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Abstract— We present a probabilistic model and an associ-
ated wind vector retrieval algorithm for WindSat polarimet-
ric radiometer measurements. The model describes measured
brightnesses in a given frequency channel and polarization as
a function of the wind speed and direction only; other effects,
including atmospheric and other sea surface contributions, are
not parametrized explicitly, but rather modeled as correlated ran-
dom disturbances on brightness azimuthal harmonic coefficients.
The probabilistic model leads to a simple maximum likelihood
estimator for wind speed and direction, and the performance of
this estimator is examined using matchups between WindSat and
QuikScat data. Despite the probabilistic modeling of atmospheric
and non-wind related sea-surface contributions, the estimator’s
performance is comparable to the performance achieved in other
WindSat wind vector retrievals, including the EDR 1.8.1 product.
The method’s performance is studied further through the use of
analytical estimates of retrieval performance for other radiometer
channel configurations.

Index Terms— Microwave Radiometry, Ocean Wind Vector
Estimation

I. INTRODUCTION

MEasurements of global wind vectors provide important
information for weather forecasts and scientific studies

in oceanography and climatology. Interest in using microwave
radiometers for ocean wind vector measurements has in-
creased in the past decade, because recent studies have shown
that the addition of polarimetric channels can enhance wind
direction retrieval performance. WindSat is the first space-
borne polarimetric microwave radiometer, and provides fully
polarimetric measurements in three frequency bands as well
as dual polarized measurements in two other frequencies [1];
the WindSat dataset represents the first large-scale opportunity
for the wind vector retrieval performance achievable by a
polarimetric radiometer to be assessed. Wind vector retrievals
from WindSat data have been examined in several previous
studies [2].

A key issue for retrievals of wind direction involves the
variation of observed brightnesses with the relative azimuthal
angle between the radiometer look direction and the wind
direction. Previous studies have shown that these dependencies
can be expressed in a set of sine- and cosine-functions in the
relative azimuth angle, with linearly polarized brightnesses
consisting of cosine functions, while the polarimetric chan-
nels are sine-functions. Therefore the linearly polarized and
polarimetric channels provide complementary wind direction
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signatures, so that use of both, if possible, is likely to yield
enhanced wind direction retrievals. The overall amplitude of
brightness variations with wind direction is typically around
1 K or less, so that accurate brightness measurements are
required to observe these variations.

Use of the linearly polarized channels for wind direc-
tion retrievals is complicated by the strong influence of the
atmosphere as well as other environmental parameters on
these channels. For example, at 18.7 GHz, the sensitivity of
the horizontally polarized brightness to columnar integrated
water vapor is roughly one K brightness per one mm of
integrated water vapor. Because this sensitivity to a relatively
small change in integrated water vapor is comparable to the
maximum variation with wind direction, it is very difficult to
separate atmospheric variations from wind direction effects.
While retrievals of wind direction have been performed using
only the linearly polarized channels [3], the wind direction
retrievals produced required a high degree of spatial and
temporal averaging in order to provide sufficient reduction of
atmospheric variations.

Atmospheric effects are greatly reduced in the polarimetric
channels because these channels involve differences between
brightnesses in two polarizations; because atmospheric con-
tributions are largely unpolarized, the differencing procedure
largely eliminates them. However, atmospheric attenuation as
well as the reflection of downwelling atmospheric brightness
from the sea surface remain in the polarimetric channels. A
simple algorithm representing these contributions in terms of a
“transmissivity squared” has been derived and used in previous
studies [4].

Although several investigations of wind vector retrievals
from WindSat have utilized the polarimetric channels only in
wind direction retrievals because of these facts, the WindSat
environmental data record (EDR) version 1.8.1 produced by
the Naval Research Laboratory [5]-[6] uses a physically-
based retrieval algorithm that includes all channels in the
wind direction retrieval. In particular, a model for atmospheric
effects on all channels is included in the retrieval, so that
there is some possibility that the wind direction retrieval can
make use of information from the linearly polarized channels.
However the degree to which wind direction retrievals are
benefited by inclusion of the linearly polarized channels has
not been quantified.

In this paper, the performance of an alternative retrieval
approach that neglects any explicit modeling of atmospheric
effects is investigated. The goal of the study is to compare the
algorithm’s performance with that achieved by WindSat EDR
1.8.1, in order to provide information on the degree to which
EDR 1.8.1’s attempts to explicitly model atmospheric effects
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are benefiting wind direction retrievals. It will be shown that
the proposed algorithm achieves an overall retrieval perfor-
mance that is comparable to that of the WindSat EDR 1.8.1,
suggesting that the methods used for removing atmospheric
effects in EDR 1.8.1 are providing only marginal gains in wind
vector retrieval performance. Note that the current WindSat
EDR 1.9.0 product was not available at the time the studies
of this paper were performed, and improvements in wind
vector retrieval performance for EDR 1.9.0 compared to EDR
1.8.1 have been reported [6]; future work will extend this
comparison to include EDR 1.9.0.

