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The second-order local curvature approximation (LCA2) is a theory of rough surface scattering that
reproduces fundamental low and high frequency limits in a tilted frame of reference. Although the
existing LCA2 model provides agreement with the first order small perturbation method up to the
first order in surface tilt, results reported in this paper produce a new formulation of the model that
achieves consistency with perturbation theory to first order in surface height and arbitrary order in
surface tilt. In addition, extension of the modified LCA to third order is presented, and allows the theory
to match the second-order small perturbation method to arbitrary order in surface tilt. Crucial to the
development of the theory are a set of identities involving relationships among the small perturbation
method (i.e. low frequency) and Kirchhoff approximation (i.e. high frequency) kernels; a set of new
identities obtained in our derivations is also presented. Sample results involving 3D electromagnetic
scattering from penetrable rough surfaces, as well as 2D scattering from Dirichlet sinusoidal gratings,
are provided to compare the new results with the existing LCA2 model and with other rough surface
scattering theories.
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1. Introduction

Rough surface scattering is an important branch of acoustic/electromagnetic wave physics.
Any advance in this area could be beneficial for several applications ranging from medical15
imaging to Earth or extraterrestrial remote sensing.

The classical solutions for this problem are based either on low- or high-frequency ap-
proximations. The low-frequency approximation is known as the small perturbation method
(SPM) [1, 2], and provides a perturbation series solution to the scattering problem assuming
the surface height is small compared to the incident wavelength. Results from this model20
will be termed SPM1, SPM2, etc. in this paper depending on the order in surface height at
which the perturbation series is truncated. It is well known that the SPM1 solution produces a
Bragg scattering response from the surface, wherein the scattered power at a particular angle
is directly proportional to the energy in a particular surface length scale. An arbitrary order
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SPM solution has been presented in [3]. Under a high-frequency assumption, the Kirchhoff 25
approximation (KA) [4, 5] is obtained; this theory will be termed KA1, KA2, . . . similarly in
what follows, depending on the order of scattering interactions with the surface considered.
Obtaining higher-order series terms in the high-frequency limit is difficult, and typically only
first-order interactions are assumed.

A recent review paper [6] discusses several theories of rough surface scattering that have 30
been developed in recent years to bridge between the classical limits. One group of recent
publications [7–9] describes a new set of surface scattering models that account not only for
local surface slope but also local surface curvature while satisfying most of the fundamental
symmetries of the physical problem. One of these advances was termed the local curvature
approximation (LCA); this model obtains compliance with KA1 as well as with the SPM1 in 35
any rotated frame of reference up to the first order in the tilting angle of the surface. However,
the model does not reproduce SPM2, KA2, or any other higher-order limits. Because the LCA
expresses scattered fields as a series of terms with the KA1 solution as the first term, it can
be considered as a generalization of the models by [10–12], and [13]. It also shares the same
functional structure as the small slope approximation (SSA) introduced in [14–17]. 40

Recent research into properties of the SPM and KA ‘kernel’ functions has revealed a set of
fundamental relationships that hold; see [6] for one of the more crucial results. These identities
are utilized in this paper to develop an improved LCA theory that achieves compliance with
SPM1 up to arbitrary order in the tilt vector. New identities presented in this paper also allow
extension of the improved LCA theory up to third order so that compliance with SPM2 is 45
achieved to arbitrary order in surface tilt. The development of these new models is described
in this paper, and sample results are provided to compare performance of the existing and new
LCA theories.

The next section introduces the notation to be used throughout the paper, while section 3
defines the basic form of the LCA and reviews the basic properties it must satisfy. A discussion 50
of the tilt invariance property follows in section 4, followed by determination of the kernels of
the new model in section 5. Sample results utilizing the new model are provided in section 6.

2. Notation and definitions

2.1 Problem definition and scattering amplitude

For a detailed description of the scattering problem at hand the reader is referred to [6]. An 55
electromagnetic or an acoustic wave propagating in vacuum encounters an interface (�) with
a second half-space with a different wave propagation velocity. The scattering problem is
described by the propagation directions of the incident and scattered waves in the free-space
region, here labeled K 0 and K , respectively. These are three dimensional vectors; reference to
‘horizontal’ and ‘vertical’ parts of these vectors implies choice of a coordinate system. In order 60
to simplify the discussion of tilt invariance, notations are adopted in this paper that attempt to
make any coordinate system dependencies explicit. The vector Q is defined as K − K 0, and
the wavenumber in the vacuum medium is denoted by K .

The rough boundary between the two media is described by a set of three dimensional
vectors, in which each vector (labeled R) extends from a specified origin to a point on the 65
surface boundary. This set of vectors can be parametrized in terms of a pair of parameters,
typically taken as the horizontal coordinates when a coordinate system is chosen. Effects on
scattering predictions due to choice of the origin for the set of R vectors will be considered in
section 3.2.
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The scattered field above and far away from the surface is related to the incident one through70
the scattering operator which reads in dyadic notation (in the far field at R → ∞),

Es(R) = 2π
eiK R

iR
S(K , K 0) · E0, (1)

which is a direct consequence of the Weyl representation of the Green’s function. A similar
form without the spherical wave factor is applicable for the case of scattering from a periodic
surface. Here the incident plane wave field is written as

Ei = E0ei K 0·R (2)

on the surface boundary. The dyad S(K , K 0) is termed the scattering amplitude in what75
follows. This scattering amplitude when computed exactly is independent of the coordinate
system used to describe the scattering problem.

2.2 Polarization basis for vector problems

When considering vector scattering problems, it is convenient to define horizontal (Ĥ) and
vertical (V̂) polarization unit vectors. To avoid reference to a particular coordinate system,80
polarization vectors are defined as

Ĥi = K̂ × K̂0/|K̂ × K̂0| (3)

Ĥs = Ĥi (4)

V̂i = Ĥi × K̂0 (5)

V̂s = Ĥs × K̂ (6)

where the subscripts i and s refer to the incident and scattered field, respectively. Note this
polarization basis is distinct from that of most references, and involves definitions of the inci-
dent polarization basis that vary as the scattering angle of interest varies. Again this choice is
adopted due to its coordinate system independence. Problems involving backscattering require85
independent specification of the polarization vectors, which can be chosen perpendicular to
the incident direction in any manner deemed preferable.

These definitions allow the dyadic properties of S(K , K 0) to be written as

S(K , K 0) = Ĥs SH H Ĥi + V̂s SV H Ĥi + Ĥs SH V V̂i + V̂s SV V V̂i (7)

where the left unit vectors represent the scattered field polarization and the right unit vectors
are dotted into the polarization of the incident field in equation (1). This polarization basis is90
utilized for all dyadic quantities throughout the paper.

