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Abstract— A new model for rough surface scattering is pre-
sented; the model has a form similar to the Small Slope
Approximation (SSA) of Voronovich, but with modified kernel
functions. As with the SSA, when including two field series terms
in the solution the model matches the first and second order
small perturbation method in the low frequency limit. Unlike
the SSA, the model also achieves agreement with the Kirchhoff
Approximation in the high frequency limit even for penetrable
surfaces. It is also shown that the new model achieves first order
tilt invariance for first order SPM predictions. The new model
is derived based on a previous extension of the local curvature
approximation (LCA) to third order; the new model is termed
the “reduced local curvature approximation of third order”
(RLCA3) for this reason. Sample results for scattering from
dielectric surfaces are presented to illustrate the new model and
its relationship with other theories of rough surface scattering.

Index Terms— Rough Surface Scattering

I. INTRODUCTION

RECENT years have seen the development of an im-
pressive number of theories of rough surface scattering;

many of these theories attempt to bridge between the classical
Kirchhoff Approach (KA, the high frequency limit) and the
small perturbation method (SPM, the low frequency limit).
Reference [1] provides a detailed review of many of these
models.

The small slope approximation (SSA) of Voronovich [2]-[4]
has been shown to be an effective model for surface scattering
in several studies. The SSA theory expresses scattered fields
as a series in surface “quasi-slope”; a true slope dependence
is obtained only in the high frequency limit. The first field
series term has a form similar to the field predictions of the
Kirchhoff approximation (KA), although the Kirchhoff inte-
gration is multiplied by a modified function of the incidence
and scattering angles. The second field series term includes
an additional Fourier integration over the surface Fourier
transform multiplied by an SSA kernel function. While this
additional integration complicates computation of the two-term
SSA field solution, the computational costs are manageable
in many cases, and several studies (for example, [5]) have
reported results using both terms. Evaluations of the third or
higher order SSA field series terms have yet to be reported.

The SSA model is attractive because it is derived to
automatically satisfy several fundamental properties, includ-
ing horizontal and vertical shift invariance, reciprocity, and
compliance with the SPM up to second order when both
field series terms are included. It has also been shown that
the SSA achieves “tilt invariance” in the first order SPM
limit to first order in surface tilt angle [6]; this is attractive
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for remote sensing applications because it implies that the
SSA theory should approximate the “two-scale” or composite
surface model in sea scattering studies.

While references [2]-[4] also report that the SSA model
with two field series terms achieves agreement with the Kirch-
hoff approximation in the high frequency limit, the surface
boundary conditions considered in the references included
only the Dirichlet, Neumann, and perfectly conducting cases
(i.e. impenetrable boundaries). Recent studies [5], [7] have
shown that the SSA model fails to achieve agreement with the
KA when penetrable surfaces are considered, with significant
errors observed particularly in vertical polarization.

An alternative form of the SSA called the “local curvature
approximation” (LCA) has also been developed in recent years
[8]. The LCA is functionally identical to the SSA, but uses
the KA as the first field series term combined with a modified
kernel function in the second field series term. Reference [8]
presented both these field series terms, and demonstrated that
the two term theory (LCA2) could achieve agreement with the
SPM1 (including tilt invariance to first order in surface tilt) as
well as the KA. However, the model did not achieve agreement
with the SPM2. It has been shown that this is a particular
limitation in evaluating cross-polarized backscattering, due to
the strong influence of the second order SPM kernel for this
polarization [9].

In reference [9], the original LCA model was modified
to improve its tilt invariance properties, and to extend the
theory to include a third field series term. The resulting LCA3
model achieved compliance with KA, SPM1, and SPM2,
with the latter two limits reached regardless of the tilt angle
to a tilted frame of reference. Inclusion of the third field
series term is required in order to achieve any of the SPM2
limit; because this third field series term requires yet another
Fourier integration beyond that of the second field series term,
computational complexity limits use of this method in most
practical applications. When only two field series terms are
included, the SPM2 limit is not reached, but SPM1 is reached
to arbitrary order in slope for a tilted frame of reference. In
order to achieve the SPM2 limit when including only two field
series terms, the requirement that the model reach SPM1 to
arbitrary order in surface tilt must be relaxed.

In this paper, a “reduced” version of the LCA3 theory
is presented that achieves the KA, SPM1, and SPM2 limits
while requiring use of only two field series terms. The
theory retains tilt invariance to first order in surface tilt for
the SPM1 limit. Due to these properties, the theory should
have reasonably wide applicability to rough surface scattering
problems of interest in remote sensing. The new model is
called the “reduced local curvature approximation of third
order” (RLCA3). The next section provides a description of the
notation to be utilized, while Section III describes the RLCA3
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equations. Properties of the RLCA3 equations are verified
in Section IV, and practical issues involved in computing
RLCA3 predictions are discussed in Section V. Section VI
provides example results involving scattering from penetrable,
Gaussian correlation function surfaces, and compares RLCA3
predictions with those from the SSA and LCA2 theories. Other
extensions of the RLCA3 and SSA theories are discussed in
Section VII, and final conclusions are presented in Section
VIII.

