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A Study of Algorithms for Detecting Pulsed
Sinusoidal Interference in Microwave Radiometry

Joel T. Johnson and Lee C. Potter

Abstract— The performance of four algorithms for detecting
the presence of pulsed sinusoidal interference in microwave ra-
diometry is compared. The pulsed sinusoidal interference sources
considered have unknown frequency, initial phase, amplitude,
arrival time, and duration. Statistical properties of three of
the algorithms are determined analytically, although numerical
integrations are required in some cases in order to compute the
obtained probabilities of detection. The performance of the fourth
algorithm is evaluated using Monte Carlo procedures. Results
show that three of the algorithms have a performance that is
roughly comparable for the cases considered, while the fourth
yields reduced sensitivity. A more detailed study of one of the
algorithms, a simple energy detector called the pulse detection
algorithm, is also provided.

I. INTRODUCTION

RAdio frequency interference (RFI) is a major concern for
passive microwave remote sensing of the Earth’s surface

[1]-[2]. Traditional radiometer receiver architectures are very
susceptible to RFI corruption of observed brightnesses; recent
studies [3]-[11] are developing new radiometer technologies
to address this issue. Combating the impact of RFI requires
methods both for detecting the presence of RFI (detection
algorithms) and for removing RFI when detected (mitigation
algorithms.) This paper is focused on the problem of detecting
that a particular radiometer observation contains RFI; methods
for removing RFI are not considered.

While a variety of detection algorithms have been applied
in radio astronomy applications (e.g. [12]-[14]), Earth remote
sensing studies to date have primarily emphasized three par-
ticular approaches. The first two methods essentially involve
a search for “outliers” in measured powers, based on either
measurements as a function of time (i.e. a “pulse” detection
method [4]-[5]) or frequency (i.e. a “narrowband” detection
method [5]-[7].) Pulse detection strategies are designed to
detect RFI with large amplitudes but short time durations
(i.e. low duty cycle pulses), and are improved by matching
the time resolution of the detector to the time duration of
expected RFI pulses. Given the possible impact of long range
air search radar systems on L-band radiometry, desirable time
resolutions are often in the range of a few microseconds so that
individual radar pulses can be resolved. Narrowband detection
strategies are designed to detect frequency localized RFI that
may be more continuous in time, and again are improved by
matching the frequency resolution of the detection algorithm
to the bandwidth of RFI sources.
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The third approach that has been utilized is based on a
kurtosis algorithm [8]-[11]. In this technique, moments of
observed fields up to the fourth order are computed by the
radiometer system and used to compute the kurtosis (or fourth
moment divided by the square of the second moment) of
the observed field. Since observed fields should follow a
Gaussian distribution in the absence of RFI, comparison of the
measured kurtosis with the expected value for Gaussian fields
provides an RFI detection algorithm that has been shown to
be sensitive to the presence of pulsed interference [9] while
retaining sensitivity to narrowband interference as well. The
kurtosis algorithm can be applied directly to measured data or
to individual subchannels created by an array of digital filters
[8] or by an FFT operation. The latter approach is examined
in detail in [14], and is termed the “spectral kurtosis” method
in what follows.

A recent paper [9] has presented a derivation of the expected
detection performance of the single channel kurtosis algorithm
for pulsed sinusoidal interference. This paper performs a sim-
ilar study for a simple power-based pulse detection algorithm
and compares the results obtained with those achieved by the
kurtosis and spectral kurtosis techniques.

The more general theory of detection problems [15] pro-
vides a framework for interpreting these results, as well as an
additional detection algorithm for comparison. It is generally
expected that the performance of a detector will improve as
more information on properties of the interference are incorpo-
rated into the detector. The ideal case of perfectly known RFI
in the presence of additive white Gaussian noise allows proof
that a matched filter detector is the optimal approach. For RFI
that is not completely known (as is the expected case in Earth
remote sensing,) no uniformly most powerful detector exists
[15]. Nevertheless, standard approaches have been developed
that appear to provide very good results in practice.