2.3 Coordinate system specific quantities

In some cases (for example, in the SPM) specification of a coordinate system is unavoidable
when describing the scattering amplitude. In this case, the coordinate system utilized is de-
scribed by a normal vector n̂, which represents the ‘vertical’ direction in the chosen coordinate95
system (i.e. n̂ points from the surface into the vacuum region.) In this case, ‘perpendicular’
and ‘parallel’ projection operators can be defined as

P⊥(n̂) = n̂n̂ (8)

P‖(n̂) = I − n̂n̂ (9)
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where I is the identity dyad. These dyads produce the vector perpendicular and parallel compo-
nents, respectively, when multiplying a specified vector. When choice of a coordinate system
is implied in the definition of a scattering amplitude, the scattering amplitude is written as 100
S(K , K 0 | n̂).

Using a Cartesian system, it is possible to define a pair of orthogonal unit vectors for
‘parallel’ quantities. These vectors are labeled â and b̂ in what follows, and are defined using
an â × b̂ = n̂ convention. A specific choice for â is avoided at present.

Given these definitions, a vector R can be written as 105

R = âa + b̂b + n̂h(a, b | n̂) (10)

where

a = â · R (11)

b = b̂ · R (12)

h(a, b | n̂) = n̂ · R. (13)

The latter quantity represents the rough surface ‘height’ in the specified coordinate system,
and is written as a function of the horizontal spatial coordinates. The same symbol is used to
represent the corresponding surface Fourier coefficients when the arguments have the units of
wavenumber: 110

h(P‖(n̂) · ξ) =
(

1

2π

)2 ∫
e−i(P‖(n̂)·ξ)·(P‖(n̂)·R)h(a, b | n̂)d(P‖(n̂) · R)

(14)

which can be written more simply as

h(ξa, ξb | n̂) =
(

1

2π

)2 ∫
e−i(ξaa+ξbb) h(a, b | n̂) dadb (15)

h(a, b | n̂) =
∫

ei(ξaa+ξbb) h(ξa, ξb | n̂) dξadξb. (16)

2.4 Kirchhoff and SPM kernels for the vector dielectric case

To help illustrate the notation utilized, scattering amplitudes from the KA and SPM theories
are reviewed in this section for the case of vector scattering from a dielectric interface with
relative permitivity ε. The KA states 115

S(K , K 0 | n̂) ≈ K(K , K 0)

Qn

∫
e−iQ·Rd(P‖(n̂) · R) (17)

= K(K , K 0)

Qn

∫
e−iQ·Rdadb (18)

where in the specified polarization basis,

K(K , K 0) = −Q2

2
(Ĥs RH H (Q/2)Ĥi + V̂s RV V (Q/2)V̂i ) (19)

with

Qn = n̂ · Q (20)

Q = |Q| (21)
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RH H (β) = β −
√

(ε − 1)K 2 + β2

β +
√

(ε − 1)K 2 + β2
(22)

RV V (β) = εβ −
√

(ε − 1)K 2 + β2

εβ +
√

(ε − 1)K 2 + β2
. (23)

Although the KA kernelK is independent of any choice of coordinate system, the KA scattering
amplitude (equation (17)) appears to depend on the choice of n̂. However, it will be shown in
section 5.1 that the KA scattering amplitude in fact is independent of the coordinate system,120
as has been shown in [13] for the scalar problem.

The SPM expansion of the scattering amplitude states
(

1

2π

)2

S(K , K 0 | n̂) = 1

Qn
B(K , K 0 | n̂)δ(Qa)δ(Qb) − iB(K , K 0 | n̂)h(Qa, Qb | n̂)

− Qn

∫
dξadξbB2(K , K 0; âξa + b̂ξb | n̂)h(Ka − ξa, Kb − ξb | n̂)

× h(ξa − K0a, ξb − K0b | n̂) + . . . , (24)

where the subscripts a and b refer to components of the corresponding vectors along the â and
b̂ directions, e.g. Qa = â · Q. Convergence of this expansion is dictated by the magnitude of
K h(a, b|n̂), along with the magnitude of the surface slopes in the specified coordinate system,125
both of which are assumed to be small.

The dyadic quantities B(K , K 0 | n̂) and B2(K , K 0; ξ | n̂) are the first- and second-order
SPM ‘kernels’, respectively. Most references (for example [18]) utilize a coordinate system
dependent polarization basis for reporting these kernels, defined as:

ĥi = K̂ 0 × n̂/|K̂ 0 × n̂|
ĥs = K̂ × n̂/|K̂ × n̂|
v̂ i = ĥi × K̂ 0

v̂ s = ĥs × K̂ (25)

so that130

S(K , K 0 | n̂) = ĥs Shh ĥi + v̂ s Svh ĥi + ĥs Shv v̂ i + v̂ s Svv v̂ i . (26)

However, the above dyad can be transformed easily to the (Ĥ, V̂) basis by substituting

ĥi =
(

n̂ · V̂i

|n̂ × K̂ 0|

)
Ĥi −

(
n̂ · Ĥi

|n̂ × K̂ 0|

)
V̂i (27)

ĥs =
(

n̂ · V̂s

|n̂ × K̂ |

)
Ĥs −

(
n̂ · Ĥs

|n̂ × K̂ |

)
V̂s (28)

v̂ i =
(

n̂ · Ĥi

|n̂ × K̂ 0|

)
Ĥi +

(
n̂ · V̂i

|n̂ × K̂ 0|

)
V̂i (29)

v̂ s =
(

n̂ · Ĥs

|n̂ × K̂ |

)
Ĥs +

(
n̂ · V̂s

|n̂ × K̂ |

)
V̂s (30)

a recombining pairs of vectors to obtain the form of equation (7).
We utilize the SPM kernels defined in [18], but scaled by constant multipliers and trans-

formed to the (Ĥ, V̂) basis for consistency with the definition of equations (19) and (24).
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Explicit expressions for the first and second order kernels are provided in Appendices A and 135
B, respectively, for the case of vector electromagnetic scattering from an interface between
free space and a penetrable medium.

