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ABSTRACT

The spatial spectrum of short sea waves is locally modulated by the presence of longer

waves or currents; in the remote sensing literature, this process is described by the “hy-

drodynamic modulation transfer function” (HMTF). Such modulations are important in

understanding radar images of sea waves with water wavelengths longer than the radar range

resolution. Existing models for the HMTF utilized in remote sensing are based on approxi-

mations derived from consideration of conservation of wave action. However the accuracy of

these approximations has been quantified only through comparison with experimental data;

in such comparisons, numerous empirical models for terms such as wind forcing and break-

ing wave dissipation are required that make direct evaluation of the hydrodynamic effects

difficult.

A method for providing direct insight into the hydrodynamic modulation of short sea

waves by longer waves is described in this paper, through use of numerical non-linear hy-

drodynamic codes for sea surface evolution. The codes applied are reviewed, and a Monte

Carlo simulation process based on a stochastic spectrum of short waves propagating over a
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single deterministic long wave described, including the data analysis techniques developed

to extract a numerical HMTF from the simulated surfaces. HMTF values obtained from the

simulations are compared to those from a first order wave action solution, and found to be

in reasonable agreement, although differences on the order of 10% are observed. A numerical

evaluation of long wave effects on the short wave dispersion relation is also provided.
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1 Introduction

It is well known that the amplitudes and wavenumbers of short water waves are modulated

when propagating over an underlying long water wave or current [1, 2]. These modulations

represent a non-linear hydrodynamic interaction between sea waves; such interactions how-

ever are typically not resonant interactions, so that no secular change of the short wave

spectrum occurs with time. Thus these effects are typically ignored in attempts to model

and forecast the sea surface spectrum using an energy balance approach.

Modulations of short waves by longer ocean waves do play an important role however

in radar imaging of the sea surface. In this case, the commonly applied “two-scale” model

of sea backscatter states that radar returns with a specific range cell are produced by short

waves (or Bragg waves) within the range cell, observed at the local incidence angle of the

range cell. When sea waves of wavelengths larger than the radar range cell are present within

a radar image, the resulting changes in the local incidence angle (“tilt modulations”) across

the larger sea waves produce variations in the measured radar cross section image, typically

allowing the sea waves to be observed. In addition to the tilt modulation effect, variation

in the Bragg wave amplitudes along the long waves through hydrodynamic modulations also

produce variations in the radar cross section with range. It is generally assumed in sea radar

imaging that the tilt modulation effect is well understood, so that remaining variations are

produced by hydrodynamic effects. This process allows empirical studies of the “hydrody-

namic modulation transfer function” (HMTF) (as in [3]) to be performed through analysis

of measured radar images. However the modulations obtained are influenced by numerous

geophysical factors at the time and location of the measurements, so that validating any

hydrodynamic theories of the HMTF can be difficult.

Existing analytical theories of the HMTF are primarily based the concept of conservation

of wave action [3, 4, 5, 6, 7]. In these theories, the basic equations state that the wave action
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of the short waves is conserved except for the presence of a set of source and dissipation terms.

The former include effects such as short wave generation by either wind forcing, non-linear

interactions, or wave breaking, while the latter includes viscous damping and other dissipative

effects. Empirical models are utilized to describe most of these contributions. Although it

is possible to numerically solve the resulting wave action equations through the method

of characteristics, an approximation to first order is typically used in the remote sensing

literature to determine the HMTF. At this order, long wave effects appear near identical to

those from currents, with the current amplitude equal to the horizontal component of the

long wave orbital velocity.

While this first order HMTF analysis has been applied in numerous remote sensing stud-

ies, significant evidence exists in the literature that this model under-predicts the actual

modulations observed [3, 8]. While such under-prediction can be corrected by modifying

or adding new source and dissipation terms in the wave action equations, it is difficult to

separate the accuracy of the hydrodynamic model from accuracy in description of source and

dissipation terms.