One of these approaches is the generalized likelihood ratio
test (GLRT), which is computed by using maximum likelihood
estimates of unknown signal parameters in a likelihood ratio
test of a known signal. An implementation of the GLRT
is described in [15] for detecting the presence of pulsed
sinusoidal interference of unknown frequency, amplitude, time
of arrival, and initial phase. The resulting algorithm is based on
“peak picking” a spectrogram comprised of short time Fourier
transforms of the observed data. This paper compares results
from the peak picking algorithm with those from the pulse,
kurtosis, and spectral kurtosis methods. The results demon-
strate the advantages of incorporating additional information
on an RFI source: the kurtosis algorithm assumes only that the
RFI has a kurtosis that is different from that of Gaussian noise,
the pulse detection algorithm assumes that the RFI is localized
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in time and has a large instantaneous amplitude, while the peak
picking and spectral kurtosis algorithms search for sinusoidal
interference of an unknown frequency.

The next section introduces the notation to be utilized and
the signal models considered in the absence and presence of
RFI. Section III then introduces the pulse detection algorithm
and derives its expected performance. This process is repeated
in Section IV for the peak picking detector, and the kurtosis
and spectral kurtosis detectors are reviewed in Section V.
Results comparing the tests are provided in Section VI, and
properties of the pulse detection algorithm are further explored
in Section VII. Final conclusions and recommendations are
provided in Section VIII.

II. NOTATION AND SIGNAL MODELS

A. Definitions

Consider a random variable α. The probability density
function (pdf) of this random variable is denoted as fα(α0),
and satisfies

∫

∞

−∞

dα0 fα(α0) = 1 (1)

Fα(α0) = P (α < α0) =

∫ α0

−∞

dα0 fα(α0) (2)

Equation (2) defines the cumulative distribution function (cdf)
of α. The probability of exceeding the value α0 is given
by Qα(α0) = 1 − Fα(α0), called the right tail distribution
function henceforth.

For a set of independent random variables (α1, α2, · · · ,
αN ), define γ as the maximum of the set. The cdf of γ is

Fγ(γ0) = Fα1
(γ0)Fα2

(γ0) · · ·FαN
(γ0) (3)

This property will be used extensively to analyze detector
properties in what follows.

B. Measurement process

To improve sensitivity in microwave radiometry, it is gener-
ally desirable to integrate observed powers over time periods
that are as large as possible. The radiometer’s output datarate is
reduced by recording only the mean power estimate following
this integration period. However such an approach reduces the
ability to detect small duty cycle pulsed interferers that are
present only for a small fraction of the integration time. For
this reason, two time scales are considered in what follows.
The first consists of N samples, and represents the time scale
on which the pulse detection algorithm is implemented as well
as the time scale on which a fast Fourier transform (FFT) is
computed in the peak picking and spectral kurtosis methods.
In the latter case, a single datapoint in N sub-channels is
obtained every N time samples (the FFT computations are
not overlapped.)

The second time scale is defined as IN samples, and
represents the radiometer integration period. Within such a
period, I outputs of the pulse detection algorithm and I spectra
for the peak picking and spectral kurtosis methods occur. For
the pulse and peak picking methods, final detectors over this
set of I outputs are defined based on taking the maximum

detector statistic among the I outputs; this is equivalent to
declaring detection in an IN sample integration period if
detection was declared in any of the I frames of N samples.
This approach is chosen to retain sensitivity to short duty
cycle interference at the cost of increasing the detector’s false
alarm rate. The spectral kurtosis algorithm uses all I outputs to
estimate the kurtosis in each sub-channel; a composite detector
is then created based on the maximum kurtosis value in all
sub-channels. The single channel kurtosis algorithm uses the
entire IN sample integration period (as in [9]).

As an example, a digital radiometer system sampling ob-
served fields every 16 nsec (the Nyquist sampling rate for a
31.25 MHz bandwidth) is considered in what follows. N is
varied from 8 to 256 samples (0.128 to 4.096 µsec) in order to
capture time scales ranging from shorter than to comparable
to those of expected radar pulses. The integration period
IN is taken as 32768 samples, so that the total radiometer
integration period is 524.288 µsec. While this integration
period is somewhat smaller than that of many operational
radiometers, it is expected that future radiometer systems
designed to incorporate RFI mitigation will utilize shorter
integration periods [16]. In what follows, as N is varied, the
number of frames I is adjusted so that the integration period
remains fixed.

C. Signal model when RFI is absent

In the absence of RFI, the sampled received fields are
assumed to be uncorrelated Gaussian random variables with
zero mean and standard deviation σ. For convenience σ is
set to unity in what follows, so that all linear and power
quantities are in units of σ and σ2, respectively. Following
[15], measured fields in the absence of RFI are written as

xi[n] = wi[n] n = 0, 1, · · · , N − 1
i = 0, 1, · · · , I − 1

(4)

where wi[n] refers to the independent identically distributed
(i.i.d.) Gaussian measurements, and the separation of the
integration period into I sets of N samples is apparent in
the notation.

