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Band-limited exponential correlation function for
rough surface scattering
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Abstract— A band-limited exponential correlation function is
presented for use in studies of rough surface scattering. This
model of surface statistics is developed by multiplying the
power spectral density of a standard exponential correlation
function surface with a Gaussian roll-off at high frequencies
in order to limit the high frequency spectral content of the
surface. A parameter is introduced to describe the Gaussian roll-
off, and the corresponding correlation function is determined.
The primary proposed use of the model is in assessing the
contributions of surface high frequency content in the scattering
process, particularly in approximate theories of surface scat-
tering. Methods for incorporating this surface description into
the standard approximate scattering theories are described, and
sample backscattering results provided to illustrate use of the
model.

Index Terms— Rough Surface Scattering, Soil Moisture Sens-
ing

I. INTRODUCTION

IT is a common practice in studies of soil surface scattering
to describe the rough soil surface as a stationary Gaussian

random process with an exponential correlation function [1].
Numerous studies have shown both that measured soil surfaces
have correlation functions similar to an exponential function,
and that measured backscatter data from soil surfaces are often
more reasonably modeled using an exponential correlation
function. An improved overall understanding of soil surface
properties beyond the exponential model has been considered
to a lesser degree [2], and, at present, the exponential model
remains the most commonly used description in soil surface
scattering studies.

A fundamental question common to all models of soil
surface statistics involves the accuracy and relevance of their
high frequency (i.e. very short length scale) regions. While
the exponential surface model includes roughness variations
down to arbitrarily small length scales (and also has the asso-
ciated infinite surface rms slope), true soil surface roughness
properties become less meaningful at length scales shorter
than the order of 1 mm due to the “clodding” properties of
many soil surfaces. Measured soil surface properties have also
not been well reported for these length scales. In addition,
results described in [3] from a study of 1-D surface scattering
suggest that exponential surface length scales shorter than one
tenth of the electromagnetic wavelength (in cases where the
surface correlation length is larger than the electromagnetic
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wavelength) have little influence on electromagnetic scattering.
However, in a companion work to this paper [4] it is shown
for the physical optics theory of rough surface scattering with
exponential surfaces that roughness scales even much shorter
than the electromagnetic wavelength make a non-negligible
contribution to predicted scattered fields. Therefore assessing
the influence of the high frequency portion of the surface
spectrum on scattered fields remains an important issue for
continued studies of soil surface scattering.

Two recent works [5]-[6] have proposed alternative surface
descriptions that produce exponential-like correlation func-
tions while varying surface high frequency content, in order
to investigate the contributions of surface high frequency
components to the scattering process. However the models
proposed simultaneously vary other surface properties (such
as the slope of the high frequency portion of the surface
spectrum) in addition to reducing surface high frequency
content, making interpretation of the results obtained less clear.

This work presents a “band-limited” exponential surface
model to allow more direct examination of the influence of
surface high frequency content on the scattering process. In
contrast to previous exponential-like descriptions, the band-
limited model is derived simply to truncate the high frequency
portion of the original exponential surface at a specified length
scale, without varying other properties of the surface. In order
to obtain analytical forms for both the surface correlation
function and its power spectrum, a Gaussian function is
used to perform the truncation; this choice also avoids the
oscillations (or sidelobe effects) that would be introduced into
the correlation function with other truncation methods. The
next section presents the model in terms of both its power
spectral density and correlation function. Use of this model
in several approximate theories of rough surface scattering is
then discussed in Section III. A small set of sample results
are illustrated in Section IV in order to demonstrate use of the
band-limited surface model in approximate theories of surface
scattering. A more detailed study using the model to assess
high frequency surface contributions in the physical optics
theory is available in [4].

