limits one needs to pass the blocksize N to
infinity. However, in practice, the typical packet sizes allow the achievable
rates given in (2) and (3) to be met fairly closely at reasonably low probability
of error.

are generated and only key bits are transmitted to the receiver
during that block. Putting it all together, we can write the
queueing recursions forQk(t) for a given power allocation
P (h) (and hence the associated rate allocationRs(h, P )) as
follows:

Qk(t + 1) =
(

Qk(t)

+ (Rs(t) − b)1 ({Rm(t) ≥ b} ∩ {Qk(t) + Rs(t) − b ≥ 0})

+ Rs(t)1 ({Rm(t) < b} ∪ {Qk(t) + Rs(t) − b < 0})
)+

=
(

Qk(t) + Rs(t)

− b1 ({Rm(t) ≥ b} ∩ {Qk(t) + Rs(t) − b ≥ 0})
)+

. (5)

C. Problem Description

We consider the following questions:

• What is the maximum achievable constant (delay-limited)
rateb∗ achievable by our system, subject to a given upper
boundα on the outage probability and a given average
power constraint̄P? Mathematically it can be formulated
as follows:

b∗ = max
P(outage)≤α,E[P (h)]≤P

b. (6)

• What is the optimal power allocation to achieveb∗?
• What is the key queue workload distribution when key

bits are used efficiently? Clearly, it is undesirable for
the key queue to be unstable, since it means that many
key bits, which are generated and transmitted from the
transmitter to the receiver consuming valuable resources,
are simply stored in the key queue without ever being
utilized.

In our system, finding the optimal power and queue control
policies are extremely complicated, due to apparent coupling
between the two. The two issues need to be jointly considered
and the optimal solution is based on a constrained infinite
horizon dynamic program. Solving the dynamic program does
not give much intuition on the operation of the system and
even less valuable in understanding the dynamics of the private
key queue and its interaction with the channel variations.

Alternatively, we resort to a sub-optimal scheme that can
approximate the original problem by two subproblems, using
which we decouple power allocation and queue control. This
division gives us insights into how the delay limited secrecy
system should be designed. Moreover, the decoupling does not
lead to a significant loss in performance in certain scenarios as
we will illustrate using simulations. We study power control
in Section III and the private key queue management in
Section IV.

The construction of these two subproblems is based on the
following arguments.

1) We start with a general optimization problem that solves
the maximum expected secrecy rateR(b, P̄ , α1) for
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fixed b > 0, α1 and P̄ > 0,

R(b, P̄ , α1) = max
P (h)

E [Rs] (7)

subject to:P (h) ≥ 0, (7a)

E[P (h)] ≤ P̄ , (7b)

P [Rm(h, P ) < b] ≤ α1 (7c)

Note thatR(b, P̄ , α1) is a non-increasing function with
respect tob. This policy involves a time sharing between
secure waterfillingandchannel inversionstrategies.

2) As will be shown later in Lemma 2,b∗ satisfies

R(b∗, P̄ , α1) = b∗(1 − P [Rm(h, P ∗) < b∗]), (8)

and with b = b∗, our system indeed achieves a zero
key outage probability, whereP ∗ is the optimal power
allocation policy, i.e. the solution of (7). Since solving
(7) gives us the optimal power control policy for a fixed
b > 0 and aP̄ > 0 under the condition that there are
no key outages, our problem boils down to finding the
maximumb∗ that satisfies Equation (8).

3) However, we show that, the preceding power policy
leads to an unstable private key queue, i.e., the mean and
the variance ofQk(t) grows unboundedly ast → ∞,
which is untenable because in practice the key buffer
size is finite. To address this issue, we choose a subop-
timal key rateb, which is slightly larger thanb∗. This
choice stabilizes the key queue at the expense of some
non-zero key outage probability. In order to preserve
high performance, we show that the key queue needs to
be operated in the heavy-traffic regime, under which we
derive the key queue workload distribution.

