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Abstract—In recent years, the famouswiretap channelhas message cannot be decoded at the eavesdropper, even with
been revisited by many researchers and information theorét  ynlimited computational power.
secrecy has become an active area of research in this setting For the Additive White Gaussian Noise (AWGN) channel
In this paper, we design a wireless communication system tha . . A . ’
achieves constant bit rate data transmission over a block fiing it was shown in [2] that the s_ecrecy CapaCI_ty is the diffeeenc
channel, securely from an eavesdropper that listens to the between the channel capacity of the main channel and the
transmitter over another independent block fading channel It  eavesdropper channel. If the eavesdropper channel haker hig
is well known that, the method of sending secure information channel gain, information theoretic secure communicaigon
using the binning techniques inspired by the wiretap channe s hhsgible over the main channel. For fading channelyen t

fails to secure the information at times when the eavesdropgr . . .
channel has favorable conditions over the main channel. Thi other hand, it was shown in [5] that secure communication may

phenomenon is calledsecrecy outageln our system, however, we D€ maintained at non-zero rate, even when the eavesdropper
exploit the times at which the main channel is favorable over channel has favorable conditions on average. The tramsmitt

the eavesdropper channel for us to be able to transmit some simply exploits the times when the main channel has a higher
random secret keyits along with the data bits. These key bits gain than the eavesdropper channel, to obtain a positive

are stored in a separate key buffer at the transmitter as wellas te. At all other i i taoh
the receiver, and are utilized to secure data bits, whenevethe SECIECY rate. At all other umes, a positive secrecy rataaean

channel conditions favor the eavesdropper. We show that, iy € achieved, resulting igecrecy outage
our system the outage probability can be made arbitrarily cbse In this paper, we design a wireless communication system

to 0 by jointly controlling the key buffer with the transmit powe . that achieves constant bit rate data transmission overak blo
We show that the optimal power control involves a time sharimgy fading channel, securely from an eavesdropper that lisens

betweensecure waterfillingand channel inversionstrategies and . . .
the key buffer needs to operate in theheavy traffic regimeto the transmitter over another independent block fading ebkn

achieve the maximum delay limited rate possible, under a snla  The channel gains of the main channel and the eavesdropper
outage constraint. This work can be viewed as a first step in channel, albeit random, remain unchanged over each block.

providing a framework that combines both information theory \We assume that the transmitter has the perfect knowledge
222'”%‘;%3'“9 analysis for the study of information theore® ¢ pnh main and eavesdropper channel gains. We require
' that a certain fixed amount of data needs to be securely
transmitted in every single block. This model is motivated b
. INTRODUCTION applications that require to secure communication at emnst
Secure communication is a topic that is becoming iRt rate._ We assume that the channel gains are i.i.d. for both
creasingly important thanks to the proliferation of wissle "€ main channel and the eavesdropper channel and they

devices. There have been many applitryption mecha- are independent from each othgr in each_block. I_t is vv_eII
nisms proposed to secure data communication. However, KRoWn that, the method of sending secure information using
new schemes are being developed, methods to counter e Pinning techniques inspired by the wiretap channes fail
specific encryption methods also appear. This competimgeffto secure the information _Qt times when the eavesdropper
makesinformation theoretic secrecy a very attractive area channel has favorable conditions over the main channetehen
of research because it can provide hard guarantees that %de_layl-hmned secrecy cgpacnys 0, since optages are
not be overcome regardless of the computation power @avoidable. It was shown in [6] that, interestingly, & non-
the devices. For example, the famowiretap channel of zero secrecy rate could be achieved by introduginigate

Wyner [1] have been revisited recently by many researche€Y dueuesat both the transmitter and the receiver. The work
In a wiretap channel, an eavesdroppessivelylistens to the exploits the times at which the main channel is favorable ove
communication between a transmitter and a receiver oveffi¢ €@vesdropper channel to transmit soarelom private key
separate communication channel. Wyner definedsterecy bits along with the data bits. These key bits are stored in a
capacity of the main channel as the maximum data rafieparate key queue at the transmitter as well as the receiver
achievable subject to a zero mutual information between tRBd aré utilized to secure data bits, whenever the channel
message and the S|gnal received by the eaveSdrOpper' Henqﬁbte that, the term ‘delay’ refers to a single “decodableddl in infor-

information theoretic secrecy is “completely secure,’,itheé mation theory. In this context, the delay limited capaciyfirst introduced
and analyzed in [4]. This notion of delay is fairly differefiom the delay
This work is supported by NSF under Grants CCF-0916664, G&35242. experienced at the higher layers due to queueing, etc.



conditions favor the eavesdropper. When the main chanmel distribution and less (greater) or equal in distribution
has a worse channel gain than the eavesdropper, by consuméspectively.

these shared keys (simply using bit-wise EXOR operatite), t

transmitter can confuse the eavesdropper, despite theeimia  channel Model

main-channel rate. However, while [6] investigates theidas . :
S . The physical layer channel dynamics are modeled by a
limitations of such a system, the optimal power and ratSrT

. . otted system. In each time slot, a block of data is trariechit
control policy and the queue dynamics of the key buffer ate no o
. over N channel uses. At the end of the transmission of block
studied. Furthermore, the system only works for “invegtibl

t, the observed signals at the receiver and at the eavesdroppe
channels.