3. The LCA and its basic properties

The LCA has a functional structure identical to that of the SSA, and is expressed up to third
‘curvature order’ as [7]: 140

S(K , K 0 | n̂) ≈ S0(K , K 0 | n̂) + S1(K , K 0 | n̂) + S2(K , K 0 | n̂) (31)

where

S0(K , K 0 | n̂) = K(K , K 0)

Qn

∫
da db e−iQ·R (32)

S1(K , K 0 | n̂) = −i
∫

da db e−iQ·R
[ ∫

dξa dξb T1(K , K 0; âξa + b̂ξb)h(ξa, ξb | n̂)ei(ξaa+ξbb)

]

(33)

S2(K , K 0 | n̂) = − Qn

2

∫
da db e−iQ·R

[ ∫
dξ (1)

a dξ
(1)
b h

(
ξ (1)

a , ξ
(1)
b | n̂

)
ei(ξ (1)

a a+ξ
(1)
b b)

×
∫

dξ (2)
a dξ

(2)
b h

(
ξ (2)

a , ξ
(2)
b | n̂

)
ei(ξ (2)

a a+ξ
(2)
b b)

× T2
(
K , K 0; âξ (1)

a + b̂ξ
(1)
b , âξ (2)

a + b̂ξ
(2)
b

)]
. (34)

The LCA kernels T1(K , K 0; ξ) and T2(K , K 0; ξ(1), ξ(2)) are sought in a coordinate-free
form, so that no specification of n̂ is required in their definition. The arguments ξ and ξ(i) of
these kernels are arbitrary three-dimensional vectors in general, but are specified as particular
values in the LCA integrations. 145

Here the extension to the third series term involving T2 has been added based on the Taylor–
Volterra expansion implicit in the original SSA formulation. By choosing the first series term
as that of KA1 (i.e. with the kernel K) as opposed to SPM1 as in the SSA, it is possible to
ensure that the correction terms in the high-frequency limit involve only the surface curvature
and higher-order terms. The LCA model must respect, regardless of the boundary conditions, 150
some fundamental properties such as reciprocity, shift invariance, and tilt invariance. Here the
former two properties are considered along with other basic limits of the LCA; tilt invariance
is discussed in section 4.

3.1 Reciprocity

The reciprocity property [19] states that 155

Sαβ(K , K 0) = Sβα(−K 0, −K )(−1)µ, (35)

where α and β are either H or V so that scalar components of the scattering amplitude dyad
are described (equation (7)). The value µ is set to zero when α and β are identical, and 1
otherwise. For the LCA, this imposes

T1,αβ(K , K 0; ξ) = T1,βα(−K 0, −K ; ξ)(−1)µ (36)
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T2,αβ(K , K 0; ξ(1), ξ(2)) = T2,βα(−K 0, −K ; ξ(1), ξ(2))(−1)µ (37)

T2(K , K 0; ξ(1), ξ(2)) = T2(K , K 0; ξ(2), ξ(1)). (38)

The last equation states that the scattering amplitude is insensitive to the order of the integration.

3.2 Shift invariance160

Shift invariance refers to the phase-shifting (or delay in the time domain) that results from
translation of the surface boundary, or equivalently from modifications of the origin of the set
of R vectors:

S(K , K 0)|R→R+�R = e−iQ·�RS(K , K 0)|R (39)

where the left-hand side scattering amplitude is evaluated with a constant vector �R added
to the original set of R vectors, while the right hand side is evaluated with the original set of165
R vectors. Shift invariance for the LCA translates into

T1(K , K 0; 0) = 0 (40)

T2(K , K 0; ξ(1), 0) = T2(k, k0; 0, ξ(2)) = 0 (41)

which means that the kernels must vanish when any argument (ξ) is set to zero. To establish
these identities, the Fourier coefficient definitions of equation 15 are utilized, along with a
separation of the �R shift into its ‘horizontal’ and ‘normal’ components given the n̂ used in
equations (32)–(34).170

3.3 Curvature correction

The double and triple integrals in equations (33) and (34) are called the curvature and third-
order corrections since the corresponding kernels are intended to act upon the surface elevation
starting from the second derivative (or curvature) and third-order derivative terms, respectively.
This is guaranteed mathematically by placing the conditions175

∇T1(K , K 0; 0) = 0 (42)

∇1T2(K , K 0; 0, ξ(2)) = ∇2T2(K , K 0; ξ(1), 0) = 0 (43)

∇1∇2T2(K , K 0; 0, 0) = 0 (44)

on the kernels. The gradient operators are taken in three dimensional space. Note conditions
(41) and (44) ensure that all second-order terms in a Taylor expansion of T2 vanish at the origin.
These conditions set the arbitrariness due to the gauge in the Taylor–Volterra expansion [9], and
leave any corrections at the curvature and higher orders. This is physically sensible since the
Kirchhoff approximation captures all local slope terms under the tangent plane approximation180
[5] in the high-frequency limit.

3.4 Low frequency limit of LCA3

The existing LCA2 theory was derived to match SPM1 in the low-frequency limit; however,
agreement with SPM2 was not achieved. By considering the low-frequency limit of the new
LCA3 equations, a set of conditions can be written to ensure agreement with SPM2 when185
appropriate.
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The low-frequency limit of LCA3 (equation (31)) is obtained by writing

e−i Q·R = e−i(Qaa+Qbb+Qn h(a,b|n̂)) (45)

and Taylor expanding the exponential term involving h up to second order. When the resulting
expression is compared to the SPM2 (equation (24)), the conditions

K(K , K 0)δ(Qa)δ(Qb) = B(K , K 0 | n̂)δ(Qa)δ(Qb) (46)

T1(K , K 0; âQa + b̂Qb) = B(K , K 0 | n̂) − K(K , K 0) (47)

and 190

T2(K , K 0; âξa + b̂ξb, â(Qa − ξa) + b̂(Qb − ξb)) = B2(K , K 0; â(Ka − ξa)

+ b̂(Kb − ξb) | n̂) + B2(K , K 0; â(K0a + ξa) + b̂(K0b + ξb) | n̂)

− T1(K , K 0; âξa + b̂ξb) − T1(K , K 0; â(Qa − ξa) + b̂(Qb − ξb)) − K(K , K 0) (48)

are obtained to provide a match between the two theories. Equation (46) is obtained from
zeroth order terms in surface height, and expresses the fact that both Kirchhoff and SPM1
coincide when the surface is a flat plane. Equation (47) results from first order in surface
height terms, and imposes that the SPM1 limit must be reached as was used in defining the
existing LCA [7]. Equation (48) is obtained from the second order in surface height terms, 195
and provides a condition on T2 in order to ensure compliance with the SPM2 limit. Note the
explicit dependence of the SPM kernels on the surface normal vector appears to require that
the T kernels depend on the surface normal as well. However, a method for eliminating this
dependency will be shown in section 5.