II. BASIC FORMULATION AND NOTATION

The notation utilized in this paper is similar to that intro-
duced in [9], and is briefly reviewed in this Section. Because
the LCA3 kernels to be used involve a tilting process, the
notation utilized is somewhat distinct from that of other rough
surface scattering studies.

The problem considered involves a time harmonic elec-
tromagnetic wave propagating in vacuum that encounters an
interface (Σ) with a half-space of relative permittivity ε. The
scattering problem is described by the propagation directions
of the incident and scattered waves in the free space region,
here labeled K0 and K, respectively. These are three dimen-
sional vectors; reference to “horizontal” and “vertical” parts of
these vectors implies choice of a coordinate system. In order to
simplify the discussion of tilt invariance, notations are adopted
in this paper that attempt to make any coordinate system
dependencies explicit. The vector Q is defined as K − K0,
and the wavenumber in the vacuum medium is denoted by K.

The scattered field above and far away from the surface
is related to the incident one through the scattering operator
which reads in dyadic notation (in the far field at R → ∞),

Es(R) =
ieiKR

2πR
S(K,K0) · E0, (1)

which is a direct consequence of the Weyl representation of
the Green’s function. Here the incident plane wave field is
written as

Ei = E0e
iK0·R (2)

on the surface boundary. The dyad S(K,K0) is termed the
scattering amplitude in what follows. This scattering amplitude
when computed exactly is independent of the coordinate
system used to describe the scattering problem.

For electromagnetic scattering problems, it is convenient
to define horizontal (Ĥ) and vertical (V̂ ) polarization unit
vectors. To avoid reference to a particular coordinate system,
polarization vectors are defined as

Ĥi = K̂ × K̂0/
∣

∣

∣K̂ × K̂0

∣

∣

∣ (3)

Ĥs = Ĥi (4)

V̂i = Ĥi × K̂0 (5)

V̂s = Ĥs × K̂ (6)

where the subscripts i and s refer to the incident and scattered
field, respectively. Problems involving backscattering require
independent specification of the polarization vectors, which
can be chosen perpendicular to the incident direction in any
manner deemed preferable.

These definitions allow the dyadic properties of S(K,K0)
to be written as

S(K,K0) = ĤsSHHĤi + V̂sSV HĤi +

ĤsSHV V̂i + V̂sSV V V̂i (7)

where the left unit vectors represent the scattered field polar-
ization and the right unit vectors are dotted into the polar-
ization of the incident field in equation (1). This polarization
basis is utilized for all dyadic quantities in what follows.

In some cases (for example, in the SPM) specification
of a coordinate system is unavoidable when describing the
scattering amplitude. In this case, the coordinate system uti-
lized is described by a normal vector n̂, which represents
the “vertical” direction in the chosen coordinate system (i.e.
n̂ points from the surface into the vacuum region.) In this
case, “perpendicular” and “parallel” projection operators can
be defined as

P⊥(n̂) = n̂n̂ (8)

P‖(n̂) = I − n̂n̂ (9)

where I is the identity dyad. These dyads produce the vector
perpendicular and parallel components, respectively, when
multiplying a specified vector. When choice of a coordinate
system is implied in the definition of a scattering amplitude,
the scattering amplitude is written as S(K,K0|n̂).

For simplicity in what follows, we will often choose n̂ = ẑ,
assuming that the ẑ direction is defined to be the “vertical”
direction in the coordinate system of interest. In this case,
the x and y coordinates in a Cartesian system represent
the horizontal coordinates. In such cases a three dimensional
position vector on the surface R can be written as r + ẑh(r),
where h(r) is the function the represents the surface height.
We can also define the Fourier transform of this surface
through

h(ξx, ξy) =

(

1

2π

)2 ∫

e−i(ξxx+ξyy) h(x, y) dxdy

with the inverse transform given by

h(x, y) =

∫

ei(ξxx+ξyy) h(ξx, ξy) dξxdξy (10)

III. THE REDUCED LOCAL CURVATURE APPROXIMATION

OF THIRD ORDER

The RLCA3 has a functional structure identical to that of
the SSA, and is expressed up to second “curvature order” as

S(K,K0|ẑ) ≈ S0(K,K0|ẑ) + S1(K,K0|ẑ) (11)

where

S0(K,K0|ẑ) =
K(K,K0)