- . are:

To that end, we develop a delay-limited secure communica-
tion system with private key queues similar to the ones in [6] V(t) = gm (t)x(t) + Wi (t)
In particular, we investigate the optimal rate and powerticdn a
problem at the physical layer as well as the queueing dyremic
of the private key queue. We show that, using our system z(t) = ge(£)x(t) + we(t),
the outage probability can be made arbitrarily close)tby
jointly controlling the key buffer with the transmit poweéiso,
we develop the key buffer and power control mechanisms

respectively, wherex(t) € CV is the transmitted signal,
%t) € CV is the received signal by the legitimate receiver,

N i .
achieve maximum secure constant bit rate achievable by dz(t) € C™ is the received signal by the eavesdropper. Flat

system. We show that the optimal power control involves 8ding channel gainsg,,(¢) for the main channel ang.(t)

time sharing betweesecure waterfillingpolicies andchannel for the eav_esdropper channel are two independent complex
inversionstrategies and the key buffer needs to operate in ffgndom variables. Furt_h_ermore, we assume {hatt), ¢ = 1
heavy traffic regiméo achieve the maximum delay limited rate?Nd {ge(1),t > 1} are i.id. processes th".ﬂ are also indepen-
possible, under a small outage constraint. Our work pravid gnt from each other. The transmltte_d 5'9“?' IS corrupted_by
a natural framework t@ombine both information theory and circularly symmetric complex Gaussian Noise vectors with

gueueing analysis for studying the problem of informatiof®'© Mean and unit sample variances at both th? receiver
theoretic security. w,.(t) and the eavesdroppex.(t). The power gains of

i _ 2
We also present simulations to support our results. Vg%e fading channels are denoted by,(t) = [lgm(t)[" and

" . e (1) = llge(®)]|2.
specifically focus on scenarios that are difficult to analyem \(N)e r(!gtr(iciuourselves to a class of power policies that
example, the upper bound of the delay limited secrecy cigpac(i)nI depend on the instantaneous channel s -
derived in [6] only depends on main channel and eavesdrop?gry(t) hp (#)) in block ¢. Since {h(t)} is iid vl\iﬁedrgp
channel gains without any power constraint. However, Withtﬁ:inde;t and use the .notatioh for simpli(.:i.ty”We fOCUS
finite average power constraint, there is significant déffiee )

between the upper and lower bound, especially in the Iqw,  POWer allocation functions”(h), that depend on the

ower region. to delav limited capacity. We show throu nstantaneous channel gains only. In this paper, we focus on
P! region, y -apacty. Ythe long term power constraint (or average power consjtaint
simulations that, our scheme achieves better performdvace t = . ,

. : which is defined by

the lower bound given in [6].

The rest of this paper is organized as follows. We formally E[P(h)] <P Q)
introduce our system model in Section Il, which consists ?f _

: . . . or someP > 0.

the physical layer model (relying on information theoryyan We assume full channel state information (CSI), ie., the
the key queue model (relying on queueing analysis). Thetn . L
. g . . ransmitter has full causal knowledge hf¢). We also as
in Section II-A, we derive the optimal power control for the .

. : sume that, the eavesdropper knows the coding strategy of the
physical layer model unde_r the assumption that there are {ransmitter for each block. We defiftestantaneous achievable
key outages. However, t.h IS solution m akes the key 44 %%es for the legitimate receiverRz,,(t) and eavesdropper,
unstable. Hence, in Section II-B, we introduce a small ke N as:
outage probability to the system, and show that the key que é( ) as:
can be made stable. In this setting, we derive the workload R, (t) = log (14 P(h)h,,(t)) )
distribution for the key queue in the heavy-traffic region.

Finally, we provide simulations to support our main resirts and

Section V, which is followed by the conclusion in Section VI. Re(t) = log (1 + P(h)he(t)) . (3)
For each block, using Wyner’s result [1], we can achieve a
Il. SYSTEM MODEL secrecy rateof
Since our system involves both the physical channel and the Ry(t) = [Rm(t) — Re(t)]™, (4)

private key queue dynamics, we present them in Sections Il oo [2]* =

; S ) ) ) = max{0,z}. The secrecy rate is the number
and 11-B, respectively. Within this setting, we briefly debe of bits that the receiver can decode per channel use, subject

the problem that will be addressed dandd analyzed in this PaRE no decodable bits at the eavesdropper. Since the secrecy
and “<(>)" to denote equal rate R.(t) and the main channel ratg,,(t) are completely

in Section II-C. We use =



determined by the power allocation functiéf{h) and channel are generated and only key bits are transmitted to the receiv

gainsh, we use the notation8,(t) = Rs(h, P) andR,,(t) = during that block. Putting it all together, we can write the