To address this issue, a study of the HMTF is described in this paper based on the use of

numerical algorithms for sea surface hydrodynamics. The hydrodynamic algorithm applied is

based on the pseudo-spectral method [9], hereinafter denoted as the “Watson-West” or WW

approach. This algorithm has been applied previously in studies of gravity wave evolution

[9, 10, 11, 12] as well as radar scattering from the sea surface [13, 14]. Although the pseudo-

spectral method is not exact, it has been shown in numerous studies [9, 10, 12] to provide high

fidelity hydrodynamic simulations so long as the order of the algorithm is sufficiently high

and so long as steep features are avoided in the surface evolution. The numerical approach

involves Monte Carlo simulation of the hydrodynamic evolution of a spectrum of short sea

waves in the presence of either one or two deterministic long waves. Because no wind, wave
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breaking, or viscous dissipation effects are included in the simulation, the results of this

simulation allow assessment of the accuracy of the first order HMTF often used in practice.

In Section 2, the WW algorithm is described, along with the simulation procedure utilized.

A method for extracting a “numerical HMTF” from the simulated data is presented in Section

3, and results obtained are presented in Section 4. A numerical study of the short wave

dispersion relation is described in Section 5. Section 6 provides a review of the analytical

first order HMTF for comparison with the numerical results. Tests show that the numerical

HMTF values are in reasonable agreement with those from the analytical theory, although

small differences are observed that indicate that improved formulations of the first order

theory may be desirable. Final remarks are provided in Section 7.

2 Numerical Hydrodynamic Simulations

2.1 Formulation

The studies of this paper utilize a one dimensional fluid surface of infinite depth, and assume

that the fluid is incompressible and inviscid; surface tension effects are also neglected. The

surface elevation is denoted as z = η(x, t) and the surface velocity potential as φ(x, t), where

(x, z) are the horizontal and vertical space coordinates, respectively, and t represents time.

The evolution of these two quantities is determined by the following equations [9]

φt = −gη − 1

2
φ2

x +
1

2
φ2

z[1 + η2
x] (1)

ηt = −φxηx + φz[1 + η2
x], (2)

where the subscript denotes the associated derivative and g is the gravitational acceleration

(9.8 m/s−2). We solve equations (1-2) using the pseudo-spectral method of [9], and retain
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terms up to 4th order in the slope expansion.

2.2 Initial conditions

Initial conditions for the simulations include one or two deterministic “long” wave(s) and

a stochastic spectrum of “short waves”, in order to study modulation of the short wave

spectrum. The specific initial condition with one long wave is

η(x, t = 0) = a1 sin(k1x) + ηs(x), (3)

φ(x, t = 0) = −a1

√

g/k1 cos(k1x) + φs(x) (4)

where the long wave has wavenumber k1 and amplitude a1. It is assumed that the long wave

lies in the gravity wave region, and the initial conditions are developed to produce a long

wave traveling in the x̂ direction in the linear hydrodynamic limit. Previous work with such

initial conditions [9, 12] shows the tendency of the long wave to approach a Stokes’ wave form

for moderate k1a1 values. The computational domain is set to 2π meters, and the long wave

wavenumber is set to k1 = 1 rad/m in the majority of the results to be shown. Note that

a scale transformation is possible for surface composed only of gravity waves, so that these

simulations also represent hydrodynamic effects for gravity wave surfaces with the length and

height dimensions scaled by a constant.

The initial short wave surface ηs is a realization of a Gaussian random process surface

with a Pierson-Moskowitz spectrum [13]:

S(ks) =
0.0081

4
k−3

s exp(− 0.74g2

k2
sU

4
19.5

), (5)

where U19.5 denotes the surface wind speed at height 19.5 m. This spectrum essentially is

a k−3
s spectrum for one dimensional surfaces, with a low frequency roll-off controlled by a
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windspeed parameter U19.5. The initial short wave spectrum is truncated to exist between

wavenumbers 30 rads/m and 170 rads/m only. The lower limit of 30 rads/m ensures that the

short waves are indeed “short” compared to the long wave, while the upper limit is chosen

based on surface sampling requirements. Although the parameter U19.5 was set to 3 m/s, the

portion of the P-M spectrum influenced by U19.5 has wavenumbers much less than 30 rads/m,

so that U19.5 has virtually no effect. The short wave velocity potential φs(x) was generated

again through a linear, x̂, traveling assumption for each spectral component of ηs(x). The

generated surface was sampled into 1024 points, providing sufficient resolution to resolve the

short wave spectrum while retaining fourth order computations in the WW method.