Qz

∫

dx dy e−iQ·R (12)

S1(K,K0|ẑ) = −i

∫

dx dy e−iQ·R

∫

dξx dξy ei(ξxx+ξyy)h(ξx, ξy)

T
′

1(K,K0; ξ,QH − ξ) (13)
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with

ξ = x̂ξx + ŷξy (14)

and

QH − ξ = x̂(Qx − ξx) + ŷ(Qy − ξy) (15)

The |ẑ notation in the scattering amplitudes above indicates
that the equations are written in a coordinate system in which
ẑ is regarded as normal to the mean surface plane, so that x
and y are the horizontal coordinates as discussed previously.
The functional form of the RLCA3 is also identical to that of
the two term LCA series in [9], except that the kernel T

′

1 of
the RLCA3 becomes the T1 kernel of [9] in the LCA model
of [9]. The first term is the Kirchhoff Approximation, with K

representing the Kirchhoff kernel function; detailed equations
for this kernel are provided in the appendix.

The new RLCA3 kernel is specified through

T
′

1(K,K0; ξ
(1), ξ(2)) = T1(K,K0; ξ

(1)) +
1

2
T2(K,K0; ξ

(1), ξ(2))

(16)

with T1 and T2 as specified in [9]; note both are functions of
general three dimensional vector arguments. Specific values
for these arguments are set by the integrations of equation
(13).

In particular, these kernels are given by [9]:

T1(K,K0; ξ) = B

(

K,K0|n̂ =
Q − ξ

|Q − ξ|

)

−

K(K,K0) (17)

and

T2(K,K0; ξ
(1), ξ(2)) =





n̂
′

· Q

n̂
′

·
(

Q − ξ(1) − ξ(2)
)















B2

(

K,K0;K − ξ(1)|n̂ = n̂
′
)

+

B2

(

K,K0;K − ξ(2)|n̂ = n̂
′
)

−

B

(

K,K0|n̂ = n̂
′
)

}

+

T1(K,K0; ξ
(1) + ξ(2)) −

T1(K,K0; ξ
(1)) − T1(K,K0; ξ

(2)) (18)

where

n̂
′

=
Q − ξ(1) − ξ(2)

∣

∣

∣Q − ξ(1) − ξ(2)
∣

∣

∣

(19)

In the above equations, B (K,K0|n̂) and
B2 (K,K0; ξ|n̂) refer to the first and second order kernels
of the small perturbation method, respectively, evaluated in a
coordinate system where the specified value of n̂ is regarded
as the vertical direction. Specific equations for B and B2 are
also provided in the appendix. Equations (16)-(19) show that
the RLCA3 model involves SPM kernel functions evaluated
in a frame of reference tilted from the original ẑ vertical

direction of the scattering amplitude. However, the specific
choices for ξ(1) and ξ(2) used in equation (13) result in
SPM2 kernel functions being evaluated only in the original ẑ
frame of reference.

IV. PROPERTIES OF THE RLCA3 THEORY

The RLCA3 formulation inherits the majority of its proper-
ties from the two-term LCA3 theory in [9]. Useful properties
of the LCA3 kernels in this process are

T1(K,K0;0) = 0 (20)

∇T1(K,K0;0) = 0 (21)

T2(K,K0; ξ
(1),0) = 0 (22)

∇1∇2T2(K,K0;0,0) = 0 (23)

T2(K,K0; ξ
(1),0) = T2(k,k0;0, ξ(2)) = 0

(24)

T2(K,K0; ξ
(1), ξ(2)) = T2(K,K0; ξ

(2), ξ(1))

(25)

The latter four equations ensure that all constant, linear, and
quadratic terms in a Taylor series expansion of T2 about the
origin vanish.

In fact the RLCA3 equations are identical to the two-term
LCA3 theory, except for the inclusion of the T2 term in the
modified kernel T

′

1. It is straight forward to show following
[9] that the RLCA3 remains reciprocal, and that it remains
shift invariant because

T
′

1(K,K0; x̂ξx + ŷξy, x̂(Qx − ξx) + ŷ(Qy − ξy)) (26)

still vanishes for (ξx, ξy) = (0, 0). In order to meet the first
order SPM limit in an untilted coordinate system, we need

T
′

1(K,K0; x̂Qx + ŷQy,0) = T1(K,K0; x̂Qx + ŷQy)

= B (K,K0|ẑ) − K(K,K0)

(27)

This is easily shown to be true since T2 vanishes when either
argument is zero, and since

ẑ =
Q − ξ

′

∣

∣

∣Q − ξ
′

∣

∣

∣

(28)

when

ξ
′

= x̂Qx + ŷQy (29)