II. THE BAND-LIMITED EXPONENTIAL CORRELATION

FUNCTION

A. Definitions

Begin with the Fourier transform relationship between the
surface correlation function C(x, y) and the power spectral
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density W (kx, ky):

h2C(x, y) =

∫

∞

−∞

dkx

∫

∞

−∞

dky eikxxeikyyW (kx, ky) (1)

where h2 is the surface height variance. This definition and the
fact that C(0, 0) = 1 shows that the power spectral density is
normalized so that its integral over wavenumber space is h2.
If we define the Fourier transform operator F and its inverse
F−1 through

(2π)
2 F {q(x, y)} =

∫

∞

−∞

dx

∫

∞

−∞

dy e−ikxxe−ikyyq(x, y)

(2)

F−1 {Q(kx, ky)} =

∫

∞

−∞

dkx

∫

∞

−∞

dky eikxxeikyyQ(kx, ky)

(3)

then Equation (1) and its inverse can be rewritten as

h2C(x, y) = F−1 {W (kx, ky)} (4)

W (kx, ky) = F
{

h2C(x, y)
}

(5)

For surfaces with isotropic statistics (i.e. independent of
direction), the correlation function and power spectral density
can be written as C(ρ) and W (kρ), respectively, where ρ =
√

x2 + y2 and kρ =
√

k2
x + k2

y . Only isotropic surface models
are considered in this paper.

Surfaces with an exponential correlation function have

Cexp(ρ) = exp
(

− ρ

L

)

(6)

Wexp(kρ) = F
{

h2
expCexp(ρ)

}

(7)

=
h2

expL2

2π

(

1 + (kρL)
2
)

−1.5

(8)

where hexp is the rms height of the exponential surface and
L is the surface correlation length, called the “large scale”
correlation length in what follows. The k−3

ρ nature of the
power spectral density for large kρ values results in the
unbounded rms slopes of the surface.

As an aside, another recently proposed model of soil surface
statistics is the generalized power spectrum model of [7],
which has a basic form similar to equation (8) but uses
the power of the

(

1 + (kρL)
2
)

term as a parameter. While
reference [7] shows that use of the generalized power spectrum
model can produce somewhat improved agreement with the
measured soil surface scattering data of [8] compared to a true
exponential model, the advantages of the generalized power
spectrum model remain to be conclusively demonstrated. The
generalized power spectrum model is not applicable for the
goals of the current study because it does not directly limit
the high frequency content of the true exponential surface.

A second Fourier transform pair to be used is that of a
Gaussian function:

Cgaus(ρ) = exp
(

− (ρ/LS)
2
)

(9)

Wgaus(kρ) =
h2

gausL
2
S

4π
exp

(

−
(

kρLS

2

)2
)

(10)

where LS will be termed the “short scale” correlation length in
what follows. Note the power spectral density in the Gaussian
case decreases rapidly for kρ > 2

LS
.

B. Band-limited exponential power spectral density

The band-limited exponential power spectral density is
defined as a multiplication of the standard exponential power
spectral density with a Gaussian roll-off at high frequencies:

W (kρ) =
h2L2

2π

(

1 + (kρL)
2
)

−1.5

[

1

R
exp

(

−
(

kρLS

2

)2
)]

(11)

Constants in the Gaussian power spectral density have been
removed in this process, and replaced with the normalization
factor R, which will be defined to ensure that the integration
over wavenumber yields h2. Using integral identities from [9]
(number 3.369), it can be shown that the normalization factor
is

R = 1 − q

√
π

2
e

q2

4 erfc
(q

2

)

(12)

where erfc represents the complementary error function [9],
and the parameter q is defined as LS/L. Given the presence
of R in the band-limited exponential power spectral density,
the low frequency portion of the spectrum is identical to that
of a true exponential surface with an increased rms height
of hexp = h/

√
R. Therefore the band-limited surface rms

height will be set to h = hexp

√
R when comparing with

true exponential surface (rms height hexp) properties in what
follows.

The Gaussian roll-off factor in equation (11) directly ac-
complishes the goal of reducing the surface high frequency
content while only requiring a single additional parameter,
LS (or equivalently q), for which smaller values shift the
truncation point to higher frequencies. Figure 1 is a plot of
normalized power spectral densities W (kρ)/Wexp(0) (assum-
ing h = hexp

√
R, hgaus = hexp, and, for the Gaussian

spectrum, LS = L) for varying values of q compared to
the true exponential power spectral density. The reduction in
high frequency content associated with the Gaussian roll-off
is obvious. Figure 2 is a plot of the percent decrease in rms
height for the band-limited exponential surface compared to
the true exponential surface, i.e. 100

hexp−h

hexp
= 100(1 −

√
R)

versus q. The decrease in rms height becomes small in the true
exponential limit q = 0, while the overall decrease remains
less than approximately 10 percent for q values less than
approximately 0.25.