Because the linear assumption of the initial conditions does not match the nonlinear na-

ture of equations (1-2), we utilize a “ramp-up” procedure [9],[13] to reduce any discontinuities

that may be introduced. In this procedure, all non-linear terms in the evolution equations

(1-2) are multiplied by a ramp-up factor

WR(t) = e−( t−a
b

)2 (6)

for t < a, and by unity for t ≥ a. Note for t << a this term is zero, while it approaches

unity for t = a at a rate determined by b. We have tested several combinations of a and b,

and found a = 2 sec and b = 0.5 sec in equation (6) to yield reasonable predictions. Here 2

sec is approximately one period of the long wave.

As the surface evolves in time, short waves have only a minimal effect on the evolution

of the long wave, given their much smaller amplitude. The short wave spectrum, how-

ever, broadens from the truncated spectrum provided initially and exhibits some interactions

among short waves. However the dominant effect to be examined here is the variation in the

local short wave spectrum with position on the long wave. For this purpose, localized short

wave spectra will be introduced in Section 3 so that the variation of these localized spectra
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with position on the long wave can be observed.

2.3 Other information

The simulation was time stepped at ∆t = 0.001 sec for a duration of 5000 time steps (5 sec)

following the ramp-up period. Surface profiles were recorded every 0.1 seconds, providing

50 profiles per realization. The simulation was repeated using 1200 distinct short wave

surface realizations so that average spectra could be computed. Tests with larger numbers of

realizations showed this choice to provide reasonable convergence for the results illustrated.

Figure 1 compares the initial input spectrum and final ensemble averaged spectrum of short

waves in the presence of a long wave with k1a1 = 0.05. The result shows that the short

wave spectrum remains relatively constant during its evolution. The dataset produced by

the simulation consists of surface profile information η(xq, ti,Mj), where xq and ti refer to

the discretized horizontal and time coordinates, and Mj provides an index to the set of

realizations generated.

3 Determination of the numerical HMTF

The configuration of this simulation allows long-short wave hydrodynamic modulations to

be examined in detail. For this purpose, the computational domain in x is divided into sub-

regions, and local Fourier transforms (using a Fast Fourier Transform (FFT) algorithm) are

utilized to compute the spatially localized short-wave spectrum for each region. The specific

procedure is as follows:

1. Begin a loop over time ti;

2. Begin a loop over realizations Mj;
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3. Filter out all long wave components by passing the η(xq, ti,Mj) surface through

a spatial rectangular high pass filter with cutoff ks = 30 rads/m: call the resulting short

wave surface ηs(xq, ti,Mj);

4. Divide the x range into 31 spatial sub-regions, each sub-region has a half

overlap to its preceding one; label these sub-regions by their central x-values Xn;

5. Begin a loop over sub-regions Xn;

6. Multiply ηs(xq, ti,Mj) by a Gaussian window centered at Xn, and perform

an FFT zero padded to the length of the original profile on the result; denote FFT

output as ηsn(ks, Xn, ti,Mj)

7. Take |ηsn(ks, Xn, ti,Mj)|2 to obtain the spectrum S(ks, Xn, ti,Mj);

8. End loop over sub-regions;

9. End loop over realizations;

10. End loop over time.

In the above, the Gaussian window length is chosen as 64 points (∼ 40 cm) with overlap 32

points, which results in 31 spatial sub-regions; a plot of the first several Gaussian windows is

illustrated in Figure 2. Parameters of the Gaussian function are chosen so that the Gaussian

is at e−1 at 18.1 points from the center of the filter. Tests varying these parameters show

only minor effects on the obtained MTF values.

The localized spectrum S(ks, Xn, ti,Mj) can then be averaged over realizations to obtain

the ensemble average localized spectrum Sa(ks, Xn, ti), which describes the average evolution

of the spectrum with time in a given sub-region. This can be correlated to the approximate

9



long wave phase versus time in that sub region:

Φl = k1Xn − ω1ti, (7)

where ω1 =
√

gk1; it is also possible to determine the long wave phase numerically if de-

sired. Because tests showed only minimal differences between these two methods, the former

approach is utilized in the results shown. Finally, an additional average over time can be

performed to obtain S̄(ks, Xn), the ensemble and time average spectrum in a given sub-region.