To meet the second order SPM limit in an untilted coordi-
nate system, we need

T
′

1(K,K0; ξ
′

, ξ
′′

) + T
′

1(K,K0; ξ
′′

, ξ
′

) =

B2

(

K,K0;K − ξ
′

|ẑ
)

+ B2

(

K,K0;K0 + ξ
′

|ẑ
)

−

K(K,K0) (30)

where

ξ
′

= x̂ξx + ŷξy (31)

ξ
′′

= x̂(Qx − ξx) + ŷ(Qy − ξy)) (32)
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This is also satisfied, since n̂
′

used in evaluating the T2 kernel
also becomes ẑ in this case, and since the T1 terms included
in the definition of T2 cancel the contributions of the T1 term
in equation (16).

Since the original two-term LCA2 theory already achieves
compliance with the Kirchhoff Approximation in the high
frequency limit, we need to ensure that the contributions of
the T2 term in equation (16) do not distort the original series
properties. High frequency contributions in equation (13) are
determined through an expansion of the T

′

1 kernel in a power
series in ξ about the origin of the ξ plane; this is sensible
since in the high frequency limit, only surface spectral content
for small values of ξ (i.e. large scale surface features) are
expected to contribute. Because the T2 term included in T

′

1

vanishes when any of its arguments are zero, and also because
the gradient of the T2 term also vanishes when either argument
is 0, the RLCA3 theory retains compliance with the KA theory
in the high frequency limit; any corrections to the KA theory
are on the order of the surface curvature, rather than slope [9].

Finally, it is of interest to examine the tilt invariance
properties of the RLCA3 model. The two term LCA3 theory
achieves tilt invariance for the SPM1 to arbitrary order in
surface tilt angle. It can be shown following the procedure
of [9] that the RLCA3 model distorts these properties so that
the SPM1 limit is achieved only to first order in surface tilt
angle. No tilt invariance of the SPM2 is obtained, since the
SPM2 kernels in the RLCA3 model are always evaluated in
the original coordinate system. The RLCA3 model essentially
has traded the arbitrary order in slope tilt properties of the
LCA2 of [9] for the SPM2 limit in the non-tilted case. The
SSA also achieves tilt invariance of the SPM1 only to first
order in the surface tilt angle [6].

V. COMPUTATION OF RLCA3 CROSS SECTIONS

Because the RLCA3 retains a form identical to the SSA,
normalized radar cross section (NRCS) computations are also
identical once the appropriate kernel functions are modified.
Under the assumption of a Gaussian random process surface
(specified entirely by its covariance function), it is possible to
obtain an expression for the expected value of the NRCS. A
detailed derivation is provided in [10] and the final expressions
for the SSA are available in [5]. Because the RLCA3 has a
two term series for scattered fields, normalized radar cross
sections involve the power in each of these terms and the
correlation between the two. Thus, three cross section terms
are obtained, these are labeled σ00

αβ , σ01
αβ , and σ11

αβ in what
follows for contributions of the first field series term squared,
the correlation term, and the second field series term squared,
respectively. Here α and β represent the scattered and inci-
dent polarizations, respectively, and are chosen from H for
horizontal or V for vertical. The final expressions are:

σ00
αβ =

1

π

∣

∣

∣

∣

K(K,K0)

Qz

∣

∣

∣

∣

2

H{1} (33)

σ01
αβ = −

2

π
Re

{

K(K,K0)

[

H{Uαβ(x, y)} + e−Q2

z
h2

0F {Uαβ(x, y)} −

Uαβ(0, 0)H{1}

]}

(34)

σ11
αβ =

1

π

{

H{Vαβ(x, y)} + e−Q2

z
h2

0F {Vαβ(x, y)}

+Q2
z |Uαβ(0, 0)|

2
H{1}

}

(35)

The operators F and H above are defined as

F {f(x, y)} =

∫ ∞

−∞

dx

∫ ∞

−∞

dy eiQxxeiQyy f(x, y)

(36)

H{f(x, y)} =
∫ ∞

−∞

dx

∫ ∞

−∞

dy eiQxxeiQyy D(x, y) f(x, y)

(37)

where the term D(x, y) is given by

D(x, y) = e−Q2

z
h2

0
(1−C(x,y)) − e−Qzh2

0 (38)

Here C(x, y) represents the correlation function of the Gaus-
sian random process surface, and h0 is the rms height of the
rough surface. The term Vαβ(x, y) is given by

Vαβ(x, y) = U
(1)
αβ (x, y) + Q2

zUαβ(x, y)U∗
αβ(−x,−y)

− Q2
zUαβ(0, 0)U∗

αβ(−x,−y)