It is also possible to derive the slope variance s2 of the
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Fig. 1. Comparison of normalized power spectral densities
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Fig. 2. Percent decrease in band-limited surface rms height compared to true
exponential surface (100(1 −

√

R)) versus q = LS
L

. Note for q < 0.25, the
decrease is less than 10 percent.

band-limited exponential surface analytically as

s2 = 2π

∫

∞

0

dkρ k3
ρW (kρ) (13)

=

(

h

L

)2 √
π

qR
exp

(

q2

4

)

[(

1 +
q2

2

)

erfc
(q

2

)

− q√
π

exp

(

−q2

4

)]

(14)

≈
(

h

L

)2 √
π

q
(15)

with the last approximation holding as q approaches zero.
However, use of this slope variance in a geometrical optics
(GO) theory of surface scattering should be performed care-
fully if LS is much smaller than the electromagnetic wave-
length, since contributions from short scale surface features

may not be well modeled by the GO approach [5]-[6]. Further
information on the geometrical optics theory for exponential
surfaces is provided in [4].

C. Band-limited exponential correlation function

The correlation function for the band limited exponential
surface can be found through equation (4). Since W (kx, ky)
here has been defined in terms of a multiplication of Wexp

and Wgaus, it is possible to use the convolution property of the
Fourier transform in finding C(x, y). The convolution property
states that

C(x, y) =
1

h2
F−1 {AWexp(kx, ky)Wgaus(kx, ky)}

=
Ah2

(2π)
2

∫

∞

−∞

dx′

∫

∞

−∞

dy′Cexp(x′, y′)

Cgaus(x − x′, y − y′) (16)

where the constant A is found to be 4π
h2
gausL

2
S

by comparing
with equations (8), (10), and (11), and where the rectangular
coordinate forms of Cexp and Cgaus are used.

Transforming the integral in equation (16) into polar co-
ordinates, and again using an integral identity from [9] (no
8.431.3), equation (16) can be simplified to

C(ρ) =
2e

−
ρ2

L2
S

RL2
S

∫

∞

0

dρ′ρ′e
−

ρ′2

L2
S I0

(

2ρρ′

L2
S

)

exp

(

−ρ′

L

)

(17)
where I0 is the modified Bessel function of the first kind of
order zero [9]. If the factor exp

(

−ρ′

L

)

is expanded in a power
series, then another integral identity ([9], no. 6.643.2) and
properties of the Whittaker function ([9], no. 9.22) can be
used to obtain

C(ρ) =
e
−

ρ2

L2
S

R

∞
∑

n=0

(−q)
n

n!
Γ
(n

2
+ 1
)

M

(

n

2
+ 1, 1;

ρ2

L2
S

)

(18)
where

Γ
(n

2
+ 1
)

=
(n

2

)

! (19)

applies for n even, and

Γ
(n

2
+ 1
)

=
√

π
n!!

2
n+1

2

(20)

applies for n odd, with n!! = (n)(n− 2) · · · (1). M(a, b; z) in
equation (18) is the confluent hypergeometric function of the
first kind [10]. This form is expected to converge well when
ρ < L due to the series expansion utilized.

While equation (18) may appear complex due to the inclu-
sion of M , in fact, the values of M needed can be evaluated
in a recursive process. This is due to the recursion relation
[10]

M(a, 1; z) =
1

a − 1
[(2 − a) M(a − 2, 1; z)+

(2a − 3 + z)M(a − 1, 1; z)] (21)
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which can be initialized using

M(0, 1; z) = 1 (22)

M(
1

2
, 1; z) = exp

(z

2

)

I0

(z

2

)

(23)

M(1, 1; z) = exp (z) (24)

M(
3

2
, 1; z) =

∞
∑

m=0

(z

2

)m (2m + 1)!!

(m!)
2 (25)

For larger values of ρ, asymptotic forms of M [10] can
be substituted in equation (18). The series then simplifies
considerably, with the result

C(ρ) ≈ exp
(

− ρ
L

)

R

[

1 +
(q

2

)2
(

1 − L

ρ

)

+
1

2

(q

2

)4
(

1 − 2
L

ρ
−
(

L

ρ

)2

−
(

L

ρ

)3
)

+ · · ·
]

(26)

An examination of the convergence of equation (26) shows
it to be useful for distances ρ greater than approximately
10LS . The near exponential form of the correlation function is
obvious in equation (26), along with the influence of q. Note
that even at very large values of ρ, the correlation function
does become exactly exponential unless q approaches zero.