The proposed algorithm is based on a simple probabilistic
model that describes observed brightness azimuthal harmonic
coefficients as a multi-variate Gaussian random vector, with
the mean vector and covariance matrix of the random vec-
tor modeled only as a function of wind speed. We present
a method for estimating the mean and covariance of the
harmonic coefficients directly from brightness temperature
data, perform maximum likelihood retrievals for a subset of
WindSat observations, and compare the wind vectors retrieved
from WindSat with those from EDR 1.8.1 and from collocated
QuikScat scatterometer wind vector retrievals. In addition, it
is straight forward to derive an analytical estimate of retrieval
performance under this model; these estimates are used to
demonstrate that retrieval performance under this model de-
pends strongly on both wind speed and wind direction.

The rest of the paper is organized as follows. In Section II
we present the multivariate Gaussian model of WindSat data,
relate it to a parametric model of harmonic coefficients, and
derive the associated maximum likelihood estimator (MLE) of
wind speed and direction. Section III discusses estimation of
model parameters from collocated WindSat and QuikScat [6]
measurements. In Section IV we illustrate the performance
of the maximum likelihood estimator for WindSat measure-
ments using empirical retrieval studies and comparisons with
QuikSCAT wind retrievals as well as WindSat EDR 1.8.1. A
discussion of the algorithm’s implicit operations that reduce
atmospheric effects is provided in Section V. Analytical pre-
diction of MLE estimator performance is then discussed in
Section VI, with results from these predictions provided in
Section VII. Section VIII concludes with remarks for future
research.

II. A PROBABILISTIC MODEL FOR WINDSAT DATA

WindSat polarimetric brightness temperatures are described
in terms of vertically and horizontally polarized brightnesses
(Tv and Th) and their cross-correlations (TU and TV ) given
by:
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where Ev and Eh represent values proportional to the time
harmonic electric fields measured by the radiometer in vertical
and horizontal polarizations, respectively. These four polari-
metric channels are sensitive to φ, the relative azimuthal angle
between the wind direction and the radiometer look direction.

An analysis [7] of scattering by reflection symmetric media
shows that Tv and Th are even functions of φ, whereas TU

and TV are odd functions of φ. A truncated Fourier series
expansion of these functions yields a model for the four
polarimetric channels parametrized in terms of the relative
wind direction as:

Tv = Tv0(W ) + Tv1(W ) cos(φ) + Tv2(W ) cos(2φ)

Th = Th0(W ) + Th1(W ) cos(φ) + Th2(W ) cos(2φ)

TU = TU1(W ) sin(φ) + TU2(W ) sin(2φ)

TV = TV 1(W ) sin(φ) + TV 2(W ) sin(2φ) (2)

The harmonic coefficients (i.e. Tv0, Tv1, etc.) depend in
general on incidence angle, frequency, wind-speed W , and
other atmospheric and surface properties, but are modeled as
functions of the windspeed only.

The WindSat radiometer measures brightnesses in five
frequency bands: 6.8, 10.7, 18.7, 23.8 and 37.0 GHz. The
10.7, 18.7 and 37.0 GHz channels are fully polarimetric, while
the 6.8 and 23.8 GHz channels measure only Tv and Th.
A single WindSat measurement thus contains 16 brightness
temperatures:

T = [T 1
v , T 1

h , T 2
v , . . . , T 5

v , T 5
h , T 5

U , T 5
V ]T (3)

where the superscript T indicates the transpose operator, and
the numeric superscripts serve as indices to to the five WindSat
frequency channels in order of increasing frequency. The
second order harmonic model for WindSat measurements can
now be written as:

T = B(φ)H, (4)

where B(φ) denotes a 16 × 48 matrix of basis functions:
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and the vector H denotes the harmonic coefficients:

H = [T 1
v0, T

1
v1, . . . , T

5
V 0, T

5
V 1, T

5
V 2] (5)

Although ideally the polarimetric channels do not contain a
zeroth azimuthal harmonic term (see equation (2)), we have
included a bias term for the TU and TV channels to allow for
instrumental measurement errors that can produce such terms.
This results in 48 functions of windspeed contained within the
vector H.