4. Tilt invariance 200

4.1 Definitions

Tilt invariance expresses the fact that the scattering amplitude should not depend on the choice
of coordinate system used to describe the scattering problem and surface boundary. If formal
tilt invariance is achieved, the scattering amplitude S(K , K 0 | n̂) is independent of n̂ and can
be written as S(K , K 0). 205

Tilt invariance can be investigated by beginning with the scattering amplitude written in a
first coordinate system S(K , K 0 | n̂1). Mathematical manipulations are then performed upon
the scattering amplitude expressions to attempt to make them appear as if they were written in
a second coordinate system n̂2. This transformed version of S(K , K 0 | n̂1) is then compared
to the scattering amplitude written directly in the second coordinate system S(K , K 0 | n̂2). 210
Should the two be identical, formal tilt invariance has been established. However, if the two
are not identical, an expansion of the transformed S(K , K 0 | n̂1) in terms of surface ‘height’
in the second coordinate system can be performed, and compared to the same expansion of
S(K , K 0 | n̂2). The level of agreement observed in the two expansions establishes the order
to which the model examined reproduces a ‘tilted’ SPM theory. 215

Note this examination of tilt invariance will involve use of a formal rotation process, in
contrast to the typical first order in slope tilting process that is commonly used in the literature
(see for example [17].) Use of a formal tilting process is required if SPM expansions beyond
first order are to be examined.
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4.2 Coordinate systems for examining tilt invariance220

The presentation to follow will involve a first coordinate system (â1, b̂1, n̂1) and a second
coordinate system (â2, b̂2, n̂2), in which the normal vectors are the primary factors that de-
termine the coordinate systems. Although the horizontal coordinates in these systems are not
uniquely specified, here we adopt the definitions:

b̂1 = b̂2 = n̂1 × n̂2

|n̂1 × n̂2| (49)

â1 = b̂1 × n̂1 (50)

â2 = b̂2 × n̂2. (51)

The â and n̂ vectors for both frames have only â and n̂ components in either coordinate system225
as a result of these definitions. Defining

cos α = n̂1 · n̂2 (52)

sin α = |n̂1 × n̂2| (53)

allows the coordinate vectors to be related as:

â1 = â2 cos α + n̂2 sin α (54)

â2 = â1 cos α − n̂1 sin α (55)

n̂1 = −â2 sin α + n̂2 cos α (56)

n̂2 = â1 sin α + n̂1 cos α. (57)

Similarly the space coordinates

a1 = â1 · R (58)

b1 = b̂1 · R (59)

h(a1, b1 | n̂1) = n̂1 · R (60)

can be related to those in the second frame through

a1 = a2 cos α + h(a2, b2 | n̂2) sin α (61)

a2 = a1 cos α − h(a1, b1 | n̂1) sin α (62)

b1 = b2 (63)

h(a1, b1 | n̂1) = h(a2, b2 | n̂2) cos α − a2 sin α (64)

h(a2, b2 | n̂2) = h(a1, b1 | n̂1) cos α + a1 sin α. (65)

Differential horizontal areas can be related through a Jacobian transformation to obtain230

da1 db1 = da2 db2 cos α

(
1 + tan α

∂h(a2, b2 | n̂2)

∂a2

)
. (66)

4.3 Transformation of surface Fourier coefficients

Because Fourier coefficients are included in the LCA3 theory, transformation of these coeffi-
cients must also be considered in studies of tilt invariance. From equation (15), surface Fourier
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coefficients in coordinate system one are

h(ξa1, ξb1 | n̂1) =
(

1

2π

)2 ∫
e−i(ξa1a1+ξb1b1) h(a1, b1 | n̂1) da1db1. (67)

Using the Jacobian and coordinate system relationships derived in the previous section, 235
equation (68) can be rewritten as

h(ξa1, ξb1 | n̂1) =
(

1

2π

)2

cos α

∫
da2db2

(
1 + tan α

∂h(a2, b2 | n̂2)

∂a2

)

× [h(a2, b2 | n̂2) cos α − a2 sin α]e−i((ξa1 cos α)a2)+ξb1b2)e−i(ξa1 sin α)h(a2,b2|n̂2)

(68)

Relating this expression to the surface Fourier coefficients in the second coordinate system
requires expansion of the exponential function involving h into a power series. Integration by
parts can be used on the resulting series; the identity

∂

∂a2

[
a2hn

2

] = hn
2 + nhn−1

2 a2
∂h2

∂a2
(69)

(where h2 is used to notate h(a2, b2 | n̂2)) is useful in this process. The final result is 240

h

(
ξa1

cos α
, ξb1 | n̂1

)
= −iδ′(ξa1)δ(ξb1) cos α sin α + h(ξa1, ξb1 | n̂2)

+
∞∑

n=2

(−iξa1 tan α)n−1

n!

(
1

2π

)2∫
e−i(ξa1a2+ξb1b2) hn(a2, b2 | n̂2) da2db2.

(70)

The zeroth-order term contains a Dirac delta function and its derivative, while the first-order
term is exactly the Fourier coefficient in the second frame. However, an infinite series of
higher-order terms is also added, expressed in terms of Fourier transforms of the nth power
of the surface height in the second frame. It is possible to sum the series expression to obtain
a form involving a Fourier-like integration of e−iξa1 tan αh(a2,b2|n̂2); however, such a summation 245
yields no advantages in the following analyses.

5. Tilt invariance and determination of LCA3 kernels

5.1 Tilt invariance of Kirchhoff Approximation

To examine tilt invariance of the LCA3 theory, begin with the S0 term written in coordinate
system one:

S0(K , K 0 | n̂1) = K(K , K 0)

Qn1

∫
da1 db1 e−iQ·R (71)

= K(K , K 0) cos α

Qn1

∫
da2 db2

(
1 + tan α

∂h(a2, b2 | n̂2)

∂a2

)
e−iQ·R

= K(K , K 0)

Qn1

∫
da2 db2

(
cos α − sin α

Qa2

Qn2

)
e−iQ·R (72)
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with the final equation obtained through an integration by parts. Because

Qn1 = −Qa2 sin α + Qn2 cos α (73)

we find250

S0(K , K 0 | n̂1) = K(K , K 0)

Qn2

∫
da2 db2 e−iQ·R (74)

= S0(K , K 0 | n̂2) (75)

and the S0 term (the Kirchhoff Approximation) has been shown to be formally tilt invariant.

5.2 Tilt invariance of LCA2 at first order in surface height

Begin with S1 written in the first coordinate system:

S1(K , K 0 | n̂1) = −i
∫

da1 db1

∫
dξa1 dξb1e−iQ·R[

T1(K , K 0; â1ξa1 + b̂1ξb1)h

×(ξa1, ξb1 | n̂1)ei(ξa1a1+ξb1b1)
]
. (76)

Following a process similar to that utilized in transforming the surface Fourier coefficients,
we can transform the above to255

S1(K , K 0 | n̂1) = −i
∫

da2 db2

∫
dξa1 dξb1 e−iQ·R Qn1

Qn2 − ξa1 sin α

× [
T1(K , K 0; â1ξa1 + b̂1ξb1)h(ξa1, ξb1 | n̂1)ei(ξa1 cos αa2+ξb1b2)]

× ei(ξa1 sin α)h(a2,b2|n̂2). (77)

It is convenient here to introduce a new set of variables

ξa2 = ξa1 cos α (78)

ξb2 = ξb1 (79)

with Jacobian

dξa1 dξb1 = dξa2 dξb2 sec α (80)

to obtain

S1(K , K 0 | n̂1) = −i
∫

da2 db2

∫
dξa2 dξb2 e−iQ·R Qn1

Qn2 cos α − ξa2 sin α

×
[

T1(K , K 0; â1ξa2 sec α + b̂1ξb2)h

(
ξa2

cos α
, ξb2 | n̂1

)
ei(ξa2a2+ξb2b2)

]

×ei(ξa2 tan α)h(a2,b2|n̂2). (81)

Given the additional phase factor involving h2 introduced by the transformation, as well
as the higher order terms included in the Fourier coefficients in equation (70), formal tilt260
invariance is not achieved by the LCA2 model. However, we can examine tilt invariance of
the transformed S1 when expanded in surface height in the second coordinate system.