For this model, the square of a single field sample (i.e.
proportional to the power) is a chi-squared random variable
with one degree of freedom. If the field is squared and then
summed over N samples, the sum X is a chi-squared random
variable with N degrees of freedom. Following [15], the
probability that such a random variable exceeds the value
X0 is denoted as Qχ2

N

(X0). The power estimate output by
a microwave radiometer following an integration over N
samples follows this distribution, and approaches a Gaussian
distribution as N becomes large.

The pulse and peak picking detection algorithms to be
considered require knowledge of the standard deviation σ
of the RFI-free noise in order to set a relationship between
the false alarm rate and the threshold used in the detection
algorithm. In microwave radiometry, this standard deviation is
proportional to the sum of the internal and external thermal
noise power observed by the radiometer, which can vary with
time. However, these time variations occur on time scales that



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. X, MONTH XXXX 3

are large compared to those used in the detection algorithms to
be described. The analyses that follow assume that a system
exists for estimating the standard deviation of the RFI free
noise on short time scales, and that the impact of errors in
this estimate can be neglected. A system for obtaining this
estimate through use of a “smart” averaging filter is described
in [4]. Monte Carlo tests of the pulse and peak picking
detectors using σ values estimated by a “smart” averaging
filter having a 131 µsec time constant showed only slight
differences from those to be reported in Sections VI and VII,
with these differences reducing as the time constant of the
averaging filter is increased. Therefore the remainder of the
paper will neglect the impact of any imperfect estimation of
the standard deviation of the RFI free noise.

D. Signal model when pulsed sinusoidal RFI is present

Reference [15] models received field samples when pulsed
sinusoidal RFI is present for i = 0, 1, · · · , I − 1 as:

xi[n] =























wi[n] n = 0, 1, · · · , N − 1
i 6= i0

A cos(2πf0n + φ)+ n = 0, 1, · · · , N − 1
wi[n] i = i0

(5)
where wi[n] again refers to i.i.d. Gaussian random variables
with zero mean and standard deviation one. In this case,
sinusoidal interference has been added to frame i0 of the
I frames of N samples. The sinusoidal interference has an
unknown arrival frame i0, amplitude A, frequency f0, and
phase φ. For multiple integration periods, Reference [15]
assumes that i0 (an integer) is equally likely to take the values
0 through I − 1, that f0 = k0/N with k0 an integer 1 to
N/2 − 1, and that φ is uniformly distributed from 0 to 2π.
Detector performance is examined as a function of A in [15].

Reference [15] shows that the generalized likelihood ratio
test for this signal model reduces to a test on the maximum
power observed within I sets of N -point FFT operations on the
data. This “peak picking” approach on the data spectrogram
is described further in Section IV.

The model used in [15] is generalized in this paper by
allowing the frequency f0 to be distributed uniformly and con-
tinuously from 0 to 1/2 (the Nyquist frequency), by allowing
multiple pulses to occur within the IN sample integration
period, by allowing pulses to have a length not equal to
N samples, and by allowing pulses to arrive at an arbitrary
sample within an N point frame. In this case, pulses within
the integration period have additional parameters describing
the arrival sample 0 ≤ Ns ≤ N −1 within frame i0 as well as
the pulse length (Np samples.) The revised signal model for
pulses can be expressed as

A cos(2πf0 [(i − i0)N + n] + φ) + wi[n] (6)

for n and i values such that the function

I(n, i) =

{

1 i0N + Ns ≤ iN + n < i0N + Ns + Np

0 otherwise
(7)

is non-zero.

When multiple pulses occur within an integration period the
arrival frames (i indices i0, i1, · · · ) are drawn from the set
i = 0, · · · , I − 1 so that no frame contains contributions from
more than one pulse. This does not present difficulties for
the low duty cycle interference of interest here, and none of
the detection algorithms considered are sensitive to particular
choices of the arrival frames. It is assumed for convenience
that multiple pulses within the IN sized sample have identical
amplitudes A and durations Np, but the frequency f0, phase φ,
and arrival sample Ns are chosen independently. These choices
result in an effective RFI duty cycle, d, within an integration
period of

d =
NpulseNp

IN
(8)

Note the duty cycle is restricted by the fact that the number
of pulses in an integration period (Npulse) is required to be
an integer.