The harmonic coefficient vector H is now described in
terms of a random function of the wind speed only. Again
the brightness temperatures measured by the space-borne
radiometer are subject to the influence of the atmosphere
and other surface properties as well as instrument noise, but
we treat these parameters as nuisance parameters and model
their effects on H probabilistically. The effect of azimuth
and polar angle variations across the WindSat swath is also
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not explicitly modeled. Specifically we model H as a mul-
tivariate Gaussian random vector with mean vector µH(W )
and covariance matrix ΣH(W ). The mean vector µH(W )
describes the mean harmonic coefficients as a function of
windspeed, while the covariance matrix models any errors
and correlations among frequency channels or polarizations
caused by atmospheric and other effects. Since the effect of
the atmosphere on the brightness temperatures is in general a
function of the windspeed, the covariance matrix is modeled as
a function of the windspeed as well. While the contributions
of the atmosphere and surface parameters to measured data
may not be perfectly modeled by the Gaussian correlated
noise assumption, analytical retrieval performance estimates
derived based on the Gaussian assumption are expected to
be a conservative estimate for data distributions with the
same second order statistics [8] (i.e. with a better fit to the
distribution of atmospheric and surface parameter effects on
brightnesses.)

The normality assumption of the harmonic coefficients
yields the following likelihood function for the brightness
temperatures:

f(T|φ,W ) = (2π)−16/2|ΣT (φ,W )|−1/2 (6)

e−{0.5(T−µT (φ,W ))T ΣT (φ,W )−1(T−µT (φ,W ))},

with

µT (φ,W ) = B(φ)µH(W ) (7)

ΣT (φ,W ) = B(φ)ΣH(W )BT (φ). (8)

Given estimates of µT (φ,W ) and ΣT (φ,W ), we can form
the maximum likelihood estimator (MLE) of wind speed and
direction:

[φ̂, Ŵ ] = arg min
W,φ

[

ln |ΣT (φ,W )|+

{

(T − µT (φ,W ))T ΣT (φ,W )−1(T − µT (φ,W ))
}]

(9)

Use of the MLE requires a two dimensional search over a
nonlinear surface in φ and W . Typically the log likelihood
surface contains multiple local minima leading to possible
ambiguities in the wind direction retrieval.

III. ESTIMATION OF MODEL PARAMETERS FROM

WINDSAT DATA

WindSat data release SDR (sensor data record) 1.8.1 con-
tains six months of brightness temperature data from Septem-
ber 2003 to February 2004, as well as collocated data from the
QuikSCAT Scatterometer. See [6] for additional information
on the WindSat and QuikSCAT collocation procedure. In our
parameter estimation step, we used the at-sea data collected
over the six month period for which both WindSat and
QuikSCAT observations were available (a total of around 56
million observations).

In order to utilize the azimuthal harmonic series of the
model, it is required to determine the matrices µH(W ) and
ΣH(W ) from the dataset, and then to find the matrices
µT (φ,W ) and ΣT (φ,W ) from µH(W ) and ΣH(W ) through
equations (7) and (8). Because the harmonic coefficients are

not directly observed by the radiometer, an iterative approach
for estimating µH(W ) and ΣH(W ) from the available bright-
ness temperatures was developed.

The parameter estimation algorithm first thresholds
and discards all data outside the ellipsoid defined by
(T−µ)T Σ−1(T−µ) ≤ 40, where µ and Σ are the empirical
mean and covariance of the entire brightness temperature data
set. Flagged data points due to aft scan, warm load anomaly,
radio frequency interference, land contamination, inland lakes
and/or rain [6] are also discarded from the training data.
Brightness temperature data is then segmented into wind
speed bins of width 1 meters/sec in the interval [1, 15] m/sec
to define a dataset T

W
i ; here i refers to an index to the points

contained within a specific bin. This dataset is further divided
into wind direction bins of width 5 degrees resulting in a set
of brightness temperatures T

φ,W
i . An iterative least squares

(LS) procedure is then applied, as follows:

1) Set k = 1; for all wind speed bins, initialize Σ0
H(W )

as an identity matrix, and compute Σ0
T (φ,W ) as

B(φ)Σ0
H(W )B(φ)T

2) For each wind speed bin, µk
H(W ) is computed using a

LS fitting procedure:

µk
H(W ) = arg min

µ
∑

i

(TW
i − B(φ)µ)T

[

Σk−1
T (φ,W )

]−1

(TW
i − B(φ)µ)

The value of φ used in the above is specified by the
collocated data; no discretization of φ is involved.
µk

T (φ,W ) is then found as B(φ)µk
H(W ).