Figure 3 illustrates the normalized quantity Sa(ks, Xn, ti)/S̄(ks, Xn) for sub-regions 1, 5,

10, and 15 (relative initial long wave phases of π/16, 5π/16, 10π/16, and 15π/16, radians,

respectively) and for ks values ranging from 50 to 100 rads/m, with k1a1 = 0.10. The

influence of the long wave is clearly visible in these plots through the periodic variation in

the normalized-localized spectra obtained; the period of the oscillation observed is consistent

with that of the long wave. Although some variations from simple oscillations are obtained,

the basic spectrum modulations are clearly correlated to the long wave phase in a given

sub-region.

Given this behavior, we define the numerical modulation R(ks, Xn, ti) as follows:

R(ks, Xn, ti) =
Sa(ks, Xn, ti) − S̄(ks, Xn)

S̄(ks, Xn)
. (8)

Note the spectrum in the denominator could be further averaged over sub-regions, but again

this modification does not yield significant variations in the obtained MTF values.

Figure 4 plots an example value of R versus time (ks = 70 rads/m in the 10th sub-region).

The oscillation of the spectrum is obvious, although an additional slow amplitude decay in

time is observed that is not directly related to the long wave phase. We performed several

tests of this slow decay, and found it to be a much slower periodic function, evolving at a
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time rate involving the group velocity of the short wave spectrum. While such effects do play

a role in the evolution of the surface, and could likely be captured by a full simulation of

the wave action equations, they are not of interest in studying first-order MTF effects, and

therefore a procedure for removing these slow time variations in extracting a numerical MTF

value was developed.

Specifically, the following functional form was used to describe the short wave spectrum

at a specified wave number and sub-region:

R(ks, Xn, ti) ≈ bc0(ks, Xn) + bc1(ks, Xn) sin(cg(ks)t) + b1(ks, Xn) sin(k1Xn − ω1t + Φ01(ks, Xn))

+ b2(ks, Xn) sin(2k1Xn − 2ω1t + Φ02(ks, Xn)),

(9)

where cg denotes the group velocity of the short wave at wavenumber ks. In equation (9),

the real valued coefficients b1 and Φ01 describe the amplitude and phase of a “first order”

numerical MTF, while the coefficients b2 and Φ02 are included to allow some description of

“second order” effects. The coefficients bc0 and bc1 model an additive correction to account

for the slow time evolution described previously. Other forms could be proposed as well,

but the above definition appears to provide a reasonable means for extracting the portion of

the spectrum modulation due to the long wave influence in the dataset utilized. Unknown

coefficients were determined using a least-squares fitting procedure to the R dataset; results

were then averaged over sub-regions to obtain a final numerical value of the MTF (i.e. b̄1(ks)).

An alternative procedure involving a simultaneous fit to the data in all subregions was also

considered; again the results were practically identical to those using the procedure described

and are therefore not discussed further.
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4 Numerical HMTF Results

4.1 One long wave

According to the wave action HMTF theory, the first order coefficient b̄1(ks) should be directly

proportional to k1a1, and it is reasonable to assume that the second order coefficients should

be proportional to (k1a1)
2. Therefore the results illustrated will be normalized by these

quantities.

Figure 5 plots normalized first and second order HMTF values ( b̄1(ks)
(k1a1)

and b̄2(ks)
(k1a1)2

) obtained

using k1a1 = 0.05 and k1a1 = 0.10. Results in the upper plot show the numerical b̄1 values to

be approximately 4 in both long wave cases, with a difference from the value 4 on the order

of 1% that depends weakly on ks. The second order coefficient is in the range 7.-8.5, and

shows a small decreasing trend as the long wave amplitude is increased.

HMTF phases averaged over sub-regions (Φ̄01 and Φ̄02) are plotted in Figure 6. First order

phase results in the upper plot show values near 0 degrees, with a very weak dependence on

ks and a slight trend (to -2 degrees ) versus the long wave amplitude. Second order phases

are near −90 degrees, although the first order values obtained are in the range −92 to −94

degrees for the smaller long wave case, and near −98 degrees for the larger long wave case.