Ry, (h, P). queueing recursions fof)(t) for a given power allocation
Finally, we assume that the application requires a constdith) (and hence the associated rate allocatityth, P)) as

amount,b bits/channel use of data (which corresponds\tb follows:

bits/block) to besecurelytransmitted ineveryblock over the

main channel. IfNb bits cannot be transmitted securely oveQ), (t + 1) = (Qk(t)

a given block¢, we say that &secrecy outagéas occurred.
? Y Y o + (Ry(t) = D)L ({Run(t) = b} N {Qu(t) + Ry(t) — b > 0})

B. Key Queue Model + Ro()1 ({Ron(t) < b} U{Qu(t) + Ru(t) = b < o}))+
From Equation (4), we know that the secrecy rRtét) = 0

regardless ofP(h), wheneverh,,(t) < he(t). It was shown = (Qk(t) + Rs(t)

in [6] that, one can avoid a secrecy outage over bloakven +

when R,(t) = 0 by introducingprivate key queueat the  — 01 ({Bm(t) = b} N {Qx(t) + Rs(t) —b > 0})) )

transmitter and the receiver. Our system, depicted in Fig. 1

is motivated by this idea. The idea is to exploit the times at

which the main channel is favorable over the eavesdropggr Problem Description

channel to transmit som@ndom private keits along with

the data bits. These key bits are stored in a separate keyVe consider the following questions:

queue at the transmitter as well as the receiver; we denotg \what is the maximum achievable constant (delay-limited)
by Qx(t) the number of bits stored in the key queue at time  rateb* achievable by our system, subject to a given upper
t. When the main channel has a worse channel gain than bounda on the outage probability and a given average

the eavesdropper, by consuming these shared keys (simply power constrainf? Mathematically it can be formulated
using bit-wise EXOR operation), the transmitter can coafus 35 follows:

the eavesdropper, despite the limited main-channel ratimguJ

Shannon’s result [3], in or(_jer to fully encrypib bits of data, b — max b (6)
the total number of key bits should be at least equalVto P(outageX o,E[P(h)] <P

To that end, even with a key buffer, one may not be able to _ _ _ _

avoid secrecy outages, which can be caused by the occurrence What is the optimal power allocation to achiel/e?

of either one of the following two events: « What is the key queue workload distribution when key

bits are used efficiently? Clearly, it is undesirable for
R, () l l R (t) the key queue to be unstable, since it means that many

T . VSharer . i key bit_s, which are ge_nerated an(_JI transmitted from the
(t )$ M (t )$ M transr_nﬂter to the receiver consuming vgluable resources,

% % are simply stored in the key queue without ever being

ey oo | b bits/block utilized.
ey queue (key) Ry (t) o )
transmitter receiver In our system, finding the optimal power and queue control
"D bits/block’ policies are extremely complicated, due to apparent cogpli

(data) between the two. The two issues need to be jointly considered

Ro(t) and the optimal solution is based on a constrained infinite

eavesdropper  horizon dynamic program. Solving the dynamic program does

not give much intuition on the operation of the system and
Fig. 1. System model with a private key queue at the tranemithd the EVEN less valuable in understanding the dynamics of thateriv
receiver. key queue and its interaction with the channel variations.
Alternatively, we resort to a sub-optimal scheme that can
approximate the original problem by two subproblems, using
hich we decouple power allocation and queue control. This
Hfision gives us insights into how the delay limited segrec
state,Qx(¢). s - :
: ystem should be designed. Moreover, the decoupling ddes no
. Key outage: Qx(t) + R.S(t) —b<0. In this cas.e,Rs(t) . Jead to a significant loss in performance in certain scesa®
is 100 low to supporb bits/channel use even with the alc{/\/e will illustrate using simulations. We study power comhtro

of all stored key bits. _in Section Il and the private key queue management in
In case of an outage over blo¢ckwe assume that no data iSggction |V.

transmitted over that block. InsteddR,(t) private key bits

I. Channel outage: R,,(t) < b. In case of this event, the
desired rate of bits/channel use cannot be achieved (ev
without a secrecy constraint), regardless of the key que

The construction of these two subproblems is based on the

2To achieve the theoretical limits one needs to pass the kN to  following arguments.

infinity. However, in practice, the typical packet sizesoallthe achievable . L
rates given in (2) and (3) to be met fairly closely at reastnbdw probability 1) We start with a general optimization prOblem that solves

of error. the maximum expected secrecy rai{b, P,a;) for



fixedb > 0, a; and P > 0, Proof: The proof is given in our online technical report