Sine wave amplitudes in what follows are described in terms
of the ratio R of the average “signal-to-noise” power ratio
(dA2/

(

2σ2
)

) normalized by the uncertainty in the radiometer
power estimate (σ2/

√
NI). This definition gives

R =
dA2

2

√
NI (9)

A =

√

2R

d
√

NI
(10)

For NI = 32768, the maximum instantaneous signal to noise
ratio is

A2/2 = (5.52 × 10−3)R/d (11)

The choice of R as the RFI strength parameter of interest
is motivated by the fact that RFI contributions on the order
of σ2/

√
NI are the most difficult to detect in traditional

radiometry. Interference that produces large R (>≈ 10) can
be readily detected through examination of integrated powers
on the IN sample time scale. Detector performance for
interference having 0.25 ≤ R ≤ 1.5 is examined in what
follows.

1) Random phase model of RFI: Reference [9] describes
fields when pulsed sinusoidal RFI is present as uncorrelated
Gaussian random variables with zero mean and standard
deviation σ plus sinusoidal RFI with a specified amplitude
and a uniformly distributed random phase (as in [17]). In
this model, RFI-containing datapoints are equally likely to
occur anywhere within the size IN integration period (i.e.
they do not necessarily occur successively in time) and all
RFI-containing samples are independent of each other (i.e.
no correlations in time.) This signal model appears acceptable
for describing properties of the single channel kurtosis statistic
(which does not utilize any information on the ordering of a
data sample), and Monte Carlo comparisons of single channel
kurtosis detector performance under the generalized model of
Equations (5)-(6) and as predicted by the random phase model
showed negligible differences for the cases considered in
Section VI. However the random phase model is not applicable
for describing radar or other pulsed source transmissions in
detection algorithms that utilize sequential properties of the
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measured data. The generalized signal model of Equations (5)-
(6) is therefore used in studies of the pulse, peak picking, and
spectral kurtosis detectors.

III. PULSE DETECTION ALGORITHM

The pulse detection algorithm to be described is an adap-
tation of the energy detector defined in [15], which can
be regarded as the generalized likelihood ratio test in cases
where the interfering signal is assumed to be deterministic but
completely unknown. The pulse detection algorithm functions
first by squaring incoming field samples, then averaging the
resulting power over N samples. A local detection is declared
if the result exceeds a specified threshold. A final detection is
declared for the set of IN samples if any of the I individual
N point detectors have declared detection. This is equivalent
to a single detection using the maximum over I frames of
the N point averages. The Qχ2

N

(X0) distribution for the
integrated power in an RFI-free N -sample frame can therefore
be aggregated over I independent RFI-free frames to obtain

QnoRFI
pulse (X0) = 1 − (1 − Qχ2

N

(X0))
I (12)

which provides the relationship between a threshold on RFI-
free integrated power (X0) and the false alarm rate of the pulse
detection algorithm. For small false alarm rates, the false alarm
rate is approximately linearly proportional to I .

When pulsed sinusoidal interference is present, frames
containing RFI have a power integrated over N samples that is
a non-central chi-squared random variable. The non-centrality
parameter is

λ =

n2
∑

n=n1

A2 cos2 (2πf0n + φ) (13)

where the beginning and ending indices n1 and n2 depend on
the RFI arrival time Ns as well as the particular frame that
is being considered within the set of Nf frames comprising
an RFI pulse. The right-tail cdf of a non-central chi squared
random variable is denoted following [15] as Qχ2

N
(λ)(X0).

While the sum in equation (13) can be computed analytically,
the result remains dependent upon both φ and f0 as well as
n1 and n2.

Given a threshold X0 (chosen to set the false alarm rate) and
the λ parameter, the probability of detection for a particular
RFI-containing N -sample frame can be determined. Further-
more, the cdf for the maximum N -sample integrated power
among the set of Nf frames containing a single RFI pulse
can be determined using equation (3) if the λ values for each
frame are known. This set of λ values is determined by the
A, f0, φ, Ns, and Np parameters of the RFI pulse. The cdf
for the maximum N -sample integrated power across Npulse

independent pulses can be obtained similarly as a product
of the result for each individual pulse, as a function of the
parameters for each of the pulses, of which f0, φ, and Ns are
assumed independent. The cdf for the maximum N -sample
integrated power over an IN sample integration period also
follows as the product of the cdfs for each of the individual
pulses with the cdf for each of the remaining RFI-free frames
(i.e. a central chi-squared random variable with N degrees of

freedom). In this manner the probability of detection for the
IN sample integration period is determined as one minus the
final cdf given the A, f0, φ, Ns, and Np parameters for each
of the Npulse pulses.