− Q2
zU

∗
αβ(0, 0)Uαβ(x, y) (39)

Finally, the Uαβ(x, y) and U
(1)
αβ (x, y) functions above are

given by two-dimensional Fourier transforms of the surface
power spectrum, W (ξx, ξy), and the RLCA3 kernel function:

Uαβ(x, y) =

∫ ∞

−∞

dξx

∫ ∞

−∞

dξy eiξxxeiξyy

T
′∗
1,αβ(K,K0; ξ,QH − ξ)W (ξx, ξy)

(40)

U
(1)
αβ (x, y) =

∫ ∞

−∞

dξx

∫ ∞

−∞

dξy eiξxxeiξyy

∣

∣

∣
T

′∗
1,αβ(K,K0; ξ,QH − ξ)

∣

∣

∣

2

W (ξx, ξy)

(41)

where ∗ denotes complex conjugation, and ξ and QH−ξ are as
specified in equations (14)-(15). The surface power spectrum
is normalized so that

W (Qx, Qy) =
1

(2π)
2F
{

h2
0C(x, y)

}

(42)

The first NRCS term is identical to the NRCS prediction of
the Kirchhoff approximation; the spatial integration involved
can be further simplified for particular surface correlation
functions, or can be performed numerically for general sur-
faces. The second NRCS term requires evaluation of Uαβ
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from equation (40) before the spatial integration can be per-
formed, and therefore apparently involves a four-dimensional
integration. However, if the Uαβ function is first evaluated
using a Fast Fourier Transform (FFT) before proceeding to the
spatial integration, the spatial and spectral integrations become
decoupled, and only two two-dimensional integrations are
necessary. Similar comments apply for evaluation of the third
cross section term, although in this case, FFT computations are
necessary for both Uαβ and U

(1)
αβ before the spatial integration

can be performed. Overall, if a total of N points are used
in the spatial integration, the computation of all three NRCS
terms can be completed in the order of N operations.

When evaluating RLCA3 NRCS predictions, discretization
of both the spatial and spectral integrations must be performed
carefully in order to ensure accurate results. In particular, it is
well known that evaluation of KA NRCS predictions becomes
difficult numerically as the surface rms height increases, due
to the rapid decrease in the integrand near the origin. A
sufficient number of spatial integration points must be utilized
to model such cases accurately. When using an FFT algo-
rithm, the spectral discretization is determined by the spatial
discretization according to standard FFT rules. However, due
to the inclusion of the second order SPM kernel functions
in the RLCA3 kernel, it is possible for the RLCA3 kernel to
exhibit rapid variations with its argument in some cases. These
variations become more pronounced as the dielectric constant
or conductivity of the lower region becomes larger; reference
[11] provides further discussion of this point. In such cases,
sufficient spectral discretization must be retained in order
to ensure that rapid kernel function variations are resolved.
Both spectral and spatial discretization issues can typically be
examined simply by seeking convergence of predictions as the
discretization rate is increased.

The results to be presented in the next section were obtained
through a direct discretization of the integrals in equations
(33)-(35), along with an FFT algorithm for evaluation of
equations (40)-(41). Integrations were performed over a spatial
grid of 32 by 32 wavelengths, sampled into 512 by 512 points.
Computation of all three NRCS terms in all four polarization
combinations required approximately 23 seconds per angle on
an 800 MHz Pentium processor.

VI. EXAMPLE RLCA3 PREDICTIONS

Results are first illustrated to compare RLCA3 predictions
with those of the two field series term SSA and LCA3 [9]
theories. Surfaces are modeled as Gaussian stochastic pro-
cesses with an isotropic Gaussian correlation function, so that
surface statistics are completely specified by the rms height
(h0) and correlation length (l) parameters; this type of rough
surface will be referred to as a “Gaussian” surface in what
follows. Results are also compared with those from a Monte
Carlo simulation using the method of moments (MOM). The
latter utilized 50 realizations, and results were computed using
the canonical grid technique [12] in a four scalar function
unknown method of moments for a penetrable surface [13] to
improve computational efficiency. MOM surfaces sizes were
16λ×16λ sampled in 128×128 points, and the “tapered” in-
cident field described in [12] with g = 5 was used to eliminate

edge scattering effects. Note use of the tapered incident field
causes inaccuracies for large bistatic scattering angles and for
cross-polarized predictions, so method of moments results are
only included for co-polarized predictions at scattering angles
within 70 degrees. Computational times for this numerical
approach were dramatically larger (on the order of tens of CPU
hours) compared to those required for the RLCA3. To make
the results shown comparable to those in the literature, kernel
functions are transformed from the original polarization basis
(equation (7)) to the local polarization basis (equation (51) in
the appendix) in the computations.

