Corrections to Electric Machinery Fundamentals, 4th Ed., by Stephen J. Chapman

Note that there are several printings of this edition and not all of the corrections given below are in all printings.

App. A:
Page 682, Fig. A-1, (a). Note that the author uses the $\sin(\omega t + \text{angle})$ to define the complex phasor; the more commonly used approach is to use $\cos(\omega t + \text{angle})$ which I used in class and will use for EE 341.

Chap 1:
Page 25, Ex. 1-5, solution of (a); $B = 0.012 / 0.015 \ NOT \ B = 1.012 / 0.015$.
Page 45, 2nd line; should be “$V_B = \ldots$” not “$VB = \ldots$”
Page 63, Fig. P1-14, $V = 120 \ @ \ 0$ degrees.

Chap 2:
Page 122, Eq. 2-89 should be $\frac{V_{LP}}{V_{LS}} = \frac{a}{\sqrt{3}}$
Page 144, Prob. 2-2; two values for R_s are given, the 2nd one should be X_s, i.e., $R_s = 0.05 \ \Omega$ and $X_s = 0.06 \ \Omega$.
Page 144, Prob. 2-3; for the S.C. test, if the source is on the high voltage side (230 V), then the S.C. test current should be 4.35 amps (= 1000 / 230).

Chap. 5:
Page 344, Prob. 5.28; infinite bus voltage should be 12.2 kV, the same as the generator voltage, NOT 16 kV.

Chap. 6:
Page 378, Prob. 1.13, third line; “…power supplied by the generator…” should be replaced by “….. power required by the motor …..”

Chap. 7:
Page 388, 3rd line should be $n_m = (1 - 0.05)(1800 \ r/min) = 1710 \ r/min$; s was incorrectly given as 0.95, though the result (1710 r/min) was a result of using $s = 0.05$.