From equation (26), it is possible to derive the correlation
length Lbl of the band-limited exponential surface, which is
slightly perturbed from that of the true exponential surface L.
Use of equation (26) is reasonable for this purpose so long as
q is less than approximately 0.25. To second order in q, the
true correlation length is

Lbl ≈ L

(

1 − log(R)

1 − q2

4

)

(27)

While Lbl is the true correlation length of the band-limited
surface, it is preferable to continue to express surface prop-
erties in terms of the original exponential correlation length
L.

In scattering computations, it is the surface covariance
function h2C(ρ) that is utilized; therefore comparisons of
covariance functions among surface descriptions are most
relevant. The comparison of interest is that of h2

expCexp(ρ)
with h2C(ρ), which is illustrated in terms of Cexp(ρ) and

h2

h2
exp

C(ρ) = RC(ρ) in Figure 3 for q = 0.05 and q = 0.1.
A Gaussian correlation function is also shown with hgaus =
hexp and LS = L. The figure shows the near-exponential
nature of the band-limited exponential case, especially at larger
distances from the origin. The Figure inset provides higher
resolution near the origin, and demonstrates the limited high
frequency content in the band-limited case since the scaled
correlation functions show a quadratic behavior as opposed to
the linear dependence of the true exponential surface. However
the band-limited exponential plots clearly approach the true
exponential case near the origin as q is decreased. Note the
scaled covariance functions are not required to approach unity
at the origin in the band-limited case, due to their normaliza-
tion by h2

exp instead of h2. It appears likely that experimental
measurements of soil surface correlation functions would be
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Fig. 3. Comparison of scaled band-limited exponential correlation functions
with q = 0.05 and 0.1 with true exponential and Gaussian correlation
functions.

unable to distinguish between the the true exponential and
band-limited exponential cases unless extremely high accuracy
in the experimental measurement were achieved near the origin
of the correlation function.

III. EVALUATION OF SURFACE SCATTERING MODELS FOR

THE BAND-LIMITED EXPONENTIAL CORRELATION

FUNCTION

Numerous approximate theories of rough surface scattering
are available [11]; choice of a theory that is most appropriate
for a given problem depends on the surface and sensor
parameters of interest. In most surface scattering models, the
influence of the high frequency portion of the surface spectrum
on the scattering process is not immediately obvious, and
only repeated computations as the surface high frequency
content is varied can be used to investigate this question.
Because the band-limited exponential surface model provides
a simple means for varying surface high frequency content, it
is desirable to assess the use and impact of the band-limited
exponential model in these theories.

This issue is considered for a subset of theories, including
the small perturbation method (SPM) [1], physical optics (PO)
[1], the “integral equation method” analytical model (IEM)
[1],[12]-[13], the small slope approximation (SSA) [14]-[16],
and the reduced local curvature approximation (RLCA) [17].
Incorporation of the band-limited model into numerical studies
of surface scattering is also discussed. A discussion of the
geometrical optics (GO) theory for exponential surfaces is
provided in [4].

A. Small perturbation method

In the first-order SPM, applicable for small-slope surfaces
with small heights and correlation lengths compared to the
electromagnetic wavelength, the scattered power is directly
proportional to the surface power spectral density evaluated
at the Bragg wavenumber (i.e. kρ,B = 2k sin θ for backscat-
tering, where k is the electromagnetic wavenumber and θ is the
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incidence angle.) The contribution of high frequency surface
content to the scattering process is therefore obvious, and
surface length scales shorter than one half the electromagnetic
wavelength have no impact on the scattering process.

If scattering from the band-limited exponential surface of
rms height h = hexp

√
R is to model scattering from a true

exponential surface with rms height hexp, we require

exp

(

−
(

kρ,BLS

2

)2
)

≈ 1 (28)

If we replace kρ,B with its maximum value of 2k, the
above requires kLS << 1. Thus in the SPM limit, LS

must be small compared to the electromagnetic wavelength
in order to model scattering from a true exponential surface.
The condition required for kLS is most restrictive for larger
Bragg wavenumbers (e.g. backscattering at large incidence
angles), and less restrictive for smaller Bragg wavenumbers.
For example, using kLS = 1 results in a 4.3 dB reduction in
band-limited exponential backscattered incoherent normalized
radar cross section (NRCS) values at grazing incidence, but
only a 2.2 dB reduction at 45 degrees incidence. Note these
specific values are applicable only for small height surfaces.