III. T HE POWER CONTROLPOLICY

In this section we study the power control policy for our
system. Following the argument given in the preceding section,
we investigate this problem in two steps. First, we derive the
optimal power control policy ignoring key queue outages in
Section III-A. Then, using the problem as a building block, we
provide an equation, the solution of which gives the optimal
data transmission rateb∗, and show that with the optimal key
rateb = b∗, the key outage probability is indeed 0.

A. The power control policy

The objective of (7) is to maximize the expected secrecy
rate for a fixed rateb, a channel outage probability constraint
of α1 and the average power constraint ofP̄ . The solution of
Problem3 (7) depends on three parameters(P̄ , b, α1).

Lemma 1:Problem (7) does not have a feasible solution if

P̄ < Pmin

=

∫

hm≥c

2b − 1

hm

f(h)dh.

where the constant,c is chosen such that the marginal proba-
bility distribution function ofhm satisfiesP[hm ≤ c] = α1.

3A similar problem was solved in [8], without the secrecy requirement.

Proof: The proof is given in our online technical report
[12].

To introduce our optimal power allocation policy, we first
define the power control policiesPwf (h, λ) andPinv(h) as

Pwf (h, λ) =
1

2

[

√

(

1

he

−
1

hm

)2

+
4

λ

(

1

he

−
1

hm

)

−

(

1

he

+
1

hm

)

]+

, (9)

Pinv(h) =
2b − 1

hm

(10)

whereλ ∈ R+. We refer toPwf (·) andPinv(·) as the secure
waterfilling and the channel inversion policies, respectively.
Also, we define the region

G(λ, k) =
{

h : [Rs(h, Pinv) − Rs(h, Pwf )]
+

−λ [Pinv(h) − Pwf (h, λ)]
+
≥ k

}

(11)

for somek ∈ R− ∪ {0}.
Theorem 1:If P̄ ≥ Pmin, the optimal power allocation

policy is

P ∗(h) =Pwf (h, λ∗)+

1 (h ∈ G(λ∗, k∗)) (Pinv(h) − Pwf (h, λ∗))
+ (12)

where λ∗ and k∗ satisfy the average power constraint (7b)
with equality, andP(h ∈ G(λ∗, k∗)) = (1 − α1).

The proof is motivated by that approach given in [8]. We
provide the complete proof in our online technical report [12].
Here, we give some intuition on the solution. We first solve
(7) by relaxing the main channel outage constraint (7c). The
optimal power allocation policy without (7c) isPwf (h, λ∗∗),
whereλ∗∗ is chosen such that the average power constraint
(7b) is met with equality.

1) If for this case, the main channel outage constraint (7c)
is also satisfied, thenP ∗(h) = Pwf (h, λ∗∗). Note that,
Pwf (h, λ∗∗) is also the power allocation function that
leads to the ergodic secrecy capacity [5]. Furthermore,
it could easily be shown that distinct values ofP̄ lead
to distinct values ofλ∗∗.

2) If P(Rm(h, Pwf ) < b) > α1, then we utilize channel
inversion power control,Pinv(h) to overcome channel
outages whenPwf (h, λ∗∗) yields a rate lower than
b. In order to satisfy the average power constraint,
we decrease the water level of the secure waterfilling
solution by increasingλ such that it is slightly larger
thanλ∗∗, and use the excess power toinvert the channel
at someinstants.
Note that, if for someh, Pwf (h, λ) results in main
channel outage, we need to use(Pinv(h) − Pwf (h, λ))
4 amount of additional power to satisfy main channel
rateb. Therefore, we optimize over the region such that,
probability that the main channel rate is at leastb, should
be at least(1 − α1), due to (7c). The solution to this
optimization turns out to be the regionG(λ∗, k∗).

4This is referred to as ”residual power” in [8]
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In summary, the power control policy is a time-sharing be-
tweenPinv(h) andPwf (h, λ∗). In the Figure 2, we plot the
scheme for the power control policy in different regions with
respect tohm andhe, where to the right of the solid boundary
corresponds to the regionG(λ∗, k∗), in which P ∗(h) =
max(Pinv(h), Pwf (h, λ∗)). To the left of the solid boundary,
P ∗(h) = Pwf (h, λ∗). To further illustrate the power control,
we plot the allocated power versus main channel gainhm in
Figure 3 for a constant eavesdropper channel gainhe, i.e.,
along a horizontal dotted line as shown in Figure 2.
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Fig. 3. The power control policy with respect tohm for a fixedhe.