_ [12]. [ |
R(b, P,an) = Iﬁl(?f)(]E [£] (M " To introduce our optimal power allocation policy, we first
subject to:P(h) > 0, (7a) define the power control policieB, s (h, \) and P, (h) as
E[P(h)] < P, (7b) 1 1 1\ 47/1 1
PlRnP) <t <o (o)  Par®N=3] <h—;m> 3 (h—e‘m)
Note thatR(b, P, ;) is a non-increasing function with B (i N i) r ©)
respect ta. This policy involves a time sharing between he  hm ’
secure waterfillingand channel inversiorstrategies. 20 _ 1
2) As will be shown later in Lemma 2;" satisfies Piny(h) = . (10)
R(b*, P,on) = b*(1 =P[Ry (b, P*) < b*]), (8) where\ € RT. We refer toP,;(-) and P;,,(-) as the secure
and with b — b*, our system indeed achieves a Zer\évaterﬂlllng a_nd the chgnnel inversion policies, respedyiv
. . . Iso, we define the region
key outage probability, wher@* is the optimal power
allocation policy, i.e. the solution of (7). Since solving GO k) = {h: [Rs(h, Piny) — Ry(h, ow)]+
(7) gives us the optimal power control policy for a fixed
b > 0 and aP > 0 under the condition that there are ~A[Pinw(h) = Pys(h,\)]* > k} (11)
no key outages, our problem boils down to finding the
maximumb* that satisfies Equation (8). for somek € R~ U {0}. _ _
3) However, we show that, the preceding power policy Theorem 1:If P > P, the optimal power allocation

leads to an unstable private key queue, i.e., the mean &dicy is

the variance ofQx(t) grows unboundedly as — oo, P*(h) =P (h. \*
which is untenable because in practice the key buffer (B) =Pu (b, )j .

size is finite. To address this issue, we choose a subop- 1(he g\, k")) (Piny(h) —
t'ma_‘l key rqtgb, which is slightly larger than”. This \\here \* and k* satisfy the average power constraint (7b)
choice stabilizes the key queue at the expense of sopgy, equality, andP(h € G(\*, k) = (1 — a).

non-zero key outage probability. In order to preserve |, proof is motivated by that approach given in [8]. We
high perform_ance, we show that the key queue n?edsp%vide the complete proof in our online technical repof][1

be operated in the heavy-traffic regime, under which W§a e e give some intuition on the solution. We first solve
derive the key queue workload distribution. (7) by relaxing the main channel outage constraint (7c). The
optimal power allocation policy without (7¢) I8, ¢ (h, \**),
where \** is chosen such that the average power constraint

Pur(h,A))" (12)

IIl. THE POWER CONTROLPOLICY

In this section we study the power control policy for ouf?b) is met with equality.

system. Following the argument given in the preceding sacti
we investigate this problem in two steps. First, we derive th
optimal power control policy ignoring key queue outages in
Section llI-A. Then, using the problem as a building blocle, w
provide an equation, the solution of which gives the optimal
data transmission rate, and show that with the optimal key
rateb = b*, the key outage probability is indeed 0.

A. The power control policy

The objective of (7) is to maximize the expected secrecy
rate for a fixed raté, a channel outage probability constraint
of a; and the average power constraint/f The solution of
Problend (7) depends on three parametéf b, a1 ).

Lemma 1:Problem (7) does not have a feasible solution if

26 —1

Am>c hm

where the constant, is chosen such that the marginal proba-
bility distribution function ofh,,, satisfiesP[h,, < ¢] = a;.

p < Pmin

#(h)dh.

3A similar problem was solved in [8], without the secrecy riegment.

2)

1) If for this case, the main channel outage constraint (7c)
is also satisfied, the®*(h) = P, ¢(h, \**). Note that,
P,¢(h,\**) is also the power allocation function that
leads to the ergodic secrecy capacity [5]. Furthermore,
it could easily be shown that distinct values Bflead

to distinct values of\**.

If P(R.(h, Pys) < b) > a1, then we utilize channel
inversion power controlp;,,(h) to overcome channel
outages whenP,,;(h, A\**) yields a rate lower than
b. In order to satisfy the average power constraint,
we decrease the water level of the secure waterfilling
solution by increasing\ such that it is slightly larger
than\**, and use the excess poweritvert the channel

at someinstants.

Note that, if for someh, P,f(h,\) results in main
channel outage, we need to uge,,, (h) — Py, s(h, X))

4 amount of additional power to satisfy main channel
rateb. Therefore, we optimize over the region such that,
probability that the main channel rate is at lelagghould

be at least(1 — «7), due to (7c). The solution to this
optimization turns out to be the regid@r(\*, k&*).

