Numerical Studies of Backscattering from Time Evolving Sea Surfaces: Comparison of Hydrodynamic Models

J. T. Johnson and G. R. Baker
Dept. of Electrical Engineering/Mathematics
The Ohio State University

J. V. Toporkov
SFA, Inc. and Naval Research Laboratory

G. S. Brown
Dept. of Electrical Engineering
Virginia Tech

Acknowledgment: H. Kim (OSU) and Maui High Performance Computing Center

IGARSS 2000
July 28th, 2000
MOTIVATION

- Time evolving sea surfaces cause backscattered returns to be spread into a Doppler spectrum; affects remote sensing and imaging radars.

- Bragg scattering and linear hydrodynamics predicts a single Doppler frequency shift; composite models broaden this.

- Non-linear hydrodynamic effects can produce more Doppler features; empirical models developed to describe.

- Numerical electromagnetic and hydrodynamic models are improving to make studies of Doppler spectra feasible: Monte Carlo simulation with time evolving surfaces.

- Comparing scattering results under differing hydrodynamic models can clarify differences between models and important scattering features.

- Results with differing hydrodynamic (Creamer, Watson-West, Vortex Sheet) and scattering models (MOM, SSA) compared.

- Study limited to low wind speeds at present.
OUTLINE

- Review of hydrodynamic models:
 - Improved Linear Model (Creamer et al, J. Fluid Mech., 1989)
 - Vortex Sheet (Baker et al, J. Fluid Mech., 1982)

- Surface comparisons

- Review of scattering models

- Doppler results

- Conclusion
HYDRODYNAMIC MODELS

- Consider a two-dimensional incompressible, irrotational fluid; equations of surface motion (Eulerian) are then

\[
\frac{\partial h}{\partial t} = \frac{\partial \phi}{\partial z} \left[1 + \left(\frac{\partial h}{\partial x} \right)^2 \right] - \frac{\partial h}{\partial x} \frac{\partial \phi}{\partial x}
\]

\[
\frac{\partial \phi}{\partial t} = -gh - \frac{1}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \phi}{\partial z} \right)^2 \left[1 + \left(\frac{\partial h}{\partial x} \right)^2 \right]
\]

where \(h \) is the surface height, \(\phi \) is the velocity potential evaluated at the surface, and \(g \) is the acceleration of gravity.

- Equations are a canonical pair derivable from a single Hamiltonian.

- Some methods can include surface tension, as well as approximate viscosity and wind forcing terms.

- A system of non-linear PDE's: many potential problems in time-stepping solutions! \(\frac{\partial \phi}{\partial z} \) also a problem since \(\phi \) is known only on the surface.
LINEAR AND IMPROVED LINEAR MODELS

- If non-linear terms are eliminated in equations of motion, surface waves become independent of one another and evolve via the linear dispersion relation.

- Evolution is analytic: numerical time stepping not required.

- Creamer et al. use a canonical transformation of the equations of motion to eliminate the leading non-linear term for gravity waves.

- Equations in new variables are approximated as linear: numerical time-stepping not required.

- Transform back to physical surface is an $O(N^2)$ operation.

- Reproduces lowest order non-linear effects, “does well” at higher orders but cannot capture any surface horizontal asymmetry.

- Method previously applied in Doppler spectrum studies (Toporkov et al., IEEE TGRS, 2000).
WATSON-WEST MODEL

- Based on numerically time stepping non-linear equations of motion: predictor-corrector approach used

- Fixed, uniformly spaced grid: cannot capture overturning features

- Watson-West expansion comes in expression for $\frac{\partial \phi}{\partial z}$: expanded in a series in surface slope

- Series terms obtained from FFT operations on h and ϕ; involve higher order powers. Method is $O(N \log_2 N)$

- High order products in ϕ limit spectral content: level of oversampling needed increases with number of series terms (order of method)

- Method breaks down if slopes become too large: wind speed ≤ 2 m/s (Pierson-Moskowitz initial surface) for current study

- Initial “ramp-up” of non-linear terms used in some cases to transition between linear and non-linear dynamics
VORTEX SHEET METHOD

- Based on a Lagrangian formulation of equations of motion; predictor-corrector approach also used for time stepping.

