EE 816 - Extra Lecture

1. Midterm questions
2. Thermal noise
3. Brightness temperature
4. Uniform atmosphere
5. Layered atmosphere

III. Brightness temperature

- Because intensity is directly related to the physical temperature of a blackbody, it is more common to talk about the “brightness temperature” of a source (units of Kelvin), rather than the specific intensity radiated.
- Objects that are not blackbodies do not satisfy the Planck law. However, it is still used as a reference: the brightness temperature of an object is the temperature of a blackbody that would produce the same specific intensity as the real object.
- Emissivity is defined as the ratio of an object’s brightness temperature to its physical temperature:

\[T_B = \varepsilon T_{\text{phys}} \]
(3)

- Energy conservation arguments can be used to relate the emissivity of an object to its scattering properties: “Kirchhoff’s Law”

II. Thermal noise

- All objects at non-zero absolute temperature emit radiation over a wide range of frequencies: thermal noise.
- The standard for this emission is a “blackbody”: an object that perfectly absorbs all incident radiation.
- If it remains in thermal equilibrium, a blackbody must also emit radiation; this is thermal noise however, not reflected incident radiation.
- The Planck blackbody law describes the specific intensity radiated by a blackbody at Kelvin temperature \(T \):

\[I = \frac{1}{c^2} \frac{h \nu^3}{e^{h \nu/kT} - 1} \]
(1)

where \(h \) is Planck’s constant, \(\nu \) is the frequency, and \(k \) is Boltzmann’s constant \(1.38 \times 10^{-23} \text{ J/K} \).
- In the microwave region, the exponent can be expanded to yield

\[I = \frac{kT}{\lambda^2} \]
(2)

Brightness temperature of a halfspace

- A simple argument can be used to find the brightness temperature of a halfspace medium at constant physical temperature \(T_{\text{phys}} \):

\[T_{B,\phi}(\theta) = T_{\text{phys}} \left(1 - |\Gamma_{\phi}(\theta)|^2 \right) \]
(4)

- \(\beta \) is the polarization observed, while \(\Gamma \) is the halfspace reflection coefficient. The brightness temperature function of \(\beta \) and \(\theta \) comes from the reflection coefficient.
- The more reflective a boundary is, the “colder” it appears.
- Properties of a halfspace can be determined from thermal noise measurement: microwave radiometry.

![Radiometer Diagram](image-url)
IV. T_B of a uniform atmosphere

- We can use radiative transfer theory to study T_B's of absorbing and scattering media. I is simply related to T_B.
- We have to add the emission source term to our RT equation:

$$\frac{dI(\mathbf{r}, \mathbf{s})}{ds} = -\rho \sigma_t I(\mathbf{r}, \mathbf{s}) + \frac{\rho \sigma_t}{4\pi} \int 4\pi d\omega \, p(\mathbf{s}', \mathbf{s}) I(\mathbf{r}, \mathbf{s}') + \rho \sigma_a \frac{K T}{\lambda^2}$$

<table>
<thead>
<tr>
<th>Space</th>
<th>Atmosphere</th>
<th>Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>z=0</td>
<td>Temperature T</td>
<td>Temperature T_{surf}</td>
</tr>
<tr>
<td>z=d</td>
<td>Constant σ_a</td>
<td>No scattering</td>
</tr>
</tbody>
</table>

V. T_B of a “layered” atmosphere

- It is more realistic to have a temperature profile $T(z)$ in the atmosphere, as well as an absorption profile. Here define $\kappa_a(z) = (\rho \sigma_a)(z)$
- Solution of RT equation neglecting scattering remains easy. Note different coordinate system below.

<table>
<thead>
<tr>
<th>Space</th>
<th>Atmosphere</th>
<th>Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>z=0</td>
<td>Temperature $T(z)$</td>
<td>Temperature T_{surf}</td>
</tr>
<tr>
<td>z=d</td>
<td>$\kappa_a(z)$</td>
<td>No scattering</td>
</tr>
</tbody>
</table>

T_B of a uniform atmosphere

- We can still divide into forward and reverse going intensities as before. However the Earth boundary is reflective, so we need:

$$I_s(z = d) = r I_s(z = d) + \frac{KT_{surf}}{\lambda^2} (1 - r)$$

where T_{surf} is the physical temperature of the Earth and r is the reflection coefficient at the boundary.
- In many cases, scattering in the atmosphere can be neglected. The RT solution is a straightforward 1st order DE solution. Write solution in terms of T_B in space region:

$$T_B(\theta) = T(1 - e^{-\tau \sec \theta})(1 + re^{-\tau \sec \theta} + T_{surf} e^{-\tau \sec \theta})$$

- Here $\tau = \rho \sigma_a d$. There are three terms:
 - Direct upward emission by layer
 - Downward emission of layer reflected off boundary and attenuated
 - Direct upward surface emission attenuated by layer

T_B of a “layered” atmosphere

- RT equation solution is:

$$T_B = \sec \theta \int_{-d}^{0} dz \, \kappa_a(z) T(z) \exp \left(-\int_{z}^{0} dz' \, \kappa_a(z') \sec \theta \right)$$

$$+ \sec \theta \, r e^{-\int_{-d}^{0} dz \, \kappa_a(z) \sec \theta} \int_{-d}^{0} dz \, \kappa_a(z) T(z) \exp \left(-\int_{z}^{0} dz' \, \kappa_a(z') \sec \theta \right)$$

$$+ T_{surf} (1 - r) e^{-\int_{-d}^{0} dz \, \kappa_a(z) \sec \theta}$$

- Terms are similar to before but include atmospheric profiles
- We could think of the first term only as:

$$T_B = \int_{-d}^{0} dz \, T(z) w(z)$$

where $w(z)$ is a “weighting function” connecting the atmospheric temperature profile to the observed brightness
- With a proper sensor design, it is possible to use multi-frequency thermal noise measurements to sense atmospheric temperature profiles.