4This is referred to as “residual power” in [8]



In summary, the power control policy is a time-sharing besontrolling the rateb and the channel outage probability

tween P;,,, (h) and P, ¢ (h, A\*). In the Figure 2, we plot the P[R,, < b], we can guarantee that the probability of key

scheme for the power control policy in different regionstwitoutage is zero.

respect tdh,,, andh., where to the right of the solid boundary Lemma 2:If the processQ(t) is stationary and ergodic,

corresponds to the regiog(A\*,k*), in which P*(h) = and the outage probability (including both channel and key

max (P, (h), Py (h, A*)). To the left of the solid boundary, outages) satisfieB[outage < «, « > 0, then,

P*(h) = P,(h, A*). To further illustrate the power control, E[R,] E[R,]

we plot the allocated power versus main channel dginin = 2 < .

Figure 3 for a constant eavesdropper channel gaini.e., 1-Ploutagé = 1 -«

along a horizontal dotted line as shown in Figure 2. Proof: Using the condition thaf@(¢)} is stationary and
ergodic, we obtain

Power Control Regions 1 — Ploutagé
o 20 LR (i) > b} 1{Qu() + Rai) =b > 0)
n—00 n ’
o Note that
s S 1({R() = b} 0 {Q() + Ry(i) — b > 0})
5 P (h A% max{P_ (h),P_(h, A"} = |
g _ Zizl Rs(i) — Qk(n)
g b )
% which, using the factim,, .., Qr(n)/n = 0 and law of large
® numbers, yields
B[R] = tim 2= _ (1 _ poutage)b > (1— a)b.
0 n—00 n
0
main channel gain, h__ Therefore, we prové* < E[R,]/(1 — «). ]

Remark 1:If b = E[R;]/(1 — P[R,, < b]), we only have
Figth- The power control policy in different regions withspect toh,  channel outages, and the key outage probability is equal to
an e-
zero.

Based on this insight, we formulate the optimal power
control in the presence of key queue as follows:

b*(1 = P[Rim (b, P*) < b7]) :IIEI(%E[RS]

== =Fih subject to:P(h) > 0,

—A—ow(h,}\% _
E[P(h)] < P,

..... P (h)
PRy (h, P) <b] < a, (13)

inv

where P* is the optimal power control policy that maximize
E [Rs] in (13). Note thab* appears both in the constraint and
the objective function. By Remark (1), we know thabif b*
whereb* is the solution of (13), then we only have channel
,,,,,, outages and the key outage probability is equal to zero.
,,,,,,,,,,,,,,,, Remark 2:The delay limited secrecgapacity was also
addressed in [6]. There, outages were not allowed and it was
shown that

Power

main channel gain, h lim b* = Ehm>he log [h_m} ) (14)

Pﬂoo,aﬂ() he

Fig. 3. The power control policy with respect tg,, for a fixed he. . = .
9 P poliey pect ka; Note that, sinceP — oo above, there is no power control.

Our simulation results also illustrate that the power altammn
policy has minimal impact on the performance in the very-
B. Avoiding key queue outages high power regime. On the other hand, when the average
Before investigating the power control problem in the pregower is limited, we show that our power allocation scheme
ence of the key queue, we first explain how it relates witutperforms the sole channel inversion policy, which isvaho
Problem (7) in the preceding section that does not dependiBn[6] to achieve the delay limited secrecy capacity in the
the key queue. As shown in the following lemma, by carefullipfinite-power regime.



IV. KEY QUEUE DYNAMICS Next, we prove the upper bound. Again, we use induction.

In the preceding section, we derived the optimal powéssummng() Q"(t) + b, we need to show thapy (¢ +
policy for the case in which the probability of key outages i) < @" (¢ + 1) + b. There two different scenarios.
forced to be zero. As will be shown in Lemma 4, this scenario 1) If Q*(¢) + Rs(t) — b1 ({R.(t) > b}) > 0, then, using
will result in an unstable key queue and both the mean and Q*(¢) < Q(t), we obtain
variance of the number of keys in the key queue will grow Qu(t) + Ro(t)
to infinity ast — oo. In this section, using the power policy 3
in the preceding section and allowing key outages, we show — 01 ({Rm(t) > b} N {Qx(t) + Rs(t) — b > 0})
that the key queue in fact can be made stable at the expense > Q" (t) + Rs(t) — b1 ({Rn(t) > b}) >0,
of some minimal increase in the overall outage probability.
Under the condition that the key outage probability is small
we derive the workload distribution for the key queue in the Qr(t +1) = Qr(t) + Rs(1)
heavy-traffic regime in Theorem 3. In the rest of this segtion — b1 ({Ru(t) > b}). (19)
except for cases explicitly stated, we assume that the myste -
has a steady state, and when the system reaches stationarity Observe that, by (17),

Qr(t)} is a stationary and ergodic process. N N

{ Sr()e)gifically, we study the queueing dynamics for the private Q(t+1) =Q (1) + Ra(t) — b1 ({Rm(t) = 0}),

which, using (5), implies

key queue under the condition that the total outage proibabil which, in conjunction with (19) and),(¢) < Q*(t) +b
is equal toq, i.e., yields Qi (t +1) < Q*(t+1) +b.
B 2) If Q*(t)+ Rs(t) — b1 ({R(t) > b}) < 0, then@*(t +
PHEn() <0} U{Qk(®) + Rot) —b < 0} =, (15) 1) = 0. We further consider two cases. First(f, (t) +
and Rs(t) — b > 0, then,
P[Rn(t) <b] =p(b) < « (16)