B. Physical optics and IEM

Both the PO and “single-scattering” IEM theories obtain
expressions for the NRCS σ that involve integrations of the
form [1]:

σ ∝
∫

∞

−∞

dx

∫

∞

−∞

dy e−ikdxxe−ikdyy
{

eκ2h2C(x,y) − 1
}

(29)
where kdx and kdy are the differences between the x and
y components, respectively, of the scattered and incident
electromagnetic vector wavenumbers, and κ depends on the z
components of the wavenumber difference in a manner that is
distinct for the PO or IEM theories. It is common in evaluating
such integrations to use the expansion

eκ2h2C(x,y) =

∞
∑

m=0

(

κ2h2
)m

m!
Cm(x, y) (30)

so that the required integration can be expressed in terms of a
sum involving the Fourier transform of the mth power of the
surface correlation function, labeled W (m)(kdx, kdy). For the
true exponential surface, W (m) can be determined analytically,
making evaluation of PO or IEM NRCS predictions possible
in terms of a straight forward series summation.

For the band-limited exponential surface, W (m) is not easy
to obtain analytically, and the above approach fails. Instead, a
direct numerical integration of equation (29) is used (without
the series expansion of equation (30)), as is common for
other spectral types such as the power-law spectrum model
of the sea surface. After a transformation of the integration in
equation (29) into cylindrical coordinates, the results simplify
into a single integral over the term inside the brackets in
equation (29) multiplied by a zeroth order Bessel function
of the first kind J0(kdρρ) and by ρ. Numerical evaluation
of this oscillatory integral can be performed by breaking the

integration domain into sub-intervals between the zeros of the
Bessel function. Doing so allows the numerical integration to
be written in terms of a summation of an alternating series of
terms (i.e. each sub-integral), the convergence of which can be
accelerated using an Euler transformation [18]. The resulting
computation remains highly efficient and easily evaluated in
seconds for multiple scattering angles with desktop computing
resources. The fact that the band-limited surface correlation
function is always positive (due to the choice of the Gaussian
truncation function) greatly simplifies the resulting algorithm.

Note the IEM model utilized here includes the “transition
function” defined in [12]. Though a similar description for
backscattering is provided in [13], typographical errors in [13]
make use of [12] and [1] preferable. The IEM solution for the
backscattered NRCS consists of three terms, each of which
requires a separate integration of the form of equation (29).

PO predictions are generally expected to be valid for small-
slope surfaces with moderate to large rms heights in terms of
the electromagnetic wavelength, and for near-specular angular
regions (i.e. near normal incidence for backscattering.) The
IEM was formulated to bridge between the PO and SPM
theories, and is therefore described as providing accurate
predictions for small-slope surfaces of large or small heights
compared to the EM wavelength. Due to issues with the IEM
for bistatic scattering predictions that have been discussed
previously in the literature [11],[19], IEM results are shown
only for backscattering. More recent developments of the IEM
may remove this limitation, but are not utilized in this paper.

C. SSA and RLCA

Both the SSA and RLCA theories express scattered fields
as a series of increasingly complex terms; the basic form of
each series term is identical for the SSA and RLCA, but
the “kernel” functions involved in each are distinct. Here the
contributions of two field series terms are included, resulting
in three power terms (i.e. the power in each series term and
the correlation between them) included in the NRCS. The first
field series term has a form identical to the PO field prediction;
in the RLCA the first series term is exactly identical to PO,
while in the SSA, the angular function multiplying the PO
integral is modified to produce a match to the SPM at first
order in the small height limit. The second field series term
also involves a PO-like integration, but includes an additional
Fourier transform operation inside the integration over surface
Fourier coefficients multiplied by an kernel function. When
the second field series term is included, the additional Fourier
integration results in more complex NRCS equations, so that
the computational expense of evaluating SSA or RLCA predic-
tions is larger than that from evaluating PO or IEM predictions.
Here the procedure used is based on numerical integration of
equations (4)-(6) in [15], using the known correlation function
and power spectral density of the band-limited exponential
surface. This process requires discretizing the spatial integrals
at a rate that is consistent with the high frequency content of
the surface; as kLS is made smaller, finer discretizations (thus
more points in the integration) are necessary. In the results to
be shown, computational requirements were on the order of ten



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. X, MONTH XXXX 6

seconds for computing the NRCS at a single angle. While this
is significantly larger than the PO or IEM requirements, the
overall computational load remains reasonable for a desktop
computation.