B. Avoiding key queue outages

Before investigating the power control problem in the pres-
ence of the key queue, we first explain how it relates with
Problem (7) in the preceding section that does not depend on
the key queue. As shown in the following lemma, by carefully

controlling the rateb and the channel outage probability
P[Rm < b], we can guarantee that the probability of key
outage is zero.

Lemma 2: If the processQ(t) is stationary and ergodic,
and the outage probability (including both channel and key
outages) satisfiesP[outage] ≤ α, α > 0, then,

b =
E[Rs]

1 − P[outage]
≤

E[Rs]

1 − α
.

Proof: Using the condition that{Qk(t)} is stationary and
ergodic, we obtain

1 − P[outage]

= lim
n→∞

∑n

i=1 1 ({Rm(i) ≥ b} ∩ {Qk(i) + Rs(i) − b ≥ 0})

n
.

Note that
n

∑

i=1

1 ({Rm(i) ≥ b} ∩ {Qk(i) + Rs(i) − b ≥ 0})

=

∑n

i=1 Rs(i) − Qk(n)

b
,

which, using the factlimn→∞ Qk(n)/n = 0 and law of large
numbers, yields

E[Rs] = lim
n→∞

∑n

i=1 Rs(i)

n
= (1 − P[outage]) b ≥ (1 − α)b.

Therefore, we proveb∗ ≤ E[Rs]/(1 − α).
Remark 1: If b = E[Rs]/(1 − P[Rm < b]), we only have

channel outages, and the key outage probability is equal to
zero.

Based on this insight, we formulate the optimal power
control in the presence of key queue as follows:

b∗(1 − P[Rm(h, P ∗) < b∗]) = max
P (h)

E [Rs]

subject to:P (h) ≥ 0,

E[P (h)] ≤ P̄ ,

P [Rm(h, P ) < b∗] ≤ α, (13)

whereP ∗ is the optimal power control policy that maximize
E [Rs] in (13). Note thatb∗ appears both in the constraint and
the objective function. By Remark (1), we know that ifb = b∗

whereb∗ is the solution of (13), then we only have channel
outages and the key outage probability is equal to zero.

Remark 2:The delay limited secrecycapacity was also
addressed in [6]. There, outages were not allowed and it was
shown that

lim
P̄→∞,α→0

b∗ = Ehm>he
log

[

hm

he

]

. (14)

Note that, sinceP̄ → ∞ above, there is no power control.
Our simulation results also illustrate that the power allocation
policy has minimal impact on the performance in the very-
high power regime. On the other hand, when the average
power is limited, we show that our power allocation scheme
outperforms the sole channel inversion policy, which is shown
in [6] to achieve the delay limited secrecy capacity in the
infinite-power regime.
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IV. K EY QUEUE DYNAMICS

In the preceding section, we derived the optimal power
policy for the case in which the probability of key outages is
forced to be zero. As will be shown in Lemma 4, this scenario
will result in an unstable key queue and both the mean and
variance of the number of keys in the key queue will grow
to infinity as t → ∞. In this section, using the power policy
in the preceding section and allowing key outages, we show
that the key queue in fact can be made stable at the expense
of some minimal increase in the overall outage probability.
Under the condition that the key outage probability is small,
we derive the workload distribution for the key queue in the
heavy-traffic regime in Theorem 3. In the rest of this section,
except for cases explicitly stated, we assume that the system
has a steady state, and when the system reaches stationarity,
{Qk(t)} is a stationary and ergodic process.

Specifically, we study the queueing dynamics for the private
key queue under the condition that the total outage probability
is equal toα, i.e.,

P [{Rm(t) < b} ∪ {Qk(t) + Rs(t) − b < 0}] = α, (15)

and
P [Rm(t) < b] = β(b) < α (16)

when the system reaches stationarity. By (13), we know
β(b∗) = α if b = b∗. When the key queue outage probability
is very small, the key queue is in the heavy traffic region (see
Theorem 3 in Section IV).