+
o Qut+1) = (Qult) + Ro(t) = b1 ({Ru(t) = 1) )
when the system reaches stationarity. By (13), we know fl
B(b*) = « if b= b*. When the key queue outage probability ( )+ b+ Rs(t) — b1 ({ R (t) > b}))
is very small, the key queue is in the heavy traffic region (see

Theorem 3 in Section V). <b
Recall the queueing dynamics for the private key queue =Q*(t+1)+0. (20)
described in Equation (5). This recursion is highly compli- Next. if A4 Ro(t)—b<0 th
cated since the indicator functions involég,(¢). To better ext, if Qi(t) + Rs(t) <P men
understand this recursion, we introduce a new varighblé) Qrt+1)=Qrt)+ Rs(t) <b=Q"(t+ 1)+,

as described below.
Definition 1: Let {Q*(t)}+>0 be the process that satisfies
the following recursion Qr(t+1)<Q*(t+1)+0.

Q(t+1) = (Q" () + Ry(t) = 1(Rm(t) 2 1)) " (A7) m
with Q*(0) = Qx(0). Before we state our main result, we begin with the critical
The followmgklemma relate®* (¢) to Q(1). situation when the system only has channel outagespi-.,

Lemma 3:In the presence of both channel and key outagebs
for all t, we have

which, combined with (20), yields

'‘Lemma 4:1f b = b* and the optimal power allocatiaf* ()

is used, i.e.E[Rs] = b*P[R,, > b*], then,
Q™ (1) < Qk(t) < Q"(t) +0. (18) Qr(t) d
. . lim = |N(0,1)],
Remark 3:Lemma 3 implies that the stability of)*(t) t—oo \/Var [Ry(0) — b1(R,,(0) > b*)]¢t

guarantees thap(¢) is also stable and vice versa.

Proof: First, we prove the lower boun@*(t) < Q(t).
By induction, assumin@*(t) < Q(¢), we need to verify that
Q*(t+1) < Qr(t+1). Using (5), we obtain

where |[N(0,1)| is the absolute value of a normal random
variable with mean zero and variance one.

Proof: Using standard queueing result, e.g., see Proposi-
tion 1.2 of [10], we obtain

Qu(t+1) = (Qu(t) + Ra(t) lim 9@ <N (0,1)]
+ t—oo \/Var [Rs(0) — b1(R,,(0) > b*)]t o
— b1 ({Run(t) 2 b} 1 {Qu(t) + Ry(t) ~ b= 0}) ) Ve
which, in conjunction with Lemma 3, completes the prom.
(Qk(t) + R(t) — b1(Rpn(t) = b))" This lemma implies that, if we only have
(Q*(t) + Rs(t) — b1(R,, (1) > b)) channel outages, the private key queue will be
—Q*(t+1) unstable, sinceQ(t) is asymptotically distributed as
’ V/Var [R(0) — b*1(R,,,(0) > b*)]¢|N(0,1)|, which has
which finishes the proof of the lower bound. an increasing mean and variance. This result suggests that

>
>




avoiding key outages completely is costly, since the nezgss Proof: Using Theorem 5.3 in Chapter Xlll of [10], we
buffer size grows unboundedly. In order to make the kegbtain
gueue stable, next, we introduce key outages by chodsing 1— G|

close tob* such thatE[R,] < bP[R,, > b]. lim PQ, > z]a’" = 6 [ < 205G (dz)’

which, by Lemma 18, completes the proof. ]
In view of Lemma 2, it is easy to check that the condition
In the rest of this section, under the conditions (15) and[R,] < bP[R,, > b] is equivalent toP[R,,(t) < b] <
(16), we present our main result on the queueing dynamig®utagé, i.e., the key outage probability is strictly positive.
of the private key queue. Since we require that key outagée requirement of small key outage probabilities makes the
probability is small and at the same time the key queue dgstem operate in the heavy traffic region, as shown in the
stable, we show that the traffic intensity of the private kefpllowing theorem.
queue must be very close o Consequently, the key queue Theorem 3:If 3(b) = P[R,, < b] < a, E[R?] < 0o, up =
must be operated in the heavy traffic regime. In this reginER,] — bP[R,,, > b] < 0 andP[R,,, < b] is continuous in a
we derive the workload distribution of the key queue usingeighborhood ob = b*, then, we have, for, = Var[R, —

Heavy traffic approximation

heavy-traffic approximation. b1([R., > b)] andy > 0,
Lemma 5:If E[R;] < bP[R,, > b], then there exists an
almost surely finite random variabg* such that, for allr, [|“b|Q’f( ) > y} =2V,
b—)b* oy

lim inf P t) > x| > PlQ* > 7], 21 .

hoo (Q(t) > 2] 2 PIQ" > 2] (21) Remark 5:As an approximation, we have, for smal)
and _ 2l

limsup P[Qx(t) > z] < P[Q* +b" > z, (22) PQk(t) > 2l ~e v -,
t—oo

andE[Qy(t)] =~ o2/ (2|m]). Therefore, after introducing key
outages, the workload in the private key queue roughly feglo
*an exponential distribution.