Like the IEM, the SSA and RLCA were formulated to
match both the PO and SPM in appropriate limits either
for backscattering or bistatic scattering; unlike the IEM, both
theories provide a match to the SPM up to second order in
the small height limit. While the SSA achieves the high- and
low-frequency limits for perfectly conducting surfaces, and the
RLCA achieves a match to both PO and SPM for perfectly
conducting or penetrable surfaces, it has been shown [15]-[16]
that the SSA fails to match the PO for penetrable surfaces.
Given this issue and the properties of the IEM, particular
attention will be given in the next section to relationships
between IEM, SSA, and RLCA NRCS values illustrated.

D. Numerical computations of surface scattering

The strong high frequency content of the exponential sur-
face model is a particular issue in performing Monte Carlo
simulations of scattering from true exponential surfaces using
the method of moments (MOM) [20]. Because the MOM
uses a discretization of the surface profile, a truncation of
the high frequency portion of the spectrum is implicit when
this discretization is applied. In “point matching” MOM for-
mulations, the surface electromagnetic fields are discretized
on the same grid as the rough surface profile, so that the
grid must be chosen to resolve both the important roughness
features of the surface as well as the variations of the surface
fields. The influence of the discretization rate on the MOM
is best investigated by truncating the high frequency content
of the surface at a fixed cutoff wavenumber less than that of
the spatial discretization, and then examining convergence of
the resulting fields as the discretization is made finer. Once
convergence of the fields is achieved, the process can be
repeated with a modified surface spectral truncation point in
order to examine the influence of the truncation.

Typically a direct (i.e. rectangular window) truncation of the
surface spectrum is used in this process. However it is also
typically of interest to compare results obtained from MOM
simulations with those obtained from approximate theories
of rough surface scattering. Because the latter are simplified
through use of the band-limited exponential model, it may
also often be desirable to utilize the band-limited model in the
MOM. Determination of an appropriate discretization that is
sufficient to resolve surface roughness variations is simplified
when the band-limited model is used, since surface roughness
in length scales much shorter than LS is greatly attenuated.

IV. SAMPLE SCATTERING PREDICTIONS USING THE

BAND-LIMITED EXPONENTIAL CORRELATION FUNCTION

A. Case considered

Sample results for scattering from band-limited exponential
surfaces are illustrated in this section in order to demonstrate
use of the band-limited model in the scattering models of the
previous section. Further studies providing a more detailed
assessment of the influence of surface high frequency content

in particular scattering models will be reported in the future;
reference [4] provides such a study for the PO. While the
results to be shown are limited and primarily consider only a
single set of surface statistics, comparison of the predictions of
the surface scattering theories considered nevertheless allows
some insight into the performance of these models for multi-
scale surfaces with truncated high frequency content.

The case considered has khexp = 1.075, kL = 6, and
ε = 4 + i; these relatively smooth surface statistics were
chosen to simplify the numerical computations that will be
shown, as well as to be within the expected validity regions of
the “advanced” surface scattering models (IEM, SSA, RLCA)
while outside those of the classical SPM and PO. The values
of kLS used are either 1 (so that q = 1/6 and kh = 1) or 0.5
(so that q = 1/12 and kh = 1.036.) The use of larger kLS

values is useful both in numerical and the SSA and RLCA
models, since the required discretization of surface high spatial
frequency information is reduced. Note a similar comparison
of scattering models for surfaces with Gaussian correlation
functions has been reported previously [21].