Begin by considering the expansion up to first order in h2. First note that the Fourier
coefficients h( ξa2

cos α
, ξb2 | n̂1) in the integration contain a term at zeroth order. However, this

zeroth-order term involves a Dirac delta function and its derivative evaluated at the origin265
of the (ξa2, ξb2) plane. The result is that the zeroth-order Fourier coefficient term always
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multiplies either T1 evaluated at the origin or the derivative of T1 at the origin. Both of these
quantities will be set to zero according to equations (40) and (42), so that the zeroth-order
Fourier coefficients make no contribution to the scattering amplitude.

The first-order contributions are then completely obtained from the first-order Fourier co- 270
efficient, utilizing zeroth order in h2 forms for the remaining terms in the LCA2 integration:

S1(K , K 0 | n̂1) ≈ − i
∫

da2 db2

∫
dξa2dξb2 e−i(Qa2−ξa2)a2 e−i(Qb2−ξb2)b2

Qn1

Qn2 cos α − ξa2 sin α

× [
T1(K , K 0; â1ξa2 sec α + b̂1ξb2)h(ξa2, ξb2 | n̂2)ei(ξa2a2+ξb2b2)

]
.

(82)

The integration over space yields Dirac delta functions, and the final first-order result is:

S1(K , K 0 | n̂1) ≈ −i (2π )2 h(Qa2, Qb2 | n̂2)T1(K , K 0; â1 Qa2 sec α + b̂1 Qb2).

(83)

In order to achieve tilt invariance to first order in surface height, we must require

T1(K , K 0; â1 Qa2 sec α + b̂1 Qb2) = T1(K , K 0; â2 Qa2 + b̂2 Qb2) (84)

= B(K , K 0 | n̂2) − K(K , K 0) (85)

Note that the argument of T1 on the left-hand side above can also be written as

â1 Qa2 sec α + b̂1 Qb2 = Q − n̂2 Qn1 sec α (86)

In addition to these properties we also require 275

T1(K , K 0; 0) = 0 (87)

and

∇T1(K , K 0; 0) = 0. (88)

The identity

B(K , K 0 | n̂ = Q̂) = K(K , K 0) (89)

has been derived recently [6]. This identity is based on combination of the tilt invariance
properties of the K kernel along with the well known fact that the SPM and Kirchhoff kernels
yield identical predictions for specular scattering. It can also be shown that 280

∇B
(

K , K 0 | n̂ = Q − ξ

|Q − ξ|
)

|ξ=0 = 0 (90)

which indicates that the SPM kernel varies quadratically about the specular point. These
identities hold regardless of the boundary condition considered.

Combining these properties allows a T1 kernel with the needed properties to be found as:

T1(K , K 0; ξ) = B
(

K , K 0 | n̂ = Q − ξ

|Q − ξ|
)

− K(K , K 0). (91)

This kernel is independent of the coordinate system, and produces an LCA2 theory that is tilt
invariant to first order in surface height, regardless of the angle α (i.e. slope of any tilting) 285
involved in the tilting process.
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5.3 Examination of tilt invariance of LCA3 at second order in surface height

At second order in surface height, the S0 term produces contributions of

(−i)2(2π )2

(
Qn2

2

)
K(K , K 0)

∫
dξa dξb h(ξa, ξb | n̂2)h(Qa2 − ξa, Qb2 − ξb | n̂2) (92)

while the S1 term produces contributions of

(−i)2(2π )2

[(
Qa2 tan α

2

)
T1(K , K 0; â2 Qa2 + b̂2 Qb2)

∫
dξa dξb h(ξa, ξb | n̂2)

× h(Qa2 − ξa, Qb2 − ξb|n̂2) +
(

Qn1 sec α

2

)∫
dξa dξb h(ξa, ξb|n̂2)h(Qa2 − ξa, Qb2 − ξb | n̂2)

× (T1(K , K 0; â1(Qa2 − ξa) sec α + b̂1(Qb2 − ξb)) + T1(K , K 0; â1ξa sec α + b̂1ξb))

]
. (93)

The first term above arises from the second order in height contribution of the transformed290
surface Fourier coefficients (equation (70)), while the second term arises from the first order in
height Fourier coefficients multiplied with other first order in height terms in equation (81). A
symmetrization was performed to generate the particular second term shown. The two terms
are similar, although the first does not include the T1 kernel inside the integration, while the
second does.295

Following a similar process to that utilized in the previous section, a transformed version of
S2(K , K 0|n̂1) can be derived, and its second order in height h2 terms determined. The result
is

(−i)2(2π )2 Qn1 sec α

2

∫
dξa dξb h(ξa, ξb | n̂2)h(Qa2 − ξa, Qb2 − ξb | n̂2)

T2(K , K 0; â1ξa sec α + b̂1ξb, â1(Qa2 − ξa) sec α + b̂1(Qb2 − ξb)). (94)

Compliance with SPM2 in the n̂2 frame requires

Qn2B2(K , K 0; â2(Ka2 − ξa) + b̂2(Kb2 − ξb) | n̂2) + Qn2B2(K , K 0; â2(K0a2 + ξa)

+ b̂2(K0b2 + ξb) | n̂2) = Qn2K(K , K 0) + Qa2 tan αT1(K , K 0; â2 Qa2 + b̂2 Qb2)

+ Qn1 sec αT1(K , K 0; â1ξa sec α + b̂1ξb) + Qn1 sec αT1(K , K 0; â1(Qa2 − ξa) sec α

+ b̂1(Qb2 − xib)) + Qn1 sec αT2(K , K 0; â1ξa sec α + b̂1ξb, â1(Qa2 − ξa) sec α

+ b̂1(Qb2 − ξb)). (95)

We also require T2 to vanish when either of the 3D ξ arguments is set to zero, as well as the300
absence of any first or second derivatives in ξ at the origin. Clearly, relationships among the
B, B2, and K kernels will be required to find an appropriate T2 kernel.