Proof: This theorem is based on the heavy traffic limit

and thus the private key queue is stable.
Remark 4: Additionally, if Qx(t) is stationary and ergodic
there exists an almost surely finite random variafle such

that, for all, for queues developed in [11]; see also Theorem 7.1 in [10].
lim P[Q)(t) > 2] = P[Qy > ). 23) In order the prove this .rgsult, we only need tq_ ver-
ify the following three conditions: limy_p« pp = 0; ii)
Proof: By (17), we know limp 4= 0 = 09 > 0; and iii) the class of random variables
{(RS(O) —b1(R(0) > b))2} indexed byb is uniformly in-
Q*(t+1) = (Q(t) + Ry(t) — b1(Ryn(t) > b)) " . tegrable.
Using Loynes’s result [9], the conditidB[R,] < bP[R,, > b] Wesl)ntiz]ipnmm < tlis continuous in a neighborhood bf= b7,

implies that, there exists a finite random variafe such that

lim P[Q*() > 2] = P[Q* > 4. Jim g, = B[R] = 0P[Ry, > b"] =

t—o0
Using (18) of Lemma 3, we finish the proof of the Iemma‘?lnd
u lim o} = hm Var[Rs(0) — b*1([R(0) > b*)]

Note that{Rs(t) — b1(R,(t) > b)}:>0 iS @ sequence of  °—t"
i.i.d. random variables, and we defiri¢, to be the ladder —VC”"[RS(O)]
height distribution of the random walkS,, = >"7_ | R,(t) — B E[R,(0)]
BL(Rom () > b)}nsy With |G| = P[S, > 0 for somen > 2Cov{ Fs(0), 1 { Bm(0) 2 ——

iti >

1]. Under .the: co_nd|t|oriE[Rs] < @E[Rm > b], we can show E[R,(0)] 2 E[R,(0)]
that the distribution ofQ,(¢) exhibits an exponential tail, as + o P |Rs(0) > -5
shown in the following result. EIR

Theorem 2:Under condition (23), ifR;(t) — b1(R,,(t) > % (1 P [RS(O) > MD
b) is nonlattice, satisfyindt [(Rs(t) — bL(Rp(t) > b)) A s 1-6

/ = o5 > 0.
16" > 0, and (B [(R,(t) - b1(Rm(t) 2 0))]) | <0, ’
then o=0" Next, for some0 < e < b*, notice that wherb lies on the
interval [b* — €,b* + €], we have
1= ”G+” < lim P[Qg > z]z? 2
0* fo ref"eG (dx) ~ 2—o0 (Rs(0) — b1([R,(0) > b)) < R,(0)
(1= [|G4])b? —2R,(0)(b" — €)1 (R (0) = b" +¢)

A fooo ref G (dx)’ + (" + 6) 1(Ryn(0)>0b" —¢).



The three random variables on the right hand side of tl o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
preceding inequality do not depend dnand thus pro- —&— optimal power control
vide a uniform bound on the class of random variable o ':S")”/:pbtgfe"d |
(R5(0) — b1([R(0) > b))? that are indexed by. The condi- —o&— upper bound
tion E[R5(0)?] < oo implies that this class of random variable:
(Rs(0) — b*1([Rim(0) > b*))? is uniformly integrable.
Thus, by Theorem 7.1 in [10], we have, for gl 0,
lim P [|Mb|Q*(t) - y] =
g

b—b* g

which, in conjunction with Lemma 3, finishes the proofm
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V. NUMERICAL EXAMPLES

In this section, we conduct simulations to illustrate ouinrma N S ‘
results. In Example 1, we study the situation when the pow o 1 2 3 4 5 6 1 8 9 10
control policy achieves the delay limited secrecy withot Average Power, P
any outages. To satisfy these conditions, we investigate an
invertible chi-square channel under the assumption thexeth Fig. 4. Achievablt_a delay limited rate under optimal powentcol without
. . outages for Gaussian channel
is always enough keys in the key quewe= E[R;]). Next,
we proceed to study a more realistic and complex scena“i~
when both channel outages and key outages occur. For i 1
purpose, we study the non-invertible Rayleigh channel wi
the conditionb > E[R,], which results in both channel and
key outages.