Recall the queueing dynamics for the private key queue
described in Equation (5). This recursion is highly compli-
cated since the indicator functions involveQk(t). To better
understand this recursion, we introduce a new variableQ∗(t)
as described below.

Definition 1: Let {Q∗(t)}t≥0 be the process that satisfies
the following recursion

Q∗(t + 1) = (Q∗(t) + Rs(t) − b1(Rm(t) ≥ b))
+ (17)

with Q∗(0) = Qk(0).
The following lemma relatesQ∗(t) to Q(t).
Lemma 3: In the presence of both channel and key outages,

for all t, we have

Q∗(t) ≤ Qk(t) ≤ Q∗(t) + b. (18)

Remark 3:Lemma 3 implies that the stability ofQ∗(t)
guarantees thatQ(t) is also stable and vice versa.

Proof: First, we prove the lower boundQ∗(t) ≤ Qk(t).
By induction, assumingQ∗(t) ≤ Qk(t), we need to verify that
Q∗(t + 1) ≤ Qk(t + 1). Using (5), we obtain

Qk(t + 1) =
(

Qk(t) + Rs(t)

− b1 ({Rm(t) ≥ b} ∩ {Qk(t) + Rs(t) − b ≥ 0})
)+

≥ (Qk(t) + Rs(t) − b1(Rm(t) ≥ b))
+

≥ (Q∗(t) + Rs(t) − b1(Rm(t) ≥ b))+

= Q∗(t + 1),

which finishes the proof of the lower bound.

Next, we prove the upper bound. Again, we use induction.
AssumingQk(t) ≤ Q∗(t) + b, we need to show thatQk(t +
1) ≤ Q∗(t + 1) + b. There two different scenarios.

1) If Q∗(t) + Rs(t) − b1 ({Rm(t) ≥ b}) ≥ 0, then, using
Q∗(t) ≤ Q(t), we obtain

Qk(t) + Rs(t)

− b1 ({Rm(t) ≥ b} ∩ {Qk(t) + Rs(t) − b ≥ 0})

≥ Q∗(t) + Rs(t) − b1 ({Rm(t) ≥ b}) ≥ 0,

which, using (5), implies

Qk(t + 1) = Qk(t) + Rs(t)

− b1 ({Rm(t) ≥ b}) . (19)

Observe that, by (17),

Q∗(t + 1) = Q∗(t) + Rs(t) − b1 ({Rm(t) ≥ b}) ,

which, in conjunction with (19) andQk(t) ≤ Q∗(t)+ b,
yields Qk(t + 1) ≤ Q∗(t + 1) + b.

2) If Q∗(t) + Rs(t)− b1 ({Rm(t) ≥ b}) < 0, thenQ∗(t +
1) = 0. We further consider two cases. First, ifQk(t)+
Rs(t) − b ≥ 0, then,

Qk(t + 1) =
(

Qk(t) + Rs(t) − b1 ({Rm(t) ≥ b})
)+

≤
(

Q∗(t) + b + Rs(t) − b1 ({Rm(t) ≥ b})
)+

≤ b

= Q∗(t + 1) + b. (20)

Next, if Qk(t) + Rs(t) − b < 0, then

Qk(t + 1) = Qk(t) + Rs(t) < b = Q∗(t + 1) + b,

which, combined with (20), yields

Qk(t + 1) ≤ Q∗(t + 1) + b.

Before we state our main result, we begin with the critical
situation when the system only has channel outages, i.e.,b =
b∗.

Lemma 4: If b = b∗ and the optimal power allocationP ∗(·)
is used, i.e.,E[Rs] = b∗P[Rm ≥ b∗], then,

lim
t→∞

Qk(t)
√

Var [Rs(0) − b1(Rm(0) ≥ b∗)] t

d
= |N(0, 1)|,

where |N(0, 1)| is the absolute value of a normal random
variable with mean zero and variance one.