Figure 1 illustrates in-plane bistatic NRCS predictions for
Kh0 = 1, Kl = 6, and surface relative permittivity ε =
4 + i. The incident field impinges upon the surface at θi =
30◦ from normal incidence, and the polar scattering angle
used in the figure is defined so that θs = 30◦ is specular
scattering while θs = −30◦ is backscattering. Results in all
four NRCS polarizations are plotted: again the second index
of the αβ notation (hv for example) indicates the incident
polarization. Co-polarized (hh and vv) results show little
difference between the SSA2, two-term LCA3 theory (labeled
“LCA2”) of [9], and the RLCA3 theories, and all are in good
agreement with the MOM simulation. The RLCA3 corrects
a slight over-prediction of HH cross sections by the LCA2
at large bistatic scattering angles. A larger difference among
theories is observed in cross polarized predictions; here the
RLCA3 shows significantly larger predicted cross sections
than the LCA2 theory, in agreement with the SSA. Note
all cross-polarized predictions are obtained from the second
field series term, as the KA1 prediction for cross-polarized
NRCS vanishes in the plane of incidence. These results clearly
demonstrate the importance of the B2 kernel in cross polarized
predictions; although numerical results for cross polarization
are not shown, SSA predictions of cross polarized scattering
have been verified in other studies.

Figure 2 is analogous to Figure 1, but for the case Kh0 =
0.5 and Kl = 3 (i.e. the frequency has been decreased by a
factor of two.) Results in terms of relationships among theories
are generally similar. Note the small MOM predictions ob-
tained near specular angles are due to difficulties in removing
the coherent scattered field in the numerical simulation, and
should not be taken as accurate.

The preceding cases show close agreement of the SSA and
RLCA3 predictions. Figure 3 illustrates a case where the two
theories show appreciable differences. Here the surface param-
eters are Kh0 = π, Kl = 4π, ε = 25 + i3, and the incidence
angle is 20 degrees. This case was previously considered in
[14], and the numerical results plotted are obtained from the
authors of [14] rather than from the MOM simulations dis-
cussed previously. General conclusions are similar regarding
the relationships among theories, although for this case, the
cross polarized cross sections of SSA and RLCA3 show some
unusual angular dependencies that cannot be verified here
due to continued corruption of the numerical cross-polarized
predictions. The vv plot however shows a significant deviation
of SSA predictions from the numerical model at both large
negative and positive scattering angles. These deviations have
been attributed in part to the influence of the near-singular
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Fig. 1. Normalized radar cross sections for a Gaussian rough surface, Kh0 = 1, Kl = 6, ε = 4 + i, θi = 30◦

portion of the vv B2 kernel function. In addition, the failure
of the SSA model to approach KA identically has impact upon
these results. The RLCA3 prediction reduces these problems
so that better agreement with the numerical model is achieved.

VII. EXTENSIONS OF THE RLCA3 AND SSA THEORIES

An extension of the RLCA3 model is possible that allows
the SPM1 limit to be reached to arbitrary order in surface tilt,
rather than first order. This extension involves adding the term

−
1

2
T2(K,K0; x̂ξx + ŷξy,−Qz∇h) (43)

to the T
′

1 kernel function in equation (13). Here ∇h refers
to the spatial derivative of the surface profile function. This
correction can be derived in a manner similar to the pro-
cess used for transforming the original LCA theory to the
“weighted curvature approximation” in [8]. It can be shown
that this addition still results in the total field solution matching
the KA, untilted SPM1, and untilted SPM2, while improving
the tilt properties of the SPM1 to arbitrary order in surface
tilt. The disadvantage of this modification is the fact that the
RLCA3 kernel function now becomes dependent on the local
surface slope. In this case, the spectral and spatial integrations

in equation (13) can no longer be decoupled, so that a
complete four dimensional integration is required to evaluate
model predictions. The dramatically increased computational
complexity of such a model makes its use less practical than
the RLCA3 theory without this correction.

A second result derived in the development of the RLCA3
theory involves a method for improving the standard SSA
theory to ensure that the KA limit is reached. In the standard
SSA theory, K(K,K0) in equation (12) is replaced with
B(K,K0|ẑ), and the T

′

1(K,K0; ξ,QH − ξ) function in
equation (13) is replaced with

M(K,K0; ξ) =
1

2
[B2 (K,K0;K − ξ|ẑ)

+B2 (K,K0;K0 + ξ|ẑ) −

B (K,K0|ẑ)] (44)

where ξ = x̂ξx + ŷξy . The SSA matches the untilted SPM1
and SPM2 limits, as well as obtaining first order in slope tilt
invariance for SPM1, but fails to match KA. Agreement with
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Fig. 2. Normalized radar cross sections for a Gaussian rough surface, Kh0 = 0.5, Kl = 3, ε = 4 + i, θi = 30◦

the KA can be achieved by adding an additional kernel term

∆M(K,K0; ξ) =
1

2
[T1(K,K0;QH)