Although several potential sources of small errors exist in the values obtained, overall the

numerical results indicate that the first order HMTF amplitude and phase are reasonably

approximated as 4(k1a1) and 0 degrees in the data obtained, while the second order coeffi-

cient (b̄2) is reasonably (but less reasonably than the first order coefficient) approximated as

7.5(k1a1)
2 with a phase of −90 degrees. While more detailed analyses could be conducted

to increase confidence in the prediction of any small deviations from these values, this basic

information is sufficient for comparison with the first order wave action theory, as will be

performed in Section 6.
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4.2 Two long waves

Additional numerical simulations were performed for initial conditions with two deterministic

long waves, using (k1, a1) = (1, 0.07) and (k2 = 5, a2 = 0.008). Figure 7 plots an example

R, for ks = 60 rads/m and in sub-region 18, and shows that more complicated trends versus

time are observed due to the presence of multiple long waves. The wave action theory at

first order predicts that these trends should be due to a simple summation of the first order

effects from each long wave. Accordingly, the fitting function (equation (9)) was modified to

include separate first and second order coefficients for the two long waves. Plots of the fit

curves in Figure 7 show that the fit accuracy is somewhat improved when second order terms

are included.

The two obtained normalized first order MTF values averaged over spatial sub-regions are

plotted in Figure 8, and again are found to be near 4. However the observed deviations from

4 are larger than those observed in the single long wave case, particularly for the k2 wave.

Again detailed numerical studies could be conducted to assess these small deviations, but the

basic conclusion from this analysis is that the linear summation of first order contributions

from each long wave in computing combined modulation effects appears reasonable.

5 A numerical study of the short wave dispersion rela-

tion

Modeling the effect of long waves on the dispersion relation of short waves is implicit in any

wave action theory analysis of the HMTF. When short waves propagate over a slowly varying

long wave or current, the short wave radian frequency ω is expected to undergo a Doppler

shift [15, 16]:

ω = ωs + ks · U, (10)
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where ωs is the short wave frequency in the absence of Doppler shift effects and U is the

underlying medium horizontal velocity with respect to the observer. Here the dot product

describes the relationship between the direction of the orbital velocity and the short wave

propagation direction.

To study this Doppler shift, a new dataset η(xq, ti,Mj) was generated using k1 = 0.0625

rads/m (wavelength and computational domain size 32π m). The long wave wavelength was

extended in this case due to a desire to perform an additional temporal Fourier analysis of the

short wave spectrum within a given sub-region; use of longer long-wave wavelengths results

in an increased amount of time during which the long wave phase remains relatively constant

in a given spatial sub-region, so that the temporal Fourier analysis is more reasonable.

A time step of 0.002 sec was used in the hydrodynamic simulations, with a total time

duration of 20.48 sec. The surface profile was discretized into 4096 points, and surface profile

information was recorded every 0.04 sec so that 512 temporal samples are available during

the time evolution. This time resolution is sufficient to capture the short wave temporal

frequencies of interest. The short wave spectral range utilized in the simulations was ks ∈

[5, 15] rads/m. Other simulation parameters are similar to those described previously.

Analysis of the dataset is similar to that used previously, with the exception that only

15 spatial sub-regions were used. In addition, the complete time history of FFT outputs

of the surface within each spatial sub-region were stored as the quantity a(ks, Xn, ti,Mj);

these are complex valued Fourier coefficients versus time in each sub-region. The 512 point

time history of these Fourier coefficients was then divided into 15 overlapping time intervals

labeled Tm through the use of Gaussian windows in time. An FFT of these localized time

histories was then performed; the amplitude squared of this FFT output is then denoted as

Ω(ks, Xn, ωs, Tm,Mj), and includes the time history (on a long time scale Tm) of the radian

frequency (ωs) spectrum for the surface spectrum at wavenumber ks in spatial subregion
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Xn. As in the previous analysis, this function can be ensemble averaged to eliminate the Mj

dependence.

Figure 9 illustrates ensemble averaged ωs spectra versus time subregion Tm for the case

k1a1 = 0.02, ks = 10 rads/m, and in several spatial sub-regions. The results appear consistent

with a modulation in the short wave dispersion relation due to currents produced by the long

wave orbital velocity. However the observed ωs spectra have non-zero width in frequency and

also show variations in amplitude that are more complex than equation (10) alone.