A mean probability of detection for the entire integration
period is then computed by numerically averaging the final
product of Qχ2

N
(λ)(X0) and Qχ2

N

(X0) random variables over
sets of λ values corresponding to f0 uniformly distributed from
0 to 1/2, φ uniformly distributed from 0 to 2π, Ns equally
likely to take on the values 0 to N − 1, and independent
pulse parameters. The independence of multiple pulses within
the integration period results in the averages being identical
for each of the Npulse pulses. The averaged right tail cdf
is denoted by Qpulse(X0); the numerical evaluation of a
sum of double integrals is required for the determination of
Qpulse(X0). Numerical computations can be made reasonably
efficient by first creating a table of the Qχ2

N
(λ)(X0) function

in λ for each X0 (i.e. false alarm rate) of interest; a routine
in the DCDFLIB package [18] was used for evaluation of
Qχ2

N
(λ)(X0).

IV. SPECTROGRAM “PEAK PICKING”
Reference [15] shows that the generalized likelihood ratio

test for the signal model of Equation (5) involves “peak
picking” a spectrogram computed from the data, and describes
a practical implementation based on the power in the subchan-
nels of an N -point Fast Fourier Transform of each N -sample
frame. A set of I of these spectra results for the IN sample
integration period. The detector statistic T is implemented as

T = max
i,k

2

N

∣

∣

∣

∣

∣

N−1
∑

n=0

xi[n] exp

(

−j2π
k

N
n

)

∣

∣

∣

∣

∣

2

(14)

with the maximum taken over the I spectra and the N/2 − 1
FFT channels indexed by k = 1 to N/2 − 1; the total
number of FFT powers searched is then L = I (N/2 − 1). For
convenience in the following analysis, the k = 0 and k = N/2
bins are omitted when computing the maximum due to the
difference in properties between these bins (which contain
purely real numbers) and those having k = 1 to N/2 − 1.

The use of the FFT implies that this detector is explicitly
searching for sinusoidal interference; the reliance on FFT
powers results from the fact that the interference phase is
unknown. The search over the set of FFT channels k and
individual spectra i results due to the assumed unknown fre-
quency and time of arrival of the sinusoidal interference. This
detector essentially is a “max-hold” operation over measured
spectra, followed by computation of the maximum power
across frequency.

Reference [15] shows that the right tail distribution for T
when RFI is absent is given by

QnoRFI
peak (X0) = 1 − (1 − Qχ2

2

(2X0))
L (15)

which establishes the false alarm behavior of the detector. It is
shown in [15] that, for small false alarm rates, the false alarm
rate is approximately linearly proportional to L.

The detector T is the generalized likelihood ratio test only
for the specific signal model utilized by [15], which includes
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the assumptions that the sinusoidal RFI frequency is f0 = k0

N
where k0 is an integer from 1 to N/2− 1, that the RFI pulse
is exactly N samples, that the RFI pulse arrives always on
the first sample of an N point frame, and that only a single
RFI pulse is present within the IN size sample. Here the
performance of the “peak picking” test is examined when these
assumptions are removed.

First, for sinusoidal interference of arbitrary A, f0, and
φ occurring from samples n1 to n2 in an N -point frame,
the result of the FFT operation can be expressed analytically
(details not shown), and the power in each FFT channel k
written as λk(A, f0, φ, n1, n2). Reference [15] shows that in
the presence of additive white Gaussian noise, the power in
each of the FFT output channels k = 1 through k = N/2− 1
is a non-central chi-squared random variable with two degrees
of freedom and non-centrality parameter λk(A, f0, φ, n1, n2).
The cdf of the maximum power in channels k = 1 to N/2−1
is then

FRFIframe
peak (X0, A, f0, φ, n1, n2) = (16)

N/2−1
∏

k=1

(1 − Qχ2

2
(λk(A,f0,φ,n1,n2))(2X0))

Using equation (3), this result can then be aggregated with
the Nf frames of an individual RFI pulse as well as Npulse

independent pulses and the remaining RFI-free frames to
obtain the cdf for the maximum over i and k as a function
of A, frequencies f0, phases φ, and arrival times Ns of the
independent pulses. The corresponding probability of detection
is then numerically averaged over these parameters as for the
pulse detection algorithm.