(

1 + 2
W H

Wz

·
ξ

Qz

)

+ T1(K,K0; ξ)

− T1(K,K0;QH − ξ)] (45)

to the standard SSA kernel function. In the above equation,
the vector W = K + K0, and WH and Wz refer to the
horizontal and vertical parts of W respectively. This correction
makes no contribution to the SPM1 or SPM2 limits, but
corrects the Taylor series expansion of M in ξ so that the
KA limit is achieved. Such a corrected SSA theory should
have properties very similar to the RLCA3, although the full
tilt invariance properties of the corrected SSA model have yet
to be investigated.

One motivation for choice of the RLCA3 model over the
corrected SSA is the use of the KA as the dominant series
term. Due to the formal tilt invariance of the KA, such a
choice may provide enhanced tilt invariance properties overall
to RLCA3 predictions, at least as the high frequency limit
is approached. In addition, the structure of the LCA theory

results in the first correction to KA involving terms that are of
the order of the surface second derivative. The RLCA3 model
can be interpreted as further adding an additional expansion in
the surface slope squared. For one dimensional surfaces, this
combination can be regarded as the RLCA3 theory performing
an expansion based on the surface intrinsic, rather than local,
curvature. Because the intrinsic curvature is coordinate system
independent, such an expansion again should have a better
chance of achieving significant tilt invariance properties.

VIII. CONCLUSIONS

This paper has presented the RLCA3 model for rough
surface scattering, including explicit expressions both for
scattered fields from a deterministic surface and for ensemble
averaged normalized radar cross sections for a Gaussian ran-
dom process surface. The model overall achieves compliance
with the KA and with the SPM up to second order, with first
order in slope tilt invariance of the SPM1. Sample results
demonstrated that the RLCA3 produces predictions similar to
the two-term SSA theory in many cases, although an example
was shown in which the SSA showed apparent errors that were
corrected by the RLCA3. Overall, the basic properties of the
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Fig. 3. Normalized radar cross sections for a Gaussian rough surface, Kh0 = π, Kl = 4π, ε = 25 + i3, θi = 20◦

RLCA3 make the model attractive for use in further studies
of rough surface scattering.

IX. APPENDIX

In the polarization basis of equations (3)-(6),

K(K,K0) =
−Q2

2

(

ĤsRHH(Q/2)Ĥi

+V̂sRV V (Q/2)V̂i

)

(46)

where

Q = |Q| (47)

RHH(β) =
β −

√

(ε − 1)K2 + β2

β +
√

(ε − 1)K2 + β2
(48)

RV V (β) =
εβ −

√

(ε − 1)K2 + β2

εβ +
√

(ε − 1)K2 + β2
(49)

Specification of the RLCA3 kernel function requires spec-
ification of the B (K,K0|n̂) and B2 (K,K0; ξ|n̂) SPM
kernel functions. Most references (for example [15]) utilize
a polarization basis that depends on n̂ for reporting these

kernels. This polarization basis is defined as:

ĥi = K̂0 × n̂/
∣

∣

∣
K̂0 × n̂

∣

∣

∣

ĥs = K̂ × n̂/
∣

∣

∣K̂ × n̂

∣

∣

∣

v̂i = ĥi × K̂0

v̂s = ĥs × K̂ (50)

so that

S(K,K0|n̂) = ĥsShhĥi + v̂sSvhĥi

+ ĥsShvv̂i + v̂sSvvv̂i (51)

However the above dyad can be transformed easily to the
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(Ĥ , V̂ ) basis by substituting

ĥi =





n̂ · V̂i
∣

∣

∣n̂ × K̂0

∣

∣

∣



 Ĥi −





n̂ · Ĥi
∣

∣

∣n̂ × K̂0

∣

∣

∣



 V̂i (52)

ĥs =





n̂ · V̂s
∣

∣

∣n̂ × K̂

∣

∣

∣



 Ĥs −





n̂ · Ĥs
∣

∣

∣n̂ × K̂

∣

∣

∣



 V̂s (53)

v̂i =





n̂ · Ĥi
∣

∣

∣n̂ × K̂0

∣

∣

∣



 Ĥi +





n̂ · V̂i
∣

∣

∣n̂ × K̂0

∣

∣

∣



 V̂i (54)

v̂s =





n̂ · Ĥs
∣

∣

∣
n̂ × K̂

∣

∣

∣



 Ĥs +





n̂ · V̂s
∣

∣

∣
n̂ × K̂

∣

∣

∣



 V̂s (55)

and recombining pairs of vectors to obtain the form of equation
(7). This process is to be utilized when computing the B and
B2 kernels used, as all dyad’s are to be written in the global
polarization basis of equations (3)-(6).