Using the ensemble averaged dataset Ω̄(ks, Xn, ωs, Tm), we identify the value of ωs that

maximizes Ω̄(ks, Xn, ωs, Tm) for all other parameters fixed as P (ks, Xn, Tm). A least squares

fit to the obtained P (ks, Xn, Tm) values is then performed using

P (ks, Xn, Tm) = a0(ks, Xn) + c0(ks, Xn) sin(k1Xn − ω1Tm), (11)

where a0 should be approximately ωs from equation (10), and c0 represents the amplitude of

the modulation due to long waves. Results for the a0 and c0 coefficients are then averaged

over spatial sub-regions (Xn) to obtain ā0(ks) and c̄0(ks).

Assuming that the current in the dispersion relation can be represented by the first-order

horizontal component of the long wave orbital velocity, the predicted value of ω can be written

as

ω ≈ ωs + ksω1a1 sin(k1x − ω1t). (12)

with ωs =
√

gks. Figure 10 plots the obtained coefficients normalized by their expected values

(i.e. ā0(ks)/ωs and c̄0(ks)/(ksω1a1)); values near unity would indicate that the approximation

of equation (12) is accurate. Results show the ā0 term indeed to be well predicted by the

theory, although the numerical results are slightly larger (by a factor less than 1%) than

the prediction. The first order modulation however is significantly less (around 0.88) than
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the predicted unity value, indicating that equation (12) may neglect some important effects.

Numerically obtained coefficients show a slight increasing trend versus ks in both cases.

Further dispersion studies were performed in an attempt to determine the source of the

reduced numerical modulation compared to the first order theory. Results shows the offset

between predictions to be near independent of k1a1, so that the error is clearly at first

order. To simplify the problem, simulations were also performed using a deterministic single-

frequency short wave packet, localized spatially on the long wave in the initial conditions;

results again showed a similar offset in obtained frequency modulations. Consideration of the

analytical theory suggests that corrections to the ωs term may be relevant, involving either

modulations of the wavenumber or local acceleration effects [7] involved in the definition of

ωs. Further investigation of these differences will be performed in future studies. Overall the

results show the standard first order prediction of the local frequency to have reasonable, but

not complete, accuracy.

6 Wave action theory

The theory of wave action was developed for analysis of the evolution of a weakly nonlinear

short wave “packet” as it propagates in an inhomogeneous background medium. The short

wave packet consists of a narrowband set of waves centered around a carrier wavelength.

In many water wave applications, the inhomogeneities encountered are current fields that

vary slowly in space and/or time compared to the corresponding scales of the wave packet

of interest. The concept of the conservation of wave action is based fundamentally on a

separation of scales in both space and time, with packet properties described in terms of

short scale wavenumber ks and angular frequency ωs parameters, while the slower variations

are described in terms of x and t for space and time scales, respectively. The theory has been

utilized to describe many phenomena of oceanographic interest, including the modulation of
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short waves by long waves relevant in this paper. Here we follow the first order solution of

the wave action equation [4, 5, 7] developed to capture long-short wave modulation effects.

While a numerical solution of the wave action equation (as in [17]) for the configurations

of this paper could be pursued, such numerical solutions are far less frequently utilized in

practice than the first order solution, and are therefore not considered further.

We also note that small differences in the form of the first order HMTF are observed in the

literature, for example between [4] and [7]. These differences are partially explained by the

inclusion of “heaving” effects due to the vertical component of the long wave orbital velocity

in [7], but also due to the neglect of a group velocity term in the zeroth order Lagrangian in

[7]. While other authors [4, 5] do not include the former, these other authors are uniformly

in agreement that the latter is necessary. We choose to follow the formulation of [5] in what

follows.

The wave action quantity N here is defined as [16]

N(ks, x, t) =
S(ks, x, t)

ωs

, (13)

where ks is the local short wave wavenumber, S(ks, x, t) is the local short wave spectrum, and

ωs =
√

gks is the short wave radian frequency. For the purposes of this analysis, the wave

action is modeled only for the short wave portion of the spectrum, and the dependencies on

x and t result due to long wave effects that occur on the larger spatial and time scales. The

analysis assumes that k and x are independent variables, although both depend on time.