One such relationship is obtained by application of the shift-invariance property to the SPM
expansion, which yields

B2(K , K 0; K | n̂) + B2(K , K 0; K 0 | n̂) = B(K , K 0 | n̂). (96)

This identity was derived in [16, 20]. By combining this identity with equation (89) it is305
possible to obtain

2B2(K , K 0; K | n̂ = Q̂) = B(K , K 0 | n̂ = Q̂) = K(K , K 0). (97)
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The third argument of B2 above (K ) can also be replaced by K 0 due to the specular scattering
geometry that results with n̂ = Q̂. Comparing with equation (90) we can also find

∇B2

(
K , K 0; K ± ξ | n̂ = Q − ξ

|Q − ξ|
)∣∣∣∣

ξ=0

= 0. (98)

Finally, note that if the normal vector is defined as

n̂′ = Q − ξ(1) − ξ(2)

|Q − ξ(1) − ξ(2)| (99)

then 310

P‖(n̂′) · (
K − ξ(1)) = P‖(n̂′) · (

K 0 + ξ(2)) (100)

for arbitrary ξ(1) and ξ(2). This relationship allows arguments K − ξ(1) to be replaced with
K 0 + ξ(2) when the normal vector (99) is adopted. All of identities (96)–(100) hold regardless
of the surface boundary conditions (i.e. Dirichlet, Neumann, penetrable, etc.).

Combining this information allows a T2 kernel to be derived as

T2
(
K , K 0; ξ(1), ξ(2))=

[
n̂′ · Q

n̂′ · (Q − ξ(1) − ξ(2))

]{
B2

(
K , K 0; K − ξ(1) | n̂ = Q − ξ(1) − ξ(2)

|Q − ξ(1) − ξ(2)|

)

+ B2

(
K , K 0; K − ξ(2) | n̂ = Q − ξ(1) − ξ(2)∣∣Q − ξ(1) − ξ(2)

∣∣
)

− B
(

K , K 0 | n̂ = Q − ξ(1) − ξ(2)∣∣Q − ξ(1) − ξ(2)
∣∣
)}

+ T1
(
K , K 0; ξ(1) + ξ(2))

− T1
(
K , K 0; ξ(1)) − T1

(
K , K 0; ξ(2)). (101)

Note the arguments ξ(1) and ξ(2) appear in an interchange symmetric fashion as required in 315
(38). Note also from equation (86) that

Qn1 sec α = n̂′ · (
Q − ξ(1) − ξ(2)) (102)

when ξ(1) and ξ(2) are taken as the arguments of T2 in equation (95).
The identities provided can be used to verify that this kernel vanishes when either of the ξ

arguments is set to zero, and also that the derivative about the origin in either of the ξ arguments
vanishes. Furthermore, it can be shown that the mixed second derivative in ξ(1)ξ(2) vanishes 320
as well. This kernel enables consistency with the SPM2 theory to be reached regardless of the
tilt angle α.

5.4 Shadowing issues

Although the basic tilt operator n̂ = Q̂ is defined so that the incidence and scattering directions
achieve specular reflection in the tilted frame, the T1 tilt operator n̂LCA1 = Q−ξ

|Q−ξ| includes a 325
perturbation from this geometry. This tilt angle can become arbitrarily large as the argument ξ
becomes large, leading to the possibility of shadowing in the tilted geometry used to evaluate
B. Here shadowing is separated into ‘incidence’ and ‘scatter’ shadowing, defined respectively,
through

−n̂LCA1 · K 0 < 0 (103)

n̂LCA1 · K < 0. (104)
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Given the definition of n̂LCA1, it is possible to express these conditions in terms of limits on330
the argument ξ.

To simplify this discussion in terms of purely geometrical effects, we adopt a coordinate
system in which the vertical direction is labeled ẑ, and the horizontal directions x̂ and ŷ. Define
incidence and scattering propagation angles (θi , θs) through use of the vertical components of
the propagation vectors:335

q0 = −ẑ · K 0 = K cos θi (105)

qk = ẑ · K = K cos θs . (106)

In addition, we specify the horizontal coordinates through

k0 = x̂ K sin θi (107)

k = K sin θs(x̂ cos φs + ŷ sin φs). (108)

There is no loss of generality in these definitions, as azimuthal rotations of the incidence
direction can be accomplished by rotating the surface properties.

Shadowing of the incident wave in the tilted frame now occurs whenever

ξx < ξx1 = − K

sin θi
F(θi , θs, φs) (109)

where340

F(θi , θs, φs) = 1 + cos θi cos θs − sin θi sin θs cos φs . (110)

This is a vertical line in the (ξx , ξy) plane, parallel to the ξy axis, and in the second and third
quadrants. Similarly, shadowing of the scattered wave in the tilted frame occurs for

ξx cos φs + ξy sin φs >
K

sin θs
F(θi , θs, φs). (111)

This is a line of slope − cot φs in the (ξx , ξy) plane; the ξx intercept of this line is denoted as
ξx2.

Figure 1 is a plot illustrating these boundaries in the (ξx , ξy) plane, for θi = 30◦, θs = 50◦,345
and φs = 45◦; only between the two lines of the figure is no shadowing obtained. Note that the
above discussion has focused on shadowing issues involved in computing T1, but the analysis
is very similar for shadowing in T2 given that the tilt in this case is related in a similar fashion
to ξ1 + ξ2.

When shadowing occurs, it is not possible to compute the tilted B or B2 quantities needed350
in the LCA kernels. However, the Kirchhoff quantities in T1 and T2 are not affected as there
is no tilting involved in their evaluation. Because the tilted B and B2 functions approach zero
as the incidence and/or scatter propagation directions become shadowed, it is reasonable to
define T1 and T2 in such shadowed regions by simply setting the shadowed B or B2 quantities
to zero. This procedure ensures that no discontinuities are introduced into the LCA kernels355
when shadowing is encountered.

6. Sample results

6.1 LCA2 for 3D penetrable ‘Gaussian’ surfaces

Results are first illustrated to compare the existing and new LCA2 theories for incoher-
ent bistatic scattering from a 3D penetrable surface. The surface is modeled as a Gaussian360
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Figure 1. Shadowed regions in the ξx ,ξy domain.

stochastic process with an isotropic Gaussian correlation function, so that surface statistics
are completely specified by the rms height (σ ) and correlation length (l) parameters. The co-
ordinate system utilized in describing the scattering amplitude is such that the mean value of
the surface profile (i.e. along the vertical axis) is zero; this is an ‘untilted’ coordinate system.
Equations for ensemble averaged normalized radar cross sections (NRCS) in this case have 365
been presented in [21] for the SSA theory; LCA ensemble averaged results have an identi-
cal form under replacement of the appropriate kernel functions. Using the LCA2 model, the
resulting NRCS consists of three terms, involving powers in the two LCA field series terms
and the correlation between these two terms. The first NRCS is identical to the KA1 NRCS,
with the additional two terms providing corrections. Note that the third series term (involving 370
T2

1) is a fourth order correction, and is the same order as the correlation between the first
field series term and the T2 term. However, the T2 contribution is omitted here due to the
computational complexity of implementing the T2 formulation for 3D scattering problems.
This will be considered in future work.