3) For each bin centered at W and φ, compute the sample
covariance matrix:

Sk(φ,W ) =
1

N − 1
∑

i

(Tφ,W
i − µk

T (φ,W ))(Tφ,W
i − µk

T (φ,W ))T

4) For each wind speed bin, a second LS procedure is now
used to find

Σk
H(W ) =

arg min
Σ

∑

φ

‖Sk(φ,W ) − B(φi)ΣB(φi)
T ‖2

Σk
T (φ,W ) is then computed as B(φ)Σk

H(W )B(φ)T

5) Set k = k + 1 and repeat steps 2-5 until the change in
the mean vector µH is less than 0.1 %.

The least squares problem in Step 4 seemingly involves the
determination of 24 by 49 coefficients, due to the symmetry of
the covariance matrix. However the solution for ΣH(W ) is not
unique, because the brightness temperature observations do not
yield an identifiable system of equations for all the correlations
between the harmonic coefficients. However, the resulting
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covariance matrix estimate ΣT (φ,W ) = B(φ)Σk
H(W )B(φ)T

is unique and is the only quantity that is required for ML wind
vector estimation. Note the least square fit in Step 4 also is
not guaranteed to yield a positive definite covariance matrix
ΣT (φ,W ) for every value of φ. As a remedy we find the
closest positive definite matrix to the estimated ΣT (φ,W ) by
raising all eigenvalues which are less than ε to ε, where ε is an
estimate for the smallest eigenvalue of the covariance matrix.
In this study we used a value of ε = 0.025 Kelvin squared.
Note due to the small number of parameters to be estimated in
this model, it was not deemed necessary to separate the dataset
into training and testing subsets, and the entire dataset was
utilized in the estimation of µH and ΣH described above. This
is reasonable because the number of brightness temperature
observations utilized in the parameter estimation procedure
vastly exceed the number of parameters to be estimated, so
that no “tuning” to a particular brightness observation was
involved. Further confirmation was provided by tests using
only small training data subsets to estimate model parameters;
results showed negligible differences with those obtained using
the entire dataset.

Values of µH(W ) and ΣT (φ,W ) obtained in this process
are discussed further in Section V.

IV. RETRIEVAL RESULTS

We tested the performance of the maximum likelihood
windspeed estimator on 130,000 randomly selected brightness
temperatures uniformly sampled over the windspeeds of W ∈
[2, 14] m/sec as reported by QuikSCAT. A scatter plot of
retrieved windspeeds versus those obtained from QuikSCAT is
provided in Figure 1 (a), which contains all results computed
in the study, for all wind direction values. The mean difference
(or bias) and root mean square difference between QuikSCAT
and retrieved WindSat wind speeds is plotted in Figure 1 (b),
together with the results of the EDR 1.8.1 retrieval algorithm
for the same set of points. We observe that the two algorithms
perform comparably with rms errors in the range 0.7 to 1.2
m/sec that depend weakly on windspeed. The slightly better
performance of the ML estimator at high wind speeds is likely
due to the fact that ML retrievals were constrained to be in
the interval [1, 15] m/sec, while the EDR estimator allows
windspeed estimates in excess of 15 m/sec. The bias for
both algorithms is very similar, ranges between -0.25 to 0.4
m/sec, and plays a role in the increased rms error at higher
wind speeds. Also included in Figure 1 (b) is the analytically
estimated rms error (marked “ML predicted”), to be described
further in Section VI.

Wind direction retrievals are strongly influenced by ambi-
guity issues. To illustrate these effects, the likelihood surface
for two sample WindSat vectors is displayed in Figure 2: the
QuickSCAT data specifies the wind speed and direction for
these vectors as W = 9.8 m/sec and φ = 138.7 degrees
and W = 6.8 and φ = 202.7 degrees, respectively. We
observe multiple local minima (dark regions in the colored
figures) with the global minimum at (9.5 m/sec, 131 deg)
and (6.5 m/sec, 287 deg) in each case. One dimensional cuts
at the true wind speed and direction given for each case in

Figure 3 reveal the local curvature of the likelihood surface
which strongly influences the retrieval performance. In the
first case, the global minimum value is in agreement with the
QuickSCAT wind direction, while the second case illustrates
selection of an ambiguity in the wind direction retrieval (i.e.
global minimum is not the correct value, while an alternate
local minimum yields a better estimation).