Following [4, 5, 7, 16], an equation describing the conservation of wave action can be

written as

dN

dt
= Q, (14)

where the differential operator d is the material derivative and operates along the character-
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istic or “ray” paths, while the term Q represents any sources or sinks of wave action. These

include potential wind forcing, viscous damping, resonant non-linear wave-wave interactions,

or wave breaking [7] effects. Again in practice these terms are described primarily using

empirical relations. The simulations performed include none of these sources or sinks with

the exception of wave-wave interactions. However since no strong resonant interactions are

expected in the simulations, the term Q is set to zero in the remaining analyses.

For long-short wave modulation studies, it is convenient to rewrite equation (14) in phase

space:

∂N

∂t
+ ẋ

∂N

∂x
+ k̇s

∂N

∂ks

= 0. (15)

where the dot denotes the derivative with respect to time. The “ray” equations that describe

the evolution of the canonical variables x and ks are:

ẋ =
∂ω

∂ks

= cg + U (16)

k̇s = −∂ω

∂x
= −ks

∂U

∂x
, (17)

where cg = 1
2

√

g

ks
is the short wave group velocity for the wavenumber considered, and U is

the horizontal component of the long wave orbital velocity.

6.1 Determination of HMTF

Following [4, 5], a perturbative solution to first order is sought. A description of the long

wave orbital velocity consistent with this goal is

U = ω1a1 sin(Φ) (18)

where Φ = k1x − ω1t denotes the long wave phase.
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Because it is modulations of the spectrum, not of wave action, that are of interest in the

studies of this paper, the substitutions

∂N

∂t
=

1

ωs

∂S

∂t
(19)

∂N

∂x
=

1

ωs

∂S

∂x
(20)

∂N

∂ks

=
1

ωs

∂S

∂ks

− cg

ω2
s

S (21)

= − S

ωsks

[m + γs] (22)

are utilized to recast equation (15) in terms of the short wave spectrum alone; equation (22)

holds when it is assumed that the spectrum assumes the form S̄ ∝ k̄−m
s as given in equation

(5). The quantity γs(ks) is given by cg(ks)

cp(ks)
, where cg and cp are the group and phase velocities

of the short wave considered, respectively; for purely gravity waves, γs = 0.5. Note it is

assumed in equation (19) that the value of ωs used in the denominator of the wave action

definition is independent of time; this will be considered further below.

Substituting the above equations into equation (15) and combining with equations (16)-

(17) yields

∂S

∂t
+ cg

∂S

∂x
= −U

∂S

∂x
− [m + γs] S

∂U

∂x
(23)

A perturbation solution is now performed, in which the orbital velocity U is assumed to

be the small parameter. Writing

S = S(0) + S(1) + · · · (24)
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yields at zeroth order

∂S(0)

∂t
+ cg

∂S(0)

∂x
= 0 (25)

The above can be transformed into an ordinary differential equation by introducing the

variables

α = x − cgt (26)

β = x + cgt (27)

to obtain

∂S(0)

∂β
= 0 (28)

The solution to this equation is that S(0) is constant in β, while remaining arbitrary in α.

However if an initial condition of the zeroth order solution is chosen that is independent of

x at time zero (as is appropriate for the studies described here), the result is that S (0) is

independent of x and t.

Continuing to first order, the relevant equation is

∂S(1)

∂t
+ cg

∂S(1)

∂x
= − [m + γs] S

(0) ∂U

∂x
(29)

with the linear term in U vanishing due to the constant nature of S (0). Substituting the

specified form for U , and again making use of the variable transformation described previously
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allows this equation to be solved. The result is

S(1) = k1a1 sin(Φ)
[m + γs]

1 − cg

c1

S(0) (30)

where c1 =
√

g

k1

is the long wave phase velocity.

Because S(1) above is directly proportional to sin Φ, the predicted HMTF can now be

determined in terms of

S(1)

S(0) sin(Φ)
(31)

with the magnitude and phase of this quantity defined as R1 and Φ1, respectively. Substi-

tuting equation (30) in equation (31) and solving yields

R1 = (k1a1)
[m + γs]

1 − cg

c1

(32)

Φ1 = 0 (33)

This HMTF prediction is identical to that in [5].