B. MOM computations

Numerical scattering results were computed using the MOM
with the integral equation formulation described in [22]-
[23]. Surface sizes were chosen as 32 by 32 electromagnetic
wavelengths, sampled into 512 by 512 points, resulting in
around one million unknowns (4 unknowns per surface point)
for a single surface realization in the Monte Carlo simulation.
An iterative matrix equation solution was utilized, and the
“canonical grid method” with one series term and a “strong
region” diameter of 2.5 wavelengths was used to acceler-
ate required matrix-vector multiply evaluations. Computations
were performed for incidence angles of 10, 20, · · · , 50
degrees, and the results to be shown are averages over 80
surface realizations obtained through the use of IBM SP3
parallel computing resources at the Maui High Performance
Computing Center [24]. Computations on a single SP3 node
for a single realization required approximately 10 CPU hours
in order to obtain results for one incident polarization. Ad-
ditional realizations were included to obtain 152 realizations
at incidence angle 50 degrees. Incoherent NRCS values are
expected to have converged to within approximately 2 dB
for these sets of realizations. The incident field used in the
simulations was a “tapered wave” [23] in order to reduce
surface edge scattering effects. The tapering parameter g = 5
was used, so that the incident field amplitude at surface edges
is reduced approximately 54.3 dB compared to that at the
center. While this choice of parameters is sufficient to allow
reasonable computation of backscattered co-polarized fields
at up to 50 degrees incidence, cross-polarized predictions
are corrupted by the tapered wave, due to the influence of
out-of-plane angular averaging. Therefore, no cross-polarized
scattering results are shown in what follows.

C. Results

Figure 4 plots backscattered incoherent NRCS results in
both HH and V V polarizations from the MOM for band-
limited exponential surfaces with kLS = 1, and compares
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Fig. 4. Comparison of backscattered NRCS values in dB between the MOM,
IEM, RLCA, and SSA models, for band-limited exponential surfaces with
kh = 1, kL = 6, kLS = 1, and ε = 4 + i

the numerical results with predictions of the IEM, SSA, and
RLCA theories. Note the line style in Figure 4 is identical
for the HH and V V curves for the approximate theories;
however the appropriate polarization can be determined by
the fact that all curves closely follow those of the polarization
indicated for the MOM results. Results show all theories to
yield similar predictions, and to match the MOM reasonably
well. The slight differences of any of the theories observed
with the MOM are within the error of the Monte Carlo
simulation, and therefore no conclusive recommendation of
one theory over another is possible based on these results.
The small differences observed between the three approximate
theories become most pronounced at large incidence angles
in HH polarization, where both RLCA and SSA predict
much smaller values than the IEM. While the differences
between theories are much smaller for V V polarization, the
RLCA and IEM models are found to be in close agreement,
with the SSA slightly over-predicting their values. Overall,
however, Figure 4 illustrates that all three theories appear
to be performing reasonably for this case; similar results for
Gaussian correlation function surfaces with these parameters
were obtained in [21].

Figure 5 illustrates a comparison of the IEM results from
Figure 4 with predictions of the SPM and PO. The comparison
shows the clear inapplicability of the SPM and PO theories;
the former is reasonable only for vertical polarization at large
incidence angles, while the latter is useful for near-normal
incidence backscattering in either polarization, and for vertical
polarization at large incidence angles. Though not included in
the Figure, the SSA prediction for HH backscattering at large
incidence angles remains significantly larger than that obtained
by the SPM.

Figure 6 plots in-plane bistatic NRCS values from the
MOM, SSA, and RLCA at 50 degrees incidence angle. The
scattering angle of the horizontal axis is defined so that
positive 50 degrees is specular scattering while negative 50
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Fig. 5. Comparison of backscattered NRCS values in dB between the IEM,
PO, and SPM models, for band-limited exponential surfaces with kh = 1,
kL = 6, kLS = 1, and ε = 4 + i
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Fig. 6. In-plane bistatic NRCS values in dB for incidence angle 50 degrees;
comparison between the MOM, SSA, and RLCA models, for band-limited
exponential surfaces with kh = 1, kL = 6, kLS = 1, and ε = 4 + i

degrees is backscattering. Again the results in general show a
good match of both the RLCA and SSA to MOM predictions,
with much smaller V V returns at positive incidence angles
due to a Brewster-angle like effect. The only significant
differences observed are at large negative scattering angles
in V V polarization, where both methods over-predict MOM
results, with RLCA values showing less error. In addition, the
slight dip in HH returns near the specular angle occurs due
to the influence of coherent scattered field extraction, so that
MOM results should not be taken as accurate for this region.