Figure 4 (a) is a plot of the difference between wind di-
rections retrieved by the current algorithm and those obtained
by QuikSCAT, for a set of 75,000 randomly selected points
in the windspeed W interval [11.5, 12.5] m/sec. Evidence of
ambiguity selection effects is observed in the results, indicated
by the semi-linear trends of the outlier data points. An analysis
of these points was performed, and results confirmed that the
majority had a minimum in the MLE search closer to the
QuickSCAT value. The process was repeated using 10,000
points in each of 13 1 m/s wide wind speed bins centered
at 2, 3, · · · , 14 m/sec, and Figure 4 (b) plots the resulting rms
wind direction differences, along with those achieved by EDR
1.8.1 for the same set of points. RMS differences are plotted
both for the first rank (i.e. MLE global minimum value) as
well as for the closest (i.e. the MLE local minimum found
closest to the QuikSCAT retrieved wind direction) ambiguities.
We observe that the proposed algorithm in general displays
performance very similar to that achieved by EDR 1.8.1. For
the first rank estimates, the MLE algorithm outperforms EDR
1.8.1 by about 5 degrees for wind speeds less than 10 m/sec,
while performance is more similar at higher wind speeds. EDR
1.8.1 however produces better closest ambiguity retrievals for
windspeeds less than 10 m/sec. This is likely due to the fact
that the EDR 1.8.1 retrieval algorithm always records four
ambiguities (in some cases based on the global minimum
shifted by 90 or 180 degrees), while the current algorithm uses
only the number of detected local minima in the likelihood
surface, often less than four. Again included in Figure 4 (b) is
the analytically predicted rms error (marked ‘ML predicted”),
to be described further in Section VI. Figure 5 is a plot of the
skill (i.e. the percent of time that the first rank ambiguity is
the closest ambiguity) for both the current algorithm and for
EDR 1.8.1, versus windspeed. The MLE estimate is found to
achieve a higher skill for the first rank ambiguity compared
to EDR 1.8.1; note EDR 1.8.1 however also has a “selected”
ambiguity (skill not shown) that results following a median
filtering operation.

To provide a spatial example of the proposed retrieval
algorithm, Figure 6 plots wind vectors retrieved on September
14th, 2003 at 10:45 AM UTC in the Caribbean Sea north of
Venezuela (region centered at latitude 14N, longitude 71W)
using the MLE method (plot a, first rank ambiguities), the first
rank retrieval from EDR 1.8.1 (plot b), the selected ambiguity
from EDR 1.8.1 (the ambiguity chosen following a median
filtering process [5]), and wind vectors from QuikScat (plot
d). The QuikScat image shows a relatively smooth wind field
with a mean wind speed of 7.7 m/sec and standard variation
of 1.3 m/sec. MLE first rank results are very similar to those
of the QuikScat image, with a mean retrieved wind speed
of 7.4 m/sec and standard deviation of 1.3 m/sec, and show
only slight evidence of ambiguity selection issues. Ambiguity
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selection issues are more pronounced in the EDR 1.8.1 first
rank image, but are reduced following the ambiguity selection
process. Overall this example demonstrates that the proposed
algorithm can provide reasonable spatial wind field patterns.

While the lesser accuracy achieved by the current algorithm
in the closest ambiguity results could likely be mitigated by an
inclusion of a larger number of ambiguities in the retrieval pro-
cess, or else through the application of a spatial filter in post-
processing as in the EDR 1.8.1 selected ambiguity, we believe
the key result is observed in the first rank ambiguity results,
which typically show that the current algorithm is achieving
less error than EDR 1.8.1, even though no explicit modeling
of the atmosphere is performed. These results suggest that
EDR 1.8.1’s attempts to model atmospheric effects on wind
direction retrievals may be having only minimal impact on
overall wind direction retrieval performance. The next section
examines the algorithm’s operation in greater detail in an
attempt to explain these properties.

V. EXAMINATION OF THE RETRIEVAL ALGORITHM

In the minimization process of the maximum likelihood
estimation (equation (9)) the dominant factor to be minimized
is the product
{

(T − µT (φ,W ))T ΣT (φ,W )−1(T − µT (φ,W ))
}

(10)

If a diagonalization of ΣT (φ,W )−1 is performed, this product
can be interpreted as a sum of the amplitudes (i.e. a result of
a vector dot product with itself) of a set of vectors. Each of
these vectors is obtained through projection of the the observed
brightness vector T along an eigenvector of ΣT (φ,W )−1,
combined with a scaling of this eigenvector by the square root
of the associated eigenvalue of ΣT (φ,W ). Since ΣT (φ,W )
is a positive definite matrix, the diagonalization of ΣT (φ,W )
is directly related to that of ΣT (φ,W )−1. This is a standard
principal component analysis, and enables some interpretation
of the operation of the retrieval algorithm to be obtained.

Note that the ΣT (W,φ) in this process should be inter-
preted as the covariance among channels averaged over all
environmental conditions with the exception of windvector
for the entire six month period. Due to the strong effect of
the atmosphere on the linearly polarized channels, it is to
be expected that ΣT (W,φ) will have large entries for cross-
or self-covariances involving linearly polarized channels, and
smaller entries for cross- or self-covariances involving only
polarimetric channels. Analysis of the obtained ΣT (W,φ)
matrices shows this to be true, and also indicates that cross-
covariances between linear and polarimetric channels are
small.

