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ABSTRACT: The forward�backward method with a no�el spectral
( )acceleration algorithm FB � NSA has been shown to be a �ery efficient

( )OO N iterati�e method of moments, where N is the total number oft o t t o t
unknowns to be sol�ed, for the computation of electromagnetic wa�e

( )scattering from two-dimensional 2-D perfectly conducting rough sur-
faces. In this paper, the method is extended to treat impedance rough
surfaces. It is found that the 2-D NSA algorithm for the impedance case
is similar to the one for the perfectly conducting case. Comparisons of
numerical results between the standard 2-D FB and 2-D FB � NSA
methods show that the latter yields �ery accurate results with an appre-
ciable reduction of CPU time. � 2001 John Wiley & Sons, Inc.
Microwave Opt Technol Lett 29: 232�236, 2001.
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1. INTRODUCTION

Recently, the forward�backward method with a novel spec-
Ž .tral acceleration algorithm FB�NSA has been shown to be

Ž .a very efficient OO N iterative method of moments for thetot
Ž .computation of electromagnetic EM wave scattering from

Ž . Ž .two-dimensional 2-D perfect electric conducting PEC
Ž .rough surfaces 3-D scattering problems , where N is thetot

� �total number of unknowns to be solved 1 . In this paper, the
2-D FB�NSA algorithm for 2-D impedance rough surfaces is

Ž .formulated using the impedance boundary condition IBC
� �approximation 2 . The new algorithm is thus an extension of

the 2-D FB�NSA algorithm developed for 2-D PEC rough
� �surfaces 1 to take the finite conductivity of the medium

below the surface profile into account. It is found that two
additional terms are required in the MFIE for the PEC case
to account for nonzero surface impedance, and one of them
involves the surface divergence of the associated currents
which requires a numerical differentiation. Unlike the PEC
case, each current element on the surface is always coupled
to another, even for a linear surface model. However, a 2-D
NSA algorithm for the IBC case can still be formulated which
is similar to the PEC case. For large-scale IBC rough sur-
faces, comparisons of numerical results between the conven-
tional FB method and the 2-D FB�NSA method illustrate
that the latter yields identical results to the former, with an
appreciable reduction of CPU time.

This paper is organized as follows. The FB method for 2-D
IBC rough surfaces is described in Section 2. Section 3
presents the formulation of the 2-D NSA algorithm for IBC
rough surfaces. To illustrate the accuracy and efficiency of
the 2-D FB�NSA algorithm for IBC rough surfaces, numeri-

Figure 1 A 2-D PEC rough surface profile S illuminated by a
iŽ .tapered incident field E x, y, z centered at the origin and propagat-

ˆing in direction k � x sin � cos � � y sin � sin � � z cos �ˆ ˆ ˆi i i i i i

cal results are illustrated in Section 4, and Section 5 presents
conclusions.

2. THE FB METHOD FOR IMPEDANCE ROUGH SURFACES

Consider a 2-D rough surface profile S illuminated by an
i ˆŽ .incident field E x, y, z centered in direction k �i

x sin � cos � � y sin � sin � � z cos � , as shown in Figureˆ ˆ ˆi i i i i
1, where � and � refer to the incident polar and azimuthali i
angles, respectively. The region above the surface profile is
assumed to be free space, and the region below is assumed to
be a homogeneous, nonmagnetic, and isotropic medium de-
scribed by electric permittivity 
 and magnetic permeability1

Ž .� . The surface height function z � f x, y has zero mean,0
and its maximum and minimum height variations are denoted
by z and z , respectively. Let � z denote the largestmax min max
surface variation, which is equal to z � z , and letmax min
r � xx � yy � zz and r� � xx� � yy� � zz� denote a field pointˆ ˆ ˆ ˆ ˆ ˆ
and a source point on the rough surface, respectively. The

iŽ .incident field E x, y, z is tapered with a Gaussian beam
amplitude pattern confining the illuminated rough surface to
the rectangular surface area D � D so that surface edgesx y
do not contribute strongly to obtained scattered fields. The

� �tapered incident field is discussed in detail in 3�5 .
Consider the Stratton�Chu integral equation for the mag-

� �netic field in the upper region above the surface profile 6 :

Ž .n � H r
i� n � H � n � dx� dy�HH2 PV , S x y

Ž . � Ž .� Ž .� �i�
 g r, r� n� � E r� � �g r, r�½
� �i n�

�� Ž .� Ž .� n� � H r� � �g r, r� �s��0

� Ž .� Ž .	 n� � E r� 1ˆ 5
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where the above integral is a principal-value integral, �
�
	 iss

the surface divergence operator, the 3-D free space Green’s
Ž . i k R Ž .function g r, r� � e �4� R , n � z � x � f�� x �ˆ ˆ