The preceding figures have provided a demonstration of use
of the band-limited model in the surface scattering models
discussed in Section III, and have shown that the IEM,
SSA, and RLCA all provide similar predictions in general
agreement with those of the MOM for the particular surface
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Fig. 7. Comparison of band-limited exponential and true exponential surface
IEM backscattered NRCS values in dB as kLS is varied ,with khexp =
1.075, kL = 6, and ε = 4 + i

statistics investigated. Figure 7 presents a comparison of IEM
predictions for band-limited exponential surfaces with those
for true exponential surfaces as kLS is varied from 1 to 0.5.
Results show the case kLS = 1 to yield backscattering NRCS
values that are significantly larger (around 2.5 dB) than those
of the true exponential surface at near-normal incidence angles
and significantly smaller than those of the true exponential
surface at larger incidence angles. Both of these differences are
decreased for kLS = 0.5; in this case, the distinction between
the band-limited and true exponential NRCS values is less
than 1.5 dB at all angles. The largest differences remain at near
normal incidence angles; this is somewhat surprising since it is
generally expected that surface high frequency content is less
important for near-specular scattering. For the kLS = 0.5 case,
the band-limited exponential surface power spectral density at
the maximum Bragg wavenumber is reduced by only 1.08 dB
compared to the true exponential surface, demonstrating that
surface high frequency content is playing a non-negligible role
in scattering from the true exponential surface.

Figure 8 explores the influence of q on the bistatic scattering
pattern at θi = 50◦ (as in Figure 6) with the RLCA model.
Results are shown for q = 1/6, q = 1/12, and q = 1/18;
the latter case has Ls approximately one twentieth of the
electromagnetic wavelength. Smaller values of q were not
considered in the simulation due to the increased discretization
requirements in the RLCA model as discussed in Section III-C.
As in Figure 7, the results show a strong influence of surface
high frequency content, especially in the forward scattering
region of the V V curve.

To study the influence of spectral truncation for surfaces
with larger rms heights, IEM computations of normal inci-
dence backscattering were performed with the band-limited
model for surface rms heights hexp ranging from 1 to 10
electromagnetic wavelengths and a correlation length L of
ten times the rms height. For each value of the surface
statistics, results were computed for LS ranging from 0.01 to
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Fig. 9. IEM predictions of backscattered NRCS at normal incidence versus
LS , for specified values of hexp, L = 10hexp, and ε = 4 + i

1 electromagnetic wavelength. Figure 9 plots normal incidence
backscattered NRCS values for three of the rms height values
versus LS . The curves illustrated all show an increasing trend
versus LS ; such an increasing trend is somewhat surprising
given the typical expectation that only large scale surface
features dominate specular backscattering. However this trend
is consistent with the fact that the total surface rms slope
is decreased as LS increases. Note that the hexp = 1 curve
shows an apparent saturation at small values of LS , indicating
that roughness features included as LS becomes less than
approximately 0.02 wavelengths are having little impact on
the scattering process. No such convergence is observed in the
two larger rms height cases however, at least at the level of
LS = 0.01 wavelengths. Further discussion of these behaviors
is provided in [4].
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V. CONCLUSIONS

A band-limited exponential correlation function has been
derived for studies of rough surface scattering. This model
provides a direct limitation of the high frequency content of
the true exponential surface, and therefore can be useful in
studies of the influence of the high frequency portion of the
surface spectrum on the scattering process. In such studies,
the analytical form obtained for both the surface correlation
function and the power spectral density motivates use of this
model in analytical theories of rough surface scattering. Use
of the model in several such theories was described, and a
simple case was chosen to illustrate example predictions. In
the relatively smooth surface case selected, results showed the
IEM, SSA, and RLCA models to yield predictions similar to
those obtained from the method of moments. A resolution
of the small differences between these theories in the case
examined will require further numerical simulations. Sample
results were also provided to illustrate the importance of
surface high frequency content under the IEM and RLCA
scattering models. Future studies will attempt to assess more
completely the importance of the high frequency portion of the
spectrum in the scattering process, as well as the relevance in
practice of such high frequency content when describing true
soil surfaces. A more detailed study of these issues using the
band-limited surface model for the physical optics theory is
provided in [4].
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