In the local polarization basis, the first order SPM kernel
functions are specified as:

Bhh(K,K0|n̂) =
2qkq0 (ε − 1) K2k̂ · k̂0
(

qk + q
′

k

) (

q0 + q
′

0

)

(56)

Bvh(K,K0|n̂) =
2qkq0 (ε − 1) K2

(

εqk + q
′

k

) (

q0 + q
′

0

)

q
′

k

K
(

n̂ ·
(

k̂0 × k̂
))

(57)

Bhv(K,K0|n̂) =
2qkq0 (ε − 1) K2

(

qk + q
′

k

) (

εq0 + q
′

0

)

q
′

0

K
(

n̂ ·
(

k̂0 × k̂
))

(58)

Bvv(K,K0|n̂) =
2qkq0 (ε − 1) K2

(

εqk + q
′

k

) (

εq0 + q
′

0

)

(

ε |k| |k0| − q
′

kq
′

0k̂ · k̂0

)

K2

(59)

where

qk = n̂ · K (60)

q0 = −n̂ · K0 (61)

k = P‖(n̂) · K (62)

k0 = P‖(n̂) · K0 (63)

q
′

k =
√

εK2 − k · k (64)

q
′

0 =
√

εK2 − k0 · k0 (65)

The second order SPM kernel functions are specified as

B2,hh(K,K0; ξ|n̂) =
2qkq0 (ε − 1) K2

Qn

(

qk + q
′

k

) (

q0 + q
′

0

)

{

C1C2

(

R1 + q
′

k

)

+S1S2

(

q
′

k + R2

)

+
C3

2

(

q
′

0 − q
′

k

)

}

(66)

B2,vh(K,K0; ξ|n̂) =
2qkq0 (ε − 1) K2

Qn

(

εqk + q
′

k

) (

q0 + q
′

0

)

{

S1C2

(

εK +
q
′

k

K
R1

)

−C1S2

(

εK +
q
′

k

K
R2

)

+ S2
ε |k|

K
R3

+
S3

2

(

εK −
q
′

k

K
q
′

0

)}

(67)

B2,hv(K,K0; ξ|n̂) =
2qkq0 (ε − 1) K2

Qn

(

qk + q
′

k

) (

εq0 + q
′

0

)

{

−C1S2

(

q
′

0

K

)

(

R1 + q
′

k

)

+S1C2

(

q
′

0

K

)

(

q
′

k + R2

)

− S1

(

ε |k0|

K

)

R3

−
S3

2

(

εK −
q
′

k

K
q
′

0

)}

(68)

(69)

B2,vv(K,K0; ξ|n̂) =
2qkq0 (ε − 1) K2

Qn

(

εqk + q
′

k

) (

εq0 + q
′

0

)

{

−S1S2

(

q
′

0

K

)(

εK +
q
′

k

K
R1

)

−C1C2

(

q
′

0

K

)(

εK +
q
′

k

K
R2

)

+ C1

(

ε |k0| q
′

k

K2

)

R3

+

(

ε |k|R3

K2

)(

q
′

0C2 +
|χ| |k0|

K2
R1

)

+
C3

2

(

εq
′

0 − εq
′

k

)

}

(70)
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where

χ = P‖(n̂) · ξ (71)

qχ =
√

K2 − χ · χ (72)

q
′

χ =
√

εK2 − χ · χ (73)

R1 = qχ − q
′

χ (74)

R2 =
qχq

′

χ (1 − ε)

εqχ + q′

χ

(75)

R3 =
|χ|K2

|χ|
2

+ qχq′

χ

(76)

C1 = χ̂ · k̂ (77)

C2 = χ̂ · k̂0 (78)

C3 = k̂ · k̂0 (79)

S1 = n̂ ·
(

χ̂ × k̂
)

(80)

S2 = n̂ ·
(

χ̂ × k̂0

)

(81)

S3 = n̂ ·
(

k̂ × k̂0

)

(82)

and ξ is an arbitrary three dimensional vector. The definitions
of equations (60)-(65) are also used above.

One issue involved in computing the T1 kernel (which
includes the B kernel evaluated in a tilted frame of reference)
occurs when the tilting used is such that the incidence or
scattering directions become shadowed. These conditions are
defined as q0 or qk becoming negative, respectively. When
these conditions occur, the B contributions to T1 are set
to zero. This specification results in no discontinuities being
introduced in T1 as the shadowed region is approached.
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