The use of an FFT algorithm in the peak-picking detector
implies that sub-channel power information is available within
the radiometer. If average brightnesses in all sub-channels are
recorded following an IN sample integration period, RFI miti-
gation becomes possible by removing corrupted sub-bands, as
described in [5], at the expense of an increased radiometer
datarate. However such applications are not considered here
due to the current focus on the detection of RFI in any portion
of the radiometer observation.

V. KURTOSIS AND SPECTRAL KURTOSIS

The single channel kurtosis estimate is computed using the
entire NI sample integration period, as in [9]. In the large
sample limit, the kurtosis estimate approaches a Gaussian
random variable with a known mean and variance. Monte
Carlo tests using the generalized signal model described in
Section II-D confirmed that the Gaussian approximation was
acceptable for the 32768 sample integration period used here.

The spectral kurtosis method was implemented following
[14] on powers output from an N point FFT operation. Given
the powers in each FFT channel k = 1 to N/2−1, the spectral
kurtosis in a given channel is proportional to the average
of the power squared divided by the square of the average
power, with the averages taken over the I spectra obtained
in the integration period. The final spectral kurtosis detector
is implemented by taking the maximum value of the kurtosis
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Fig. 1. Comparison of receiver operating characteristics for the pulse, peak-
picking, single channel kurtosis, and spectral kurtosis detectors, using Np =

64, N = 32, Npulse = 1 (duty cycle 0.195%), and for R = 0.75 (plot (a)),
R = 0.5 (plot (b)), and R = 0.25 (plot (c))

across channels k = 1 to N/2−1. Because kurtosis estimates
are computed using a relatively small number of samples, it
is difficult to predict their statistical properties. Monte Carlo
simulations using 16384 realizations and the generalized signal
model of Section II-D are relied upon exclusively in examining
spectral kurtosis detector performance.

VI. RESULTS

Figure 1 compares receiver operating characteristic (ROC)
curves (i.e. plots of the probability of detection versus the
probability of false alarm) for the case N = 32, Np = 64
(pulse length 1.024 µsec), Npulse = 1 (duty cycle 0.195%)
for R = 0.75 (plot (a)), R = 0.5 (plot (b)), and R = 0.25
(plot (c)). Curves for the pulse, peak-picking, single channel
kurtosis, and spectral kurtosis algorithms are shown. Similar
results are plotted in Figures 2 and 3 for N = 8 and N = 256,
respectively. For these parameters, the maximum instantaneous
signal to noise ratio (equation 11) ranges from -1.5 dB (R =
0.25) to 3.3 (R = 0.75) dB.

An examination of Figures 1-3 shows that the pulse, peak
picking, and spectral kurtosis algorithms generally have sim-
ilar levels of performance, all of which exceed that achieved
by the single channel kurtosis detector (which is identical in
Figures 1-3 since no dependence on N is involved.) Perfor-
mance of the N dependent algorithms is best for N = 32,
which is the closest of the N values considered to the pulse
length Np = 64. For N = 8, the pulse detector out performs
the peak picking and spectral kurtosis methods, presumably
due to the relatively low spectral resolution achieved in these
algorithms with N = 8. The pulse detection algorithm also
outperforms the other methods for the N values shown with
R = 0.75.

Figures 4 and 5 present similar performance comparisons
for Np = 512, Npulse = 1 (duty cycle 1.56%) and for
N = 32 (Figure 4) and N = 256 (Figure 5). In this case, the
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Fig. 2. Same as Figure 1 but for N = 8
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Fig. 3. Same as Figure 1 but for N = 256

greatly increased duty cycle results in a reduced RFI signal
to noise ratio that ranges from −10.54 (R = 0.25) to −5.76
(R = 0.75) dB. Performance of the pulse detector is degraded
due to the low instantaneous signal to noise ratios of the
RFI, while the peak picking and spectral kurtosis methods
show good performance for N = 512 due to the spectral
resolution and associated processing gain from the correlation
computed in each FFT bin. Results for N = 32 again show
that performance degrades as the difference between N and
Np increases.