Due to these properties, the covariance matrix can be well
approximated by the block matrix form:

ΣT (W,φ) = B(φ)ΣH(W )B(φ)T

≈

[

B
hvΣhv

H (Bhv)T 0
0 B

UV ΣUV
H (BUV )T

]

(11)

Use of this block matrix form as opposed to the original
ΣT (W,φ) results in only minor changes in retrieval perfor-
mance; for example, tests show an wind direction RMS error

of 28 degrees for the block matrix form compared to the 26
degrees with the full covariance matrix at windspeed 12 m/sec.
This block matrix form is useful in interpreting the algorithm
because the block matrix produces separate eigenvectors for
the linearly polarized and polarimetric channels.

Tables one and two report components of the principal
eigenvectors of (Σhv

T )−1 and (ΣUV
T )−1 averaged over φ and

W , listed as Tv, Th and U, V pairs in the order of increasing
frequency. The associated eigenvalues are 1.8 times smaller
for the linearly polarized than for the polarimetric eigenvector,
showing that the polarimetric channels have less variance, and
are therefore emphasized in the retrieval process. This is not
surprising given the far larger influence of the atmosphere
and other parameters on the linearly polarized channels as
discussed previously. The effect of emphasizing the TU and TV

channels in the likelihood function will be shown in Section
VI to influence the dependency of wind direction retrieval
accuracy on wind direction. The principal eigenvector of ΣUV

T

puts non-trivial weights on the U, V channels at 18.7 GHz as
well as the V channels at 10.7 GHz. and 37.0 GHz.

It is interesting to note however that the eigenvalue asso-
ciated with the linear channels, while smaller than that of
the polarimetric channels, remains appreciable, even given
the increased atmospheric effects on these channels, so that
linear polarizations remain utilized to some degree in the wind
direction retrieval process. The principal eigenvector of Σhv

T

shows non-trivial weights on the 10.7, 18.7, and 37.0 GHz
channels, and the weights placed on the Th and Tv channels at
each frequency are found generally to have opposite signs with
the vertical weight approximately twice that of the horizontal
channel in most cases. The channel combination 2Tv − Th

has been suggested by other researchers as having a reduced
sensitivity to atmospheric parameters. It appears that the esti-
mation procedure attempts to reduced atmospheric effects in a
similar manner, although the coefficient multiplying Tv when
combined with Th remains a function of the wind direction,
and channels are combined among multiple frequencies as well
in the retrieval algorithm.

6.8 10.7 18.7 23.8 37
Tv -0.03 0.38 -0.65 0.06 0.39
Th -0.05 -0.15 0.32 -0.03 -0.20

TABLE I

COMPONENTS OF THE FIRST EIGENVECTOR OF (Σhv

T
)−1 , AVERAGED

OVER φ AND W

10.7 18.7 37
U 0.05 -0.18 0.09
V 0.23 -0.54 0.75

TABLE II

COMPONENTS OF THE FIRST EIGENVECTOR OF (ΣUV

T
)−1 , AVERAGED

OVER φ AND W

With regard to the estimated mean harmonic coefficients,
µH(W ), it is clear that atmospheric effects will produce
a strong effect on the linearly polarized channels, so that
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reasonable harmonic coefficients are very difficult to obtain
in the estimation process. In particular, estimation of wind
direction variations in these channels is strongly affected by
the presence of geophysical correlations between water vapor
and wind speed or relative wind direction. The latter is possible
because relative wind direction is strongly correlated to abso-
lute wind direction due to the near North-South orientation of
the WindSat look direction.

The use of the linearly polarized channels in the retrieval
algorithm however can be clarified by examining the azimuthal
harmonic coefficients of the composite channel created using
the principal eigenvector weighting of the linearly polarized
channels at multiple frequencies. Figure 7 is a plot of the
composite channel’s first and second azimuthal harmonic
coefficients as a function of windspeed, and shows typical
variations that would be expected for wind direction effects,
including small values at low wind speeds. These results
indicate that the retrieval algorithm is compensating atmo-
spheric effects reasonably, even though no explicit atmospheric
modeling was performed. For completeness, first and second
mean harmonic coefficients for the third and fourth Stokes
parameters are plotted in Figure 8, and also appear consistent
with expectations without any further treatment, due to the
greatly reduced influence of the atmosphere on these channels.