Expressions from [21] require both spatial and Fourier (i.e. ξ) 2D integrations, which were 375
performed numerically for the cases of interest. Note these integrations can be de-coupled
through use of an FFT algorithm, so that a full quadruple integration is not required. The
overall LCA2 computation scales with the number of points discretizing the surface (N ) as N
due to this decoupling of integrations. A CPU time of approximately 2 s per RCS computation
on an 800 MHz Pentium processor was required to obtain all three LCA2 cross section terms 380
using a surface discretization of 256 by 256 points (N = 65536).

Results of the existing and new LCA2 theories are compared with those from the two-series
term SSA and from a Monte Carlo simulation using the method of moments (MOM). The
latter utilized 50 realizations, and results were computed using the canonical grid technique
[22] in a four scalar function unknown method of moments for a penetrable surface [23] to 385
improve computational efficiency. MOM surfaces sizes were 16λ×16λ sampled in 128×128
points, and the ‘tapered’ incident field described in [22] with g = 5 was used to eliminate
edge scattering effects. To make the results shown comparable to those in the literature, the
local polarization basis (equation (25)) is utilized in describing the results presented. Note
use of the tapered incident field causes inaccuracies for large bistatic scattering angles and for 390
cross-polarized predictions, so method of moments results are only included for co-polarized
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Figure 2. Normalized radar cross-sections for a Gaussian rough surface, Kσ = 1, Kl = 6, ε = 4 + i , θi = 30◦.

predictions at scattering angles within 70◦. Computational times for this numerical approach
were dramatically larger (on the order of tens of CPU hours) compared to those required for
LCA2.

Figure 2 illustrates in-plane bistatic NRCS predictions for Kσ = 1, Kl = 6, and surface395
relative permittivity ε = 4 + i . The incident field impinges upon the surface at θi = 30◦, and
the polar scattering angle used in the figure is defined so that θs = 30◦ is specular scattering
while θs = −30◦ is backscattering. Results in all four NRCS polarizations are plotted: the
second index of the αβ notation (HV, for example) indicates the incident polarization. Co-
polarized (HH and VV) results show little difference between the SSA2, existing LCA2,400
and new LCA2 theories, and all are in good agreement with the MOM simulation. Some
evidence of a slight over-prediction of HH cross-sections by both the old and new LCA2
theories is present at large bistatic scattering angles. A larger difference among theories is
observed in cross polarized predictions; here the new LCA model avoids some of the apparent
non-physical behaviors of the existing LCA at large scattering angles. It should be expected405
that the new LCA model should provide an improved cross-polarized prediction due to the
importance of out-of-plane tilting in obtaining cross-polarized fields; the existing LCA model
limitation to first order in surface tilt likely introduces the unusual behaviors observed. Note
all cross-polarized predictions are obtained from the second field series term, as the KA1
prediction for cross-polarized NRCS vanishes in the plane of incidence. SSA2 cross-polarized410
results are generally larger than those of either LCA theory, as might be expected due to the
importance of B2 in this polarization. It should be expected that inclusion of the third LCA
series term would likely yield a closer match between SSA and LCA theories for cross-pol
results.

To highlight the differences between the existing and new LCA predictions for co-polarized415
cross sections, figure 3 plots the correction to the dominant KA1 term arising from the second
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Figure 3. LCA2 corrections to KA1 predictions for a Gaussian rough surface, Kσ = 1, Kl = 6, ε = 4+i , θi = 30◦.

and third cross-section corrections. Predictions of the existing and new LCA theories again
seem similar, although larger differences are observed (although still insignificant compared
to KA1) than in figure 2. The ‘nulls’ in these plots are due to a sign change in the corrections,
with the HH results beginning as negative values (i.e. decreasing the KA1 prediction) at 420
negative scattering angles, then becoming positive, then negative again. The VV results have
an opposite trend in their signs versus the scattering angle.

Figures 4 and 5 are analogous to figures 1 and 2, but for the case Kσ = 0.5 and Kl = 3 (i.e.
the frequency has been decreased by a factor of two.) Results in terms of relationships among
theories are generally similar, although here the existing LCA cross-polarized prediction seems 425
even less reliable. Note the small MOM predictions obtained near specular angles are due to

Figure 4. Normalized radar cross-sections for a Gaussian rough surface, Kσ = 0.5, Kl = 3, ε = 4 + i , θi = 30◦.
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Figure 5. LCA2 corrections to KA1 predictions for a Gaussian rough surface, Kσ = 0.5, Kl = 3, ε = 4 + i ,
θi = 30◦.

difficulties in removing the coherent scattered field in the numerical simulation, and should
not be taken as accurate.

6.2 LCA3 for 2D Dirichlet sinusoidal gratings

Although implementation of the third LCA series term for 3D scattering problems has not430
been completed at this time, a study using Dirichlet sinusoidal gratings was performed in order
to confirm convergence of the LCA theory to the SPM2 limit. The surfaces considered are of
the form

h(x) = a sin

(
2π

P
x

)
, (112)

where a is the amplitude of the grating and P is its period, both reported in units of electro-
magnetic wavelengths. Results are presented in terms of bistatically scattered Floquet mode435
amplitudes in the plane of the grating; these Floquet modes satisfy the grating relation

k = k0 + 2πn

P
(113)

where n is the mode number. Mode amplitudes are normalized such that the sum of the
amplitude squared of all mode amplitudes is unity. This geometry is of interest due to its
previous utilization in several studies [20, 24].

Studies comparing the existing and new LCA2 theory were performed, and again showed440
only minor differences in scattered mode amplitude and phase results. However the inclusion
of LCA3 now allows verification that the LCA3 theory reproduces SPM2 predictions in the
small surface height limit. Figure 6 plots the percent error in KA1, existing LCA2, new LCA2,
and LCA3 predictions of scattered Floquet mode complex amplitudes, for a = 0.01λ, P = 5λ,
and θi = 61.35◦. Percent errors were defined in terms of the difference between the predicted445
complex mode amplitudes and those obtained from a 20th-order numerical SPM solution
[3], relative to the 20th-order SPM solution. Errors for the specular mode (mode 0) were
determined in terms of corrections to the flat surface value of −1. Results show inclusion of
the LCA3 prediction to yield dramatic reductions in obtained errors, particularly for the zero
mode, where it is known that the SPM1 correction vanishes. Note the numerical results show450
a slight increase in error when using LCA3 for the −1 mode, although the differences are
sufficiently small to make these predictions particularly sensitive to errors in the computation.
In addition the error in prediction of the −3 mode is larger than other modes; this is due to the
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Figure 6. Percent error in mode scattered fields for a = 0.01λ, P = 5λ, sin θi = 61.35◦.

fact that the SPM2 solution for a sinusoidal grating predicts zero amplitude for the −3 mode,
so that SPM3 kernels can be important for this extremely small amplitude mode. Even without 455
the use of any SPM3 kernels, the LCA3 solution obtains an error of less than one percent in
predicting the mode amplitude. Overall these results serve to verify the reduction of LCA3 to
SPM2 in the low frequency limit.