Ž . Ž . Ž . � �y � f�� y , n� � z � x � f�� x� � y � f�� y� , R � r � r� , andˆ ˆ ˆ ˆ
H i is the incident magnetic field associated with E i. The

Ž .normal vectors n and n� not unit vectors point upward from
the rough surface S, and S is the surface obtained from thex y
projection of the rough surface S onto the xy-plane. For

Ž .convenience in analysis, define the following quantities: J r
Ž . Ž . iŽ . Ž . Ž . Ž .� n � H r , J r � 2n � H r , M r � E r � n, and T rPO

Ž . � � � �� M r �n . Using the impedance boundary condition 2 ,

Ž .n � E � � n � n � H 2ˆ ˆ ˆs

where n is a unit normal vector pointing out of the roughˆ
surface into the upper region, and the surface impedance �s
is typically set to be the characteristic impedance of the lower

Ž . Ž . Ž .medium i.e., � � � �
 ; J r and M r are related via the's 0 1
following equation:

Ž . Ž . Ž .M r � �� n � J r . 3ˆs

Ž .Using the above definitions, Eq. 1 can be expressed as the
Ž .magnetic-field integral equation MFIE for an impedance

surface as follows:

Ž . Ž . Ž .J r � J r � J r � 2n � dx� dy�HHPO PEC
PV , S x y

Ž . � ��g r, r� n�
�Ž . Ž . Ž . Ž .� i�
 g r, r� M r� � � 	 T r� 4s½ 5i��0

Ž . Ž . Ž . Ž .J r � 2n � dx� dy��g r, r� � J r� . 5HHPEC
PV , S x y

Ž .Note that Eq. 4 is reduced to the MFIE for the PEC case
when � � 0, and two additional terms are required to ac-s
count for nonzero surface impedance. Using pulse basis func-

Ž .tions and delta testing functions i.e., point matching , the
above MFIE can be discretized into the following MM matrix

� �equation 7 :

Ž .ZI � V 6

where Z is the N � N MM impedance matrix, V is thetot tot
N � 1 excitation vector, I is the N � 1 solution vector,tot tot
N � 2 NM is the total number of unknowns on the surfacetot
S, and N and M are the numbers of grid cells of S alongx y
the x- and y-directions, respectively. Using a linear surface

Ž .model no surface curvature , it can be shown that the
Ž .principal-value integrals involving �g r, r� are zero when the
Ž .testing and integration points overlap self-term calculation

for surfaces approximated by collections of planes. However,
Ž .the 3-D scalar free-space Green’s function g r, r� has singu-

larity contributions when the testing and integration points
� �overlap which can be analytically integrated 5 .

Ž .Note also that the surface divergence term in Eq. 4
requires a numerical differentiation, a centered difference

Ž .derivative, of the unknown function T r� as follows:

�T�T yx� Ž . Ž .� 	 T r� � � 7s � x� � y�

Žn�1, m. Žn�1, m. T Žn , m�1. � T Žn , m�1.T � T y yx x� �
2� x 2� y

Ž .8

where n � 1, . . . , N and m � 1, . . . , M. Derivatives at points
on surface edges are computed by assuming that currents at
the adjacent point are zero; note that this is not a large
source of error since a tapered incident field will be used to
eliminate fields at surface edges.

� �Following the FB procedure as given in 1 , two FB cou-
Ž .pled integral equations for the IBC case at the kth k 	 1

iteration are obtained:

f , Žk . Ž .J r

Ž . Ž .� J r � 2n � dx� dy��g r, r�HHPO fPV , S x y

� f , Žk . Ž . b , Žk�1. Ž .�� J r� � J r� � 2n � dx� dy�HH
fPV , S x y

Ž . � f , Žk . Ž . b , Žk�1. Ž .�� �i�
� g r, r� n� � J r� � J r�ˆs½
Ž . � ��g r, r� n� �s �� �si��0

1 .f , Žk� b , Žk�1.2Ž Ž . Ž ..n� � J r� � J r�ˆ
Ž .	 95� �n�

b , Žk . Ž .J r

Ž .� 2n � dx� dy��g r, r�HH
bPV , S x y

� f , Žk . Ž . b , Žk . Ž .�� J r� � J r� � 2n � dx� dy�HH
bPV , S x y

Ž . � f , Žk . Ž . b , Žk . Ž .�� �i�
� g r, r� n� � J r� � J r�ˆs½
Ž . � ��g r, r� n� �s �� �si��0