VI. ANALYTICAL PREDICTION OF THE PROPOSED WIND

VECTOR ESTIMATOR’S PERFORMANCE

Maximum likelihood estimators have been widely used in
previous wind vector estimation studies [9]. An extensive
theory of maximum likelihood estimation is available; it has
been shown that such estimators are consistent and asymptot-
ically efficient, i.e. the estimate converges to the true value
of the parameter for large number of measurements with
a mean-square error that can be derived analytically. Here
we derive an analytical estimate of the performance of the
proposed wind vector estimator, again neglecting any explicit
consideration of atmospheric effects. Note that in practice,
wind vector estimation typically uses a single measurement
at each location, so that the error achieved may be larger than
that predicted analytically. Moreover, practical wind vector
retrieval algorithms can choose one of the ambiguities (other
local minima of the likelihood function), leading to larger
errors than the analytical prediction. Even given these issues,
analytically predicted error limits provide useful information
on the proposed wind vector estimator’s expected perfor-
mance, and allow effects of various system parameters to be
examined without repeated empirical MLE retrieval studies.

Let w = [W,φ] and ŵ denote the windvector and its un-
biased estimator respectively. The Cramer-Rao theorem states
that the covariance matrix of the errors is bounded by the
inverse of the Fisher Information matrix:

E
[

(w − ŵ)T (w − ŵ)
]

≥ J
−1

The Fisher Information Matrix is calculated from the likeli-
hood function as:

J = E

{

[

∂ ln f(T|φ,W )

∂w

] [

∂ ln f(T|φ,W )

∂w

]T
}

For the model given in equation (6), the Fisher Information
matrix has the following form

J =

[

JWW JWφ

JφW Jφφ

]

with

JWW = A(W,φ)B(φ)µ′

T (W ) +
1

2
tr
[

C(W,φ)2
]

Jφφ = A(W,φ)B′(φ)µT (W ) +
1

2
tr[D(W,φ)2]

JWφ = A(W,φ)B′(φ)µT (W ) +
1

2
tr [D(W,φ)C(W,φ)]

JφW = JWφ

where the prime symbol indicates derivative of a function with
respect to its argument, the tr operator indicates the trace of a
matrix, and

A(W,φ) = [B(φ)µ′

T (W )]
T

Σ−1
T (φ,W )

C(W,φ) = Σ−1
T (φ,W )B(φ)Σ′

H(W )B(φ)T

D(W,φ) = Σ−1
T (φ,W )

[

B
′(φ)ΣH(W )B(φ)T

+ B(φ)ΣH(W )B′(φ)T
]

(12)

In particular the mean square errors of the wind speed and
the wind vector estimates are bounded by:

E
[

(W − Ŵ )2
]

≥

(

JWW −
J

2
Wφ

Jφφ

)

−1

(13)

E
[

(φ − φ̂)2
]

≥

(

Jφφ −
J

2
Wφ

JWW

)

−1

(14)

The form of the error bounds obtained above clearly depends
on both wind speed and direction for both the wind speed and
direction estimators. These variations are examined in detail
in the next section.

VII. RESULTS OF ANALYTICAL PERFORMANCE

PREDICTIONS

Given the obtained values of the mean vector µT (φ,W ) and
the covariance matrix ΣT (φ,W ), analytical error estimates are
evaluated from equations (13) and (14). In order to calculate
the required derivatives µ′

H(W ), a cubic polynomial is fit
to the harmonic coefficients. The contribution of Σ′

H(W ) is
found to be negligible compared to the other terms.

Figure 9 illustrates analytically predicted errors in wind
speed estimation as a function of the wind speed for φ =
0, 45, ..., 180 degrees. The wind speed estimation performance
is observed to be relatively insensitive to windspeed, with a
root mean square error ranging from 0.7 to 1.4 meters/sec
over the range of wind speeds considered. The wind speed
estimator performance shows only a weak dependence on the
wind direction φ. Note the similar wind speed estimation
performance obtained at φ = 0 and φ = 180 degrees compared
to other wind directions shows that information from the
horizontally and vertically polarized channels is being utilized
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in the retrieval process, as discussed in Section V, since the
polarimetric channels contain no wind speed information at
these angles. An average of these curves over wind direction
was included in Figure 1 (b).

Figure 10 plots predicted wind direction estimation errors
for the proposed model as a function of wind speed and
direction. We observe that with increasing wind speed the
accuracy of the wind direction estimates improves, to within
approximately 10 degrees at all wind directions for W = 13
m/sec. We also observe that the wind direction estimator
performance is not uniform over the set of relative wind
directions. A similar curve averaged over wind direction is
included in Figure 4 (b) versus windspeed, and shows that the
predicted estimator performance is reasonably close to that
achieved by the closest ambiguity in the empirical MLE wind
direction retrieval. The first rank empirically-obtained error
approaches the predicted value only at higher windspeeds,
presumably due to a reduction in ambiguity selection errors
as the wind direction influence on brightnesses increases.