7. Conclusion

The local curvature approximation (LCA) has been generalized to achieve conformity with 460
SPM1 for an arbitrary surface tilt, as well as conformity with the second-order SPM theory
for arbitrary tilt when a third LCA series term is included. Although the numerical examples
illustrated showed only minor differences between the new and existing LCA2 models, it
should be expected that inclusion of the LCA3 term in future studies will enhance the ability
of the theory in the prediction of cross-polarized cross-sections particularly. Although the 465
LCA3 term is computationally complex (involving a sixfold integration for scattered fields
in 3D problems), other terms of similar complexity have been included in previous studies.
Recent efforts by the authors have focused on a ‘reduced’ LCA3 model, in which a fourfold
integration is used to approximate the full three-term series; this work will be reported in future
publications. Several new identities involving the KA and SPM kernels have been obtained as 470
byproducts in the derivation; these identities may find application in future theoretical studies
of rough surface scattering. Routines for computing the new LCA3 kernels are available upon
request to the authors.

Appendix A. First-order SPM kernels for electromagnetic scattering
from a penetrable interface 475

Consider vector electromagnetic scattering from an interface between free space and a medium
with relative permittivity ε. The first order SPM kernels Bhh , Bvh , Bhv , and Bvv are given by
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−i n̂ · K multiplied by equations (75), (76), (79), and (80) of [18], respectively. Although [18]
uses a different notation than the current formulation, the transformation of n̂ · K 0 to kzi , n̂ · K
to kzn′m ′ , and ξ to knm makes the kernel definitions clear. Specifically, this process results in480

Bhh(K , K 0 | n̂) = 2qkq0(ε − 1)K 2k̂ · k̂0

(qk + q ′
k)(q0 + q ′

0)
(A.1)

Bvh(K , K 0 | n̂) = 2qkq0(ε − 1)K 2

(εqk + q ′
k)(q0 + q ′

0)

q ′
k

K
(n̂ · (k̂0 × k̂)) (A.2)

Bhv(K , K 0 | n̂) = 2qkq0(ε − 1)K 2

(qk + q ′
k)(εq0 + q ′

0)

q ′
0

K
(n̂ · (k̂0 × k̂)) (A.3)

Bvv(K , K 0 | n̂) = 2qkq0(ε − 1)K 2

(εqk + q ′
k)(εq0 + q ′

0)

(ε|k||k0| − q ′
kq ′

0k̂ · k̂0)

K 2
(A.4)

where

qk = n̂ · K (A.5)

q0 = −n̂ · K 0 (A.6)

k = P‖(n̂) · K (A.7)

k0 = P‖(n̂) · K 0 (A.8)

q ′
k =

√
εK 2 − k · k (A.9)

q ′
0 =

√
εK 2 − k0 · k0. (A.10)

These quantities are in the local polarization basis (equations (25)) and are to be transformed
with equations (27)–(30) before their further use.

Appendix B. Second-order SPM kernels for electromagnetic scattering from a
penetrable interface485

Consider vector electromagnetic scattering from an interface between free space and a medium
with relative permittivity ε. At second order, the coefficients B2,hh , B2,vh , B2,hv , and B2,vv are
given by (n̂ · K ) / (n̂ · Q) multiplied by equations (88), (89), (95), and (96) of [18], respectively.
Specifically,

B2,hh(K , K 0; ξ | n̂) = 2qkq0(ε − 1)K 2

Qn(qk + q ′
k)(q0 + q ′

0)

{
C1C2(R1 + q ′

k) + S1S2(q ′
k + R2)

+C3

2
(q ′

0 − q ′
k)

}
(B.1)

B2,vh(K , K 0; ξ | n̂) = 2qkq0(ε − 1)K 2

Qn(εqk + q ′
k)(q0 + q ′

0)

{
S1C2

(
εK + q ′

k

K
R1

)
− C1S2

(
εK + q ′

k

K
R2

)

+ S2
ε|k|
K

R3 + S3

2

(
εK − q ′

k

K
q ′

0

)}
(B.2)
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B2,hv(K , K 0; ξ|n̂) = 2qkq0(ε − 1)K 2

Qn(qk + q ′
k)(εq0 + q ′

0)

{
− C1S2

(
q ′

0

K

)
(R1 + q ′

k)

+ S1C2

(
q ′

0

K

)
(q ′

k + R2) − S1

(
ε|k0|

K

)
R3 − S3

2

(
εK − q ′

k

K
q ′

0

)}
(B.3)

B2,vv(K , K 0; ξ|n̂) = 2qkq0(ε − 1)K 2

Qn(εqk + q ′
k)(εq0 + q ′

0)

{
− S1S2

(
q ′

0

K

)(
εK + q ′

k

K
R1

)

− C1C2

(
q ′

0

K

)(
εK + q ′

k

K
R2

)
+ C1

(
ε|k0|q ′

k

K 2

)
R3

+
(

ε|k|R3

K 2

)(
q ′

0C2 + |χ||k0|
K 2

R1

)
+ C3

2
(εq ′

0 − εq ′
k)

}
(B.4)

where 490

χ = P‖(n̂) · ξ (B.5)

qχ =
√

K 2 − χ · χ (B.6)

q ′
χ =

√
εK 2 − χ · χ (B.7)

R1 = qχ − q ′
χ (B.8)

R2 = qχq ′
χ (1 − ε)

εqχ + q ′
χ

(B.9)

R3 = |χ|K 2

|χ|2 + qχq ′
χ

(B.10)

C1 = χ̂ · k̂ (B.11)

C2 = χ̂ · k̂0 (B.12)

C3 = k̂ · k̂0 (B.13)

S1 = n̂ · (χ̂ × k̂) (B.14)

S2 = n̂ · (χ̂ × k̂0) (B.15)

S3 = n̂ · (k̂ × k̂0) (B.16)

and ξ is an arbitrary three-dimensional vector. The definitions of equations (A.5)–(A.10) are
also used above. These quantities must be transformed into the global polarization basis with
equations (27)–(30) before their further use.

It is here noted that the B2 quantities are not uniquely defined, as it is possible to add to
these quantities functions that vanish in the integration of equation (24). However, the LCA3 495
form used removes this non-uniqueness, so that the non-uniqueness of B2 is irrelevant.
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