Proof: Using standard queueing result, e.g., see Proposi-
tion 1.2 of [10], we obtain

lim
t→∞

Q∗(t)
√

Var [Rs(0) − b1(Rm(0) ≥ b∗)] t

d
= |N(0, 1)|,

which, in conjunction with Lemma 3, completes the proof.
This lemma implies that, if we only have

channel outages, the private key queue will be
unstable, since Qk(t) is asymptotically distributed as
√

Var [Rs(0) − b∗1(Rm(0) ≥ b∗)] t|N(0, 1)|, which has
an increasing mean and variance. This result suggests that
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avoiding key outages completely is costly, since the necessary
buffer size grows unboundedly. In order to make the key
queue stable, next, we introduce key outages by choosingb
close tob∗ such thatE[Rs] < bP[Rm ≥ b].

Heavy traffic approximation

In the rest of this section, under the conditions (15) and
(16), we present our main result on the queueing dynamics
of the private key queue. Since we require that key outage
probability is small and at the same time the key queue is
stable, we show that the traffic intensity of the private key
queue must be very close to1. Consequently, the key queue
must be operated in the heavy traffic regime. In this regime
we derive the workload distribution of the key queue using
heavy-traffic approximation.

Lemma 5: If E[Rs] < bP[Rm ≥ b], then there exists an
almost surely finite random variableQ∗ such that, for allx,

lim inf
t→∞

P[Qk(t) > x] ≥ P[Q∗ > x], (21)

and

lim sup
t→∞

P[Qk(t) > x] ≤ P[Q∗ + b∗ > x], (22)

and thus the private key queue is stable.
Remark 4:Additionally, if Qk(t) is stationary and ergodic,

there exists an almost surely finite random variableQk such
that, for allx,

lim
t→∞

P[Qk(t) > x] = P[Qk > x]. (23)

Proof: By (17), we know

Q∗(t + 1) = (Q∗(t) + Rs(t) − b1(Rm(t) ≥ b))
+

.

Using Loynes’s result [9], the conditionE[Rs] < bP[Rm ≥ b]
implies that, there exists a finite random variableQ∗ such that

lim
t→∞

P[Q∗(t) > x] = P[Q∗ > x].

Using (18) of Lemma 3, we finish the proof of the lemma.

Note that{Rs(t) − b1(Rm(t) ≥ b)}t≥0 is a sequence of
i.i.d. random variables, and we defineG+ to be the ladder
height distribution of the random walk{Sn =

∑n

t=1 Rs(t) −
b1(Rm(t) ≥ b)}n≥1 with ‖G+‖ = P[Sn > 0 for somen ≥
1]. Under the conditionE[Rs] < bP[Rm ≥ b], we can show
that the distribution ofQk(t) exhibits an exponential tail, as
shown in the following result.

Theorem 2:Under condition (23), ifRs(t) − b1(Rm(t) ≥

b) is nonlattice, satisfyingE
[

(Rs(t) − b1(Rm(t) ≥ b))
θ∗

]

=

1, θ∗ > 0, and
(

E

[

(Rs(t) − b1(Rm(t) ≥ b))θ
])′ ∣

∣

∣

θ=θ∗
< ∞,

then

1 − ‖G+‖

θ∗
∫ ∞

0
xeθ∗xG+(dx)

≤ lim
x→∞

P[Qk > x]xθ∗

≤
(1 − ‖G+‖) bθ∗

θ∗
∫ ∞

0 xeθ∗xG+(dx)
.

Proof: Using Theorem 5.3 in Chapter XIII of [10], we
obtain

lim
x→∞

P[Qk > x]xθ∗

=
1 − ‖G+‖

θ∗
∫ ∞

0 xeθ∗xG+(dx)
,

which, by Lemma 18, completes the proof.
In view of Lemma 2, it is easy to check that the condition

E[Rs] < bP[Rm ≥ b] is equivalent toP[Rm(t) < b] <
P[outage], i.e., the key outage probability is strictly positive.
The requirement of small key outage probabilities makes the
system operate in the heavy traffic region, as shown in the
following theorem.