The influence of N is explored in detail for the peak picking
and pulse detectors in Figures 6 (Np = 64) and 7 (Np = 512).
Results in Figure 6 using R = 0.5 and R = 1.5 show a
similar level of performance between the two detectors, and
a strong impact of N in the R = 0.5 case, with the best
detection performance achieved for N = Np = 64. Pulse
detector performance is less sensitive to N than that of the
peak picking detector in the R = 1.5 case. Results in Figure
7 for Np = 512 show similar trends with N as well as the
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Fig. 4. Same as Figure 1 but for Np = 512 and N = 32
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Fig. 5. Same as Figure 1 but for Np = 512 and N = 256

degraded performance of the pulse detector at low R values
for this larger duty cycle interference.

Overall these comparisons show that the pulse, peak pick-
ing, and spectral kurtosis algorithms have roughly similar
performances for detecting pulsed sinusoidal interference in
the cases considered, with all having increased sensitivity as
the duty cycle of the interference is decreased (at a constant
R value) and with all increasing in performance for N values
near Np. The pulse detection algorithm is the simplest of these
three, since no FFT algorithm is required, but also suffers
the largest decrease in performance as the interference duty
cycle is increased. However, given the fact that many radar
systems operate with duty cycles of 0.1% or less, the pulse
detection algorithm appears to be well suited for detecting
radar interference in microwave radiometry.
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Fig. 6. ROC curves for the peak-picking (left) and pulse (right) detectors as
N is varied for Np = 64 and for R = 0.5 (top) and R = 1.5 (bottom)
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Fig. 7. Same as Figure 6 but for Np = 512

VII. FURTHER ANALYSIS OF PULSE DETECTION
ALGORITHM

The simplicity of the pulse detection algorithm allows it
to be incorporated as an “onboard” detector in a digital
radiometer receiver, as in [5]. In this case, a fixed threshold
value is used, and only the detection output (i.e. a single bit
for each radiometer integration period) is recorded instead of
the detector statistic itself. In such applications, properties of
the detector as a function of the threshold level chosen are
of interest. Here the threshold level is defined as a specified
number of standard deviations of the N sample integrated
power from its mean value, with both the mean and standard
deviation computed in the absence of interference. For the
chi-squared random variable with N degrees of freedom of
the RFI-free pulse detection algorithm, the mean and standard
deviation are N and

√
2N , respectively.

Figure 8 plots the false alarm rates achieved (equation (12))
versus this threshold for a 32768 sample integration period as
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Fig. 8. False alarm rate for the pulse detection algorithm versus threshold,
with N as a parameter and for a 32768 sample integration period. The
horizontal axis value β is defined so that the threshold value is N + β
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Fig. 9. Probability of a missed detection versus threshold with RFI strength
R as a parameter, using N = 64, Np = 64, and a 32768 sample integration
period. The horizontal axis value β is defined so that the threshold value is
N + β

√

2N .

N is varied. False alarm rates less than 1 percent are observed
for N = 32 and N = 64 with thresholds of around 5.77 and
5.08 standard deviations above the mean, respectively.

Figure 9 plots the corresponding probability of a missed
detection (i.e. one minus the probability of detection) versus
threshold for multiple R values using a 32768 sample integra-
tion period, N = 64, and Np = 64. At the one percent false
alarm level (i.e. 5.08 on the horizontal axis) the probability of
a missed detection is less than 4 percent for R = 0.75, and is
less than 0.5 percent for R = 1.

Figure 10 plots the probability of a missed detection versus
pulse length (assuming time samples at 16 nsec, so that the
pulse length in microseconds is 0.016Np) for a 32768 sample
integration period and for a fixed one percent probability of
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Fig. 10. Probability of a missed detection versus pulse duration in microsec-
onds (0.016Np) for a 1 percent probability of false alarm, with N and R as
parameters as indicated in the legend.

false alarm. Probabilities of a missed detection in this case
are greater than 9 percent for all the considered values of N
for RFI strength R = 0.5. For R = 1, probabilities of missed
detections of less than 0.5 percent are achieved with N = 32
and N = 64 for shorter pulse lengths (corresponding to lower
duty cycles and higher instantaneous signal to noise ratios.)
For fixed N and R, detection performance degrades as the
pulse length exceeds N .