Specifically, we focus on scenarios that are difficult t
analyze. For example, the upper bound of the delay limit
secrecy capacity derived in [6] only depends on main chanr
and eavesdropper channel gains without any power coristra
However, with a finite average power constraint, there isifig
icant difference between the upper and lower bound (edbecit
in the low power region) of the delay limited capacity. W
show through simulations that our scheme achieves bet
performance than the lower bound in [6].

Example 1:In this example, we assume that both the mai
and eavesdropper power gains follow a chi-square distobut : " = > >
of degree4, mean4 and variances. Therefore, the main and Average Power, P
eavesdropper power gains actually are identically disteid.

Since the main channel is invertible in this setting, we cafly. 5.  Achievable delay limited rate under optimal powenteol with
assume that the channel outage probability is zero. Hendannel outage probabilit9.01 for Rayleigh channel

we can compare our power policy with the lower and upper

bound developed in [6]. Furthermore, Lemma (4) implies that

b = E[R,] would result in no key outages (key queue becomé&ding, where the main channel and eavesdropper channel
unstable). We plot in Figure 4 the achieved delay limitegower gains follow exponential distribution with mearSince
secrecy rate as a function of the average power constrai@tyleigh channel is non-invertible, to maintain a non-zero
P. In the same figure, the upper and lower bounds given @¢lay limited rate without any outage is impossible. In this
[6] are also plotted along with the asymptote computed usiggample, we choose the desired channel outage probability
(14). The lower bound is computed by using channel inversiegual t00.01 with the optimab* computed from Problem (13).
policy, and the upper bound is defined by the delay limitddote that this combination will not result in key outages. We
capacity in [6]. When there is no average power constraifot the achievable delay limited secrecy rate in Figure 5.

the delay limited secrecy capacity does not change withHowever, this scheme will make the key queue unstable.
power policies, as shown in Equation (14). However, whee illustrate this point in Figure 6 faE[Rs] = 0.6934, P =

the average power is limited, there is significant diffeeenct.5846, b* = 0.6993 and channel outage probability01. As
between the upper bound and the lower bound in [6]. It @early shown in this figure, the number of private keys in the
clear from Figure 4 that the performance of our power contrglieue has a trend to keep increasing.

policy obtained from (13) is very close to the upper bound To make the key queue stable, we incredge above
derived in [6], hence even closer to the optimal solution. E[R,]/(1 — ;) a little bit. By doing so, we can deliberately

Example 2:Next, we assume that both the main channéitroduce key queue outages to make the key queue stable. For
and the eavesdropper channel are characterized by Raylefyh caseP = 4.6585, E[R,] = 0.6945, b = 0.7164, channel

I
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Delay Limited Rate versus Average Power
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Fig. 6. Evolution of the key queue workload under the optip@ker control

secure data bits, whenever the channel conditions favor the
eavesdropper. When the main channel has a worse channel
gain than the eavesdropper, by consuming these shared keys
(simply using bit-wise EXOR operation), the transmittenca
confuse the eavesdropper, despite the limited main-cthanne
rate.

We investigate the optimal rate and power control policies
at the physical layer as well as the queueing dynamics of
the private key queue. The optimal power control involves
time sharing between secure waterfilling and channel inwers
strategies and the key buffer needs to operate in the heaivy tr
fic regime to achieve capacity under a small outage constrain
This work is our first step towards combining information
theory and queueing analysis for studying the information
theoretic security. Along this direction, there are maniyeot
interesting questions that can be further pursued. For pkeam

« The delay limited transmission rate is kept at a constant

with only channel outages for Rayleigh channel

outage probability0.01, and key queue outage probability
0.02, we simulate the Rayleigh channel of the parameters, and
plot the key queue workload distribution in Fig. 7. From this

Tail Distribution of Key Queue
1 T T

1 (1]
| (2]

P(Qk>x)

1 (3]
1 (4]

(5]

0 I I I

(6]

100 150
Key Queue State, X, bits

200 250

7
Fig. 7. Key queue workload distribution with both channetames and key 71
outages for Rayleigh channel

(8]
result, we see that even with a small increase of the maximal
b*, the key queue size can be reduced dramatically. [9]

VI. CONCLUSION
[10]

In this paper, we design a wireless communication systgm]
that achieves constant bit rate data transmission overck blo
fading channel, which is secure from an eavesdropper t
listens to the transmitter over another independent block
fading channel. By introducing private key queues at both
the transmitter and the receiver, we can exploit the times at
which the main channel is favorable over the eavesdropper
channel to transmit some random private key bits along with
the data bits. These key bits are stored in a separate keyqueu
at the transmitter as well as the receiver, and are utiliped t

valueb in this study. In practice, we may have to consider

applications with varying transmission rate as well. This

adds another dimension to this problem, and one may
need to possibly resort to bang-bang control type of
management scheme.

In real systems, the buffer size of the key queue is also
an important issue for designing an efficient system since
we do not want the private keys stored in the key queue
to overflow.
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