Theorem 3:If β(b) = P[Rm < b] < α, E[R2
s] < ∞, µb =

E[Rs] − bP[Rm ≥ b] < 0 and P[Rm < b] is continuous in a
neighborhood ofb = b∗, then, we have, forσb = Var[Rs −
b1([Rm ≥ b)] andy ≥ 0,

lim
b→b∗

P

[

|µb|Qk(t)

σ2
b

> y

]

= e−2y.

Remark 5:As an approximation, we have, for smallα,

P [Qk(t) > z] ≈ e
−

2|µb|

σ2

b

z
,

andE[Qk(t)] ≈ σ2
b / (2|µb|). Therefore, after introducing key

outages, the workload in the private key queue roughly follows
an exponential distribution.

Proof: This theorem is based on the heavy traffic limit
for queues developed in [11]; see also Theorem 7.1 in [10].

In order the prove this result, we only need to ver-
ify the following three conditions: i)limb→b∗ µb = 0; ii)
limb→b∗ σb = σ0 > 0; and iii) the class of random variables
{

(Rs(0) − b1(Rm(0) ≥ b))2
}

indexed byb is uniformly in-
tegrable.

SinceP[Rm < b] is continuous in a neighborhood ofb = b∗,
we obtain

lim
b→b∗

µb = E[Rs] − b∗P[Rm ≥ b∗] = 0,

and

lim
b→b∗

σ2
b = lim

b→b∗
Var[Rs(0) − b∗1([Rm(0) ≥ b∗)]

= Var[Rs(0)]

− 2Cov

(

Rs(0),1

(

Rm(0) ≥
E[Rs(0)]

1 − β

))

+

(

E[Rs(0)]

1 − α

)2

P

[

Rs(0) ≥
E[Rs(0)]

1 − β

]

×

(

1 − P

[

Rs(0) ≥
E[Rs(0)]

1 − β

])

, σ2
0 > 0.

Next, for some0 < ε < b∗, notice that whenb lies on the
interval [b∗ − ε, b∗ + ε], we have

(Rs(0) − b1([Rm(0) ≥ b))
2
≤ Rs(0)2

− 2Rs(0)(b∗ − ε)1 (Rm(0) ≥ b∗ + ε)

+ (b∗ + ε)2 1 (Rm(0) ≥ b∗ − ε) .
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The three random variables on the right hand side of the
preceding inequality do not depend onb and thus pro-
vide a uniform bound on the class of random variables
(Rs(0) − b1([Rm(0) ≥ b))2 that are indexed byb. The condi-
tion E[Rs(0)2] < ∞ implies that this class of random variables
(Rs(0) − b∗1([Rm(0) ≥ b∗))

2 is uniformly integrable.
Thus, by Theorem 7.1 in [10], we have, for ally > 0,

lim
b→b∗

P

[

|µb|Q
∗(t)

σ2
b

> y

]

= e−2y,

which, in conjunction with Lemma 3, finishes the proof.

V. NUMERICAL EXAMPLES

In this section, we conduct simulations to illustrate our main
results. In Example 1, we study the situation when the power
control policy achieves the delay limited secrecy without
any outages. To satisfy these conditions, we investigate an
invertible chi-square channel under the assumption that there
is always enough keys in the key queue (b = E[Rs]). Next,
we proceed to study a more realistic and complex scenario
when both channel outages and key outages occur. For this
purpose, we study the non-invertible Rayleigh channel with
the conditionb > E[Rs], which results in both channel and
key outages.

Specifically, we focus on scenarios that are difficult to
analyze. For example, the upper bound of the delay limited
secrecy capacity derived in [6] only depends on main channel
and eavesdropper channel gains without any power constraint.
However, with a finite average power constraint, there is signif-
icant difference between the upper and lower bound (especially
in the low power region) of the delay limited capacity. We
show through simulations that our scheme achieves better
performance than the lower bound in [6].