To assist in interpreting the predicted wind direction es-
timation errors and their dependence on wind direction, a
simple model of wind direction estimation from the TU and
TV channels at a single frequency can be used. Specifically
we consider the model:

TU = a1 sin(φ) + a2 sin(2φ) + nU

TV = b1 sin(φ) + b2 sin(2φ) + nV

Here the coefficients a1, a2, b1, b2 are assumed to be fixed
and known parameters, while nU , nV are Gaussian zero mean
uncorrelated random noise with known variance σ2. The
analytically predicted error for this simple model is given by:

E
[

(φ − φ̂)2
]

≤ σ2
(

(a1 cos(φ) + 2a2 cos(2φ))2

+(b1 cos(φ) + 2b2 cos(2φ))2
)−1

Figure 11 plots these predicted errors for a1 = 1.0, a2 =
−0.7, b1 = −0.1, b2 = 5, and σ = 0.1 (all in Kelvin); these
values are somewhat similar to those observed in Figure 8 at
18.7 GHz near W = 13 m/sec. We observe that this simple
model appears to capture many of the features of the results
in Figure 10 for the complete model of WindSat data.

Because predicted errors have been shown to match rea-
sonably those obtained in empirical MLE retrievals, analytical
predictions can be utilized to examine other retrieval processes.
As an example, the effect of excluding various channels in
the proposed model for wind vector estimation was studied.
The results reveal that any two of the three fully polarimetric
frequency bands provide competitive wind vector estimation
performance. Figure 12 for example illustrates predicted errors
for a system using only the 10.7 and 37 GHz channels;
windspeed retrieval accuracy is degraded only slightly while
wind direction estimation shows larger variations in the errors
versus wind direction along with only slightly increased mean
errors.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has presented a simple stochastic model that re-
lates WindSat measured brightness temperatures to windspeed

and direction, under the assumption that atmospheric and envi-
ronmental effects other than windspeed need not be explicitly
modeled. The required mean and covariance matrices of the
model were evaluated using a subset of co-located WindSat
and QuickSCAT measurements. The stochastic model yielded
a maximum likelihood estimator for wind vector parameters;
we characterized the retrieval performance of this maximum
likelihood estimator and showed overall first-rank ambiguity
errors compared to QuickSCAT wind vectors comparable to
those achieved by WindSat EDR 1.8.1. Closest ambiguity
errors were larger than those of WindSAT EDR 1.8.1, but
the larger number of EDR 1.8.1 ambiguities retained likely
contributes to this difference. An analysis was performed
to show that the proposed model still attempted to remove
atmospheric effects in the linearly polarized channels through
a weighting similar to the 2Tv − Th algorithm recommended
by other investigators. Analytical predictions of the proposed
algorithm’s retrieval performance were also explored, and
showed in general that wind direction retrieval errors should
be expected to depend on the relative wind direction as well
as the wind speed.

Future work will extend the comparison to include the
more recent EDR 1.9.0, as well as consider generalizing the
model to make the effect of atmospheric and environmental
parameters explicit, by modeling the harmonic coefficients as
functions of windspeed as well as column water vapor (V ),
cloud liquid water (L), and surface temperature (TS). It is
interesting to note however that the retrievals obtained here
showed reasonable wind speed and wind direction estimation
performance while such effects were neglected. Nevertheless,
generalization to include these effects would likely be espe-
cially valuable in the analysis of brightness temperatures over
multiple pixels, because the effects of V ,L, and TS on the
brightness temperatures are likely to be spatially correlated.
Such an approach could potentially reduce remaining ambigu-
ity problems in wind direction estimation.
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Fig. 1. Windspeed estimation performance of the MLE
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Fig. 7. First and Second Harmonic of the wind direction retrieved from the linear combination of Th and Tv polarizations, as a function of windspeed.
Solid curves are a polynomial fit to the obtained data (symbols).
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(a) E[TU1] (b) E[TV 1]

(c) E[TU2] (d) E[TV 2]

Fig. 8. Elements of the model function parameter vector µH in TU and TV polarizations, as a function of windspeed. Solid curves are a polynomial fit to
the obtained data (symbols).
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Fig. 9. Predicted errors in wind speed estimation for proposed algorithm, for φ = 0, 45, 90, 135 and 180 degrees
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Fig. 10. Predicted errors in wind direction estimation for proposed algorithm, at W = 7, 10, and 13 m/sec
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Fig. 11. Predicted errors in wind direction estimation for a simple model of TU and TV channels at a single frequency band
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Fig. 12. Wind-vector estimation performance with 10.7 and 37 GHz Channels