- Grid points not fixed or uniform: can capture more detailed surface features.

- Equations in terms of dipole source on interface which produces velocity potential; no approximations to dynamics.

- Integral equation for dipole source inverted iteratively: method is $O(N^2)$.

- Current implementation limits spectral content: minimum factor of 2 oversampling required.

- Only initial results at wind speed 0.5 m/s currently available; used only in hydrodynamic model comparison.
COMPARISON OF SURFACES

- Models run for 5.12 seconds: final profiles compared for one realization. Below is a 3.68 m, 0.5 m/s case.

![Graphs comparing different surface models](image)

- All methods similar, but Vortex method closest to Watson-West, Creamer only slightly deviated from linear at 0.5 m/s.
COMPARISON OF SURFACES

- Profiles from three methods compared for 117.81 m, 2 m/s case

![Graph showing surface profiles](image)

- Methods again differ; Creamer shows some vertical but no horizontal deviation from linear profile

- Important scattering features can be difficult to resolve in these plots
BRAGG WAVE DYNAMICS

- Time variation of single surface Fourier component compared

![Graph 1: 0.5 m/s, 40 degrees]

- Linear model has no Bragg amplitude variations; other models show similar variations

![Graph 2: 2 m/s, 80 degrees]

- Vortex model most closely matched by Watson-West
SURFACE STATISTICS

- 117.81 m Linear, Creamer, and Watson-West surfaces at 2 m/s

- Height histograms all approximately Gaussian; curvature spectra for 82, 96, and 89 realizations compared below

- Surfaces appear statistically similar, but dynamics are distinct
SCATTERING MODELS

- Scattering calculated at 1.3 GHz ($\lambda = 23$ cm) for impedance surfaces ($\epsilon = 76 + i53$) under tapered wave illumination

- Numerical scattering model is an iterative method of moments accelerated through a spectral technique

- Results compared with those from the zeroth and first order small slope approximation (SSA)

- Zeroth order SSA identical to “extended Kirchhoff approach” for backscattering; first order provides a polarization sensitive correction

- Computing times for numerical scattering and hydrodynamic models comparable

- Low wind speed surfaces are not very rough in terms of λ: Bragg wave dynamics typically of most importance
AVERAGE BACKSCATTERING CROSS SECTIONS

- Average backscattering cross sections: 0, 40, 80 degrees

- Average scattering cross sections appear similar; differences at 80 degrees consistent with surface curvature spectra

- Backscattered field histograms appear to follow Rayleigh statistics well
DOPPLER SPECTRUM RESULTS

- MOM results at 2 m/s, three hydro methods: VV at 40° and 80°

![Graph showing normalized Doppler spectrum amplitude for 40° and 80° angles]

- Watson-West method produces broader spectrum; source of reverse peak unclear
INFLUENCE OF POLARIZATION

- MOM results at 2 m/s, Watson-West: 40° and 80°

- VV and HH returns have distinct Doppler spectra, particularly at 80°
INFLUENCE OF SCATTERING MODEL

- Watson-West: 80 degrees

- First order SSA provides good prediction, some inaccuracies in HH
IMPORTANCE OF BRAGG WAVE DYNAMICS

- Watson-West: VV Pol vs. PSD of Bragg Fourier Component

- Combining profile and scattering data allows detailed studies of scattering effects
CONCLUSIONS

- Doppler simulations combining electromagnetic and hydrodynamic models are feasible.

- Surface and field statistics appear similar for differing hydrodynamic models, but dynamics are distinct.

- Watson-West model appears to capture more hydrodynamic effects; easy to include surface tension and approximate forcing terms.

- Watson-West method however breaks down as roughness increases.

- Vortex sheet method potentially can capture some breaking wave effects: investigations continuing.

- First order SSA matches numerical model results well for cases considered; some problems at 80 degrees.

- Combined surface and scattering studies can help to clarify sea surface scattering mechanisms.