Although only a single long wave was considered in this derivation, the linear nature of

the first order solution ensures that the combined effect of two long waves to first order is

simply the sum of their individual contributions.

6.2 Comparison with numerical simulations

For the numerical simulations performed, the spectrum utilized had a k−3
s dependence, yield-

ing m = 3 for use in equation (32). In addition, the value of γs is 0.5 for gravity waves, so
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that the predicted value of R1 can be simplified to

(k1a1)
3.5

1 − 1
2

√

k1

ks

(34)

Factoring out k1a1 as in Figure 5, the remaining coefficient ranges from a value of 3.766 at

ks = 50 rads/m to 3.684 at ks = 100 rads/m with k1 = 1 rad/m, compared to the observed

values near 4 from the numerical simulations (Figures 5 and 8). The predicted phase of zero

degrees is well matched by the numerical simulations.

Although further studies of the differences between the numerical and analytical models

could be performed, overall the results indicate that the first order HMTF derived from wave

action theory yields reasonable (within 10%) predictions of short wave modulations by longer

sea waves. It is noted that this difference remains consistent even as the long wave amplitude

is decreased; this fact motivates continued studies to improve upon the wave action theory

formulation applied here.

One possible correction involves inclusion of time variations in ωs in computing the time

derivative of the wave action, so that

∂N

∂t
=

1

ωs

∂S

∂t
− cg

ω2
s

S
∂ks

∂t
(35)

as opposed to equation (19). The result of this modification is a change in the value 3.5

in equation (34) to 4; the final predicted HMTF values now exceed 4 by 5 to 8%, whereas

the original values were less than 4 by similar percentages. Therefore no clear improvement

results from this change.

A second possible correction involves the inclusion of local acceleration effects as described

in [7]. In this case, the gravitational acceleration is modified along the long wave by the

vertical long-wave acceleration; this change in the local gravitational acceleration is modeled
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by introducing an additional − ∂ω̃s

∂x
term on the right hand side of equation (17). The local

frequency is given by

ω̃s =
√

g̃ks (36)

within which only g̃ is considered a function of x. The method for determining the local

gravitational acceleration g̃ is described in [7]. Following this process results in a change in

equation (34) to

(k1a1)
3.5

(

1 + 1
2

√

k1

ks

)

1 − 1
2

√

k1

ks

(37)

which varies from 4.033 at ks = 50 rads/m to 3.87 at ks = 100 rads/m when normalized.

Although these values are closer to those obtained numerically, the inclusion of local accel-

eration effects in fact increases the error in the short wave dispersion relation fits described

in Section 5. For this reason, the modeling of local acceleration effects used here cannot be

considered completely validated.

While further extensions of the wave action theory to include other effects or second

order contributions for comparison with the second order numerically obtained results are

possible, the first order theory described here is most commonly used in practice, and is

the most relevant in applications. Further examinations of improvements to the wave action

theory are left for future work.

7 Concluding Remarks

A numerical study of the modulation of short sea waves by longer waves was performed

in order to provide an assessment of the first order “hydrodynamic modulation transfer

function” (HMTF) commonly used in remote sensing of the sea. The use of numerical
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simulations allowed examination of the theory in a controlled environment, without need for

empirical models of effects such as wind forcing and wave breaking. Results show the first

order HMTF to provide a reasonable prediction of the short wave modulations observed in

the numerical simulations. Numerical results also show the basic applicability of the standard

Doppler shifted dispersion relation in the cases considered. However in both of these areas,

differences on the order of 10% from the commonly used analytical theories were encountered,

indicating that revisions to the standard first order forms may be possible to yield improved

predictions.

Future work will include further analysis of the basic wave action theory formulation and

its first and second order HMTF predictions, as well as more detailed numerical simulations

over a wider range of short and long wave environments. The numerical procedures presented

here should be applicable to such studies with only minor modifications.
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Figure 1: Comparison of initial and final short wave spectra with k1a1 = 0.05
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Figure 5: Numerically obtained normalized HMTF amplitudes
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