Figure 11 presents the same results as in Figure 10 for the
peak picking detector. Performance is improved at R = 0.5
compared to the pulse detector for all but the shortest pulse
lengths, although probabilities of missed detections remain
greater than 10 percent. However the pulse detector with
N = 64 yields better performance at R = 1 for pulse lengths
less than 1.6 µsec, and the two are comparable for pulse
lengths between 1.6 and 2 µsec. For larger pulse lengths, the
peak picking detector with large N yields greatly improved
performance due to its high spectral resolution and processing
gain.

Figure 12 plots the probability of a missed detection for the
pulse detection algorithm with N = 64 versus the RFI strength
R, with Np as a parameter. The false alarm rate is fixed at one
percent as in Figures 10 and 11. Missed detection probabilities
of less than one percent occur for all the considered Np values
at R > 1.61. The case Np = 64 yields the best performance
only for a limited range of R values, although it is competitive
for the entire range. As expected, performance is observed to
degrade as Np becomes much larger or smaller than N .

As a final examination of the influence of the frame size N
and pulse length Np on the pulse detection and peak picking
algorithms, Figure 13 provides contour plots of the probability
of a missed detection for N and Np varying over the range
16, 18, · · · , 256 and for a one percent false alarm probability.
To include a finer range of N values in the plot, the integration
period IN was allowed to vary with N so that I remains an
integer; the resulting integration period is 32768 samples plus
or minus N/2 samples as necessary.
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Fig. 11. Probability of a missed detection using the peak picking detector
versus pulse duration in microseconds (0.016Np) for a 1 percent probability
of false alarm, with N and R as parameters as indicated in the legend.
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Fig. 12. Pulse detection algorithm probability of a missed detection versus
RFI ratio R for a 1 percent probability of false alarm, with N = 64 and Np

as a parameter indicated in the legend.

The results show that the effect of N on pulse detection
algorithm performance depends on the RFI strength R, with a
larger sensitivity to N observed in Figure 13 at R = 1. As in
Figures 10 and 12, performance is observed to be improved at
R = 1 for N near Np, and for the smaller Np values that result
in higher instantaneous signal-to-noise ratios for fixed R. Pulse
detection algorithm sensitivity to N is greatly decreased for
R = 1.5. In contrast, the detection performance of the peak
picking algorithm generally increases with N when N < Np,
and improved performance continues to be observed in some
cases for N > Np at larger R values. Comparison of the two
results shows the pulse detection algorithm is more sensitive
at R = 1 and 1.5 for smaller N values.
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Fig. 13. Contour plots of pulse and peak picking algorithm probability of
a missed detection (percent) versus N and Np for a 1 percent probability of
false alarm, with R as a parameter indicated in the plot titles.

VIII. CONCLUSIONS

The performance of four algorithms (the pulse, peak pick-
ing, single channel kurtosis, and spectral kurtosis methods)
for detecting sinusoidal pulsed interference in microwave
radiometer systems was compared. The RFI sources analyzed
have an unknown frequency, initial phase, and time of arrival
(which were averaged over in all the results shown) as well as
an unknown duration and amplitude. Variations of detector
performance with the latter two parameters as well as the
detection algorithm internal time scale N were analyzed. Both
the pulse and peak picking detectors have statistical properties
that can be readily modeled, although numerical integrations
are required in order to evaluate final detection probabilities.

Results show the pulse, peak picking, and spectral kurtosis
algorithms to yield performance that is roughly comparable
over the parameter space considered, while the single channel
kurtosis detector was found to have less sensitivity than the
other approaches. The pulse detection algorithm generally
yielded excellent performance for pulsed interference with
duty cycles of around 0.3 percent or less, but degraded as
RFI duty cycles increased. All detectors showed improved
performance when the internal time scale N was matched
to the RFI pulse length. In general the exact pulse lengths
of RFI sources are not known in microwave radiometry, but
it can be expected that many radar interference sources will
typically have pulse lengths of a few microseconds [13]. Use
of N ≈ 64 in the pulse detection algorithm seems reasonable
based on these properties given the results in Figure 10.

While only pulsed sinusoidal RFI sources were considered
here, it is to be expected that the pulse detector algorithm
should remain effective against any impulsive RFI, regardless
of source spectral properties, while the peak picking detector
is matched to sinusoidal interference. Further analysis of com-
bined detection and mitigation algorithms based on recording

measurements in the multiple subchannels produced in the
peak-picking and spectral kurtosis methods will be considered
in future work.
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