Example 1: In this example, we assume that both the main
and eavesdropper power gains follow a chi-square distribution
of degree4, mean4 and variance8. Therefore, the main and
eavesdropper power gains actually are identically distributed.
Since the main channel is invertible in this setting, we can
assume that the channel outage probability is zero. Hence,
we can compare our power policy with the lower and upper
bound developed in [6]. Furthermore, Lemma (4) implies that
b = E[Rs] would result in no key outages (key queue becomes
unstable). We plot in Figure 4 the achieved delay limited
secrecy rate as a function of the average power constraint
P̄ . In the same figure, the upper and lower bounds given in
[6] are also plotted along with the asymptote computed using
(14). The lower bound is computed by using channel inversion
policy, and the upper bound is defined by the delay limited
capacity in [6]. When there is no average power constraint,
the delay limited secrecy capacity does not change with
power policies, as shown in Equation (14). However, when
the average power is limited, there is significant difference
between the upper bound and the lower bound in [6]. It is
clear from Figure 4 that the performance of our power control
policy obtained from (13) is very close to the upper bound
derived in [6], hence even closer to the optimal solution.

Example 2:Next, we assume that both the main channel
and the eavesdropper channel are characterized by Rayleigh
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Fig. 4. Achievable delay limited rate under optimal power control without
outages for Gaussian channel
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Fig. 5. Achievable delay limited rate under optimal power control with
channel outage probability0.01 for Rayleigh channel

fading, where the main channel and eavesdropper channel
power gains follow exponential distribution with mean1. Since
Rayleigh channel is non-invertible, to maintain a non-zero
delay limited rate without any outage is impossible. In this
example, we choose the desired channel outage probability
equal to0.01 with the optimalb∗ computed from Problem (13).
Note that this combination will not result in key outages. We
plot the achievable delay limited secrecy rate in Figure 5.

However, this scheme will make the key queue unstable.
We illustrate this point in Figure 6 forE[Rs] = 0.6934, P̄ =
4.5846, b∗ = 0.6993 and channel outage probability0.01. As
clearly shown in this figure, the number of private keys in the
queue has a trend to keep increasing.

To make the key queue stable, we increaseb∗ above
E[Rs]/(1 − α1) a little bit. By doing so, we can deliberately
introduce key queue outages to make the key queue stable. For
the caseP̄ = 4.6585, E[Rs] = 0.6945, b = 0.7164, channel
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outage probability0.01, and key queue outage probability
0.02, we simulate the Rayleigh channel of the parameters, and
plot the key queue workload distribution in Fig. 7. From this

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Key Queue State, x, bits

P
(Q

k>
x)

Tail Distribution of Key Queue

Fig. 7. Key queue workload distribution with both channel outages and key
outages for Rayleigh channel

result, we see that even with a small increase of the maximal
b∗, the key queue size can be reduced dramatically.

VI. CONCLUSION

In this paper, we design a wireless communication system
that achieves constant bit rate data transmission over a block
fading channel, which is secure from an eavesdropper that
listens to the transmitter over another independent block
fading channel. By introducing private key queues at both
the transmitter and the receiver, we can exploit the times at
which the main channel is favorable over the eavesdropper
channel to transmit some random private key bits along with
the data bits. These key bits are stored in a separate key queue
at the transmitter as well as the receiver, and are utilized to

secure data bits, whenever the channel conditions favor the
eavesdropper. When the main channel has a worse channel
gain than the eavesdropper, by consuming these shared keys
(simply using bit-wise EXOR operation), the transmitter can
confuse the eavesdropper, despite the limited main-channel
rate.

We investigate the optimal rate and power control policies
at the physical layer as well as the queueing dynamics of
the private key queue. The optimal power control involves
time sharing between secure waterfilling and channel inversion
strategies and the key buffer needs to operate in the heavy traf-
fic regime to achieve capacity under a small outage constraint.
This work is our first step towards combining information
theory and queueing analysis for studying the information
theoretic security. Along this direction, there are many other
interesting questions that can be further pursued. For example:

• The delay limited transmission rate is kept at a constant
valueb in this study. In practice, we may have to consider
applications with varying transmission rate as well. This
adds another dimension to this problem, and one may
need to possibly resort to bang-bang control type of
management scheme.

• In real systems, the buffer size of the key queue is also
an important issue for designing an efficient system since
we do not want the private keys stored in the key queue
to overflow.
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