1 .f , Žk� b , Žk .2Ž Ž . Ž ..n� � J r� � J r�ˆ
Ž .	 105� �n�

with the following initialization:

b , Ž0. Ž . Ž .J r � 0 11

f , Žk .Ž . b, Žk .Ž . Ž .where J r and J r are the forward-stepping FS and
Ž .backward-stepping BS currents, respectively, and the sur-

faces S f and Sb correspond to the FS and BS processes,x y x y
Ž � Ž .�. Ž . Ž .respectively see 1, Fig. 3 d . In Eqs. 9 and 10 , the

f , Žk�Ž1�2..Ž .surface divergence term associated with J r� can be
approximately computed via a centered difference derivative
� Ž .�see Eq. 8 as

U Žk�1. , Žn�1, m. � U Žk . , Žn�1, m.
1 x x� .Žk� 2 Ž .� 	 U r� �s 2� x

U Žk�1. , Žn , m�1. � U Žk . , Žn , m�1.
y y Ž .� 12

2� y
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1Žk� .2 Ž .where the vector U r� is defined as

1 .f , Žk� 2 Ž .n� � J r�ˆ1 .Žk� 2 Ž . Ž .U r� � . 13
� �n�

Žk ., Žn, m. Ž .Note that U denotes the jth component of U r� atj
Ž .the n, m th element on the rough surface S for the kth

1� Žk� .2 Ž . Ž .iteration, and the computation of � 	 U r� in Eq. 12s
fŽ . Ž .involves the FS currents J r� at the k th and k � 1 th

f , Žk�1.Ž .iterations. The reason for using J r� is that the FS
f , Žk .Ž .currents J r� at the kth iteration have not been com-

puted yet in the FS process for the elements above and on
Ž .the right of the test point located in the n, m th element. In

Ž . f , Žk .Ž .Eq. 9 , the currents J r are first solved for all receiving
Ž .elements, and then are employed in Eq. 10 to solve for the

b, Žk .Ž .currents J r for all receiving elements. It should be
Ž .pointed out that, for each n, m th receiving element, it is

required to invert a 2 � 2 submatrix in order to solve for
f , Žk .Ž . b, Žk .Ž . Ž .J r or J r due to the coupling between J r andx
Ž .J r in matrix self-terms. The iterative process is continuedy

in the FB fashion until the surface currents exhibit conver-
gence to within a specified accuracy criterion.

The FB method usually provides very rapid convergence in
Ž 2 .many RSS problems of interest; however, it is an OO Ntot

iterative method due to its direct computation of the
matrix�vector multiplies to compute the mutual coupling
between all pairs of points on the rough surface. In addition,

2Ž .the impedance matrix Z must be stored at a cost of OO Ntot
memory storage or all elements of the matrix must be recom-
puted at each iteration with a time-consuming computation.
To accelerate the FB method, the NSA algorithm is em-

Ž .ployed to achieve OO N for both CPU time and memorytot
storage requirements.

3. THE 2-D NSA ALGORITHM FOR IMPEDANCE
ROUGH SURFACES

For convenience in discussion, the computation of the FS
process associated with the computation of the weak region

f , Žk .Ž .contribution J r is considered only. Following the samew
� � f , Žk .Ž .procedure as in the PEC case 1 , J r can be expressed asw

f , Žk . Ž .J rw

Ž .� 2n � dx� dy��g r, r�HH
fS x y , w

� f , Žk . Ž . b , Žk�1. Ž .�� J r� � J r� � 2n � dx� dy�HH
fS x y , w

Ž . � f , Žk . Ž . b , Žk�1. Ž .�� �i�
� g r, r� n� � J r� � J r�ˆs½
Ž . � ��g r, r� n� �s �� �si��0

1 .f , Žk� b , Žk�1.2Ž Ž . Ž ..n� � J r� � J r�ˆ
Ž .	 145� �n�

f Ž �where S is the weak region in the FS process see 1, Fig.x y, w
�. f , Žk .Ž .4 . The currents J r are computed using the 2-D NSAw

algorithm for IBC surfaces.
Using the spectral integral representation of the free-space

3-D scalar Green’s function in the x-direction with appropri-

Ž . Ž .Figure 2 Integration contour of g r, r� and �g r, r� on the com-
plex k -plane. The original contour C is deformed to the newz k z

contour C�kz

� � f , Žk .Ž .ate contour deformation 1 , J r can be re-expressed inw
Žk .Ž .terms of the complex vector radiation function F r, k , kz y

on the k th iteration as follows:

Žk . Ž .F r, k , k1 z yf , Žk . Ž . Ž .J r � � n � dk dk 15H Hw z y2 k4� C C x� �k kz y

where

Žk . Ž . Žk . Ž . ik 	R Ž .F r, k , k � dx� dy�V r� e 16HHz y fS x y , w

Žk . Ž . Ž . � f , Žk . Ž . b , Žk�1. Ž .�V r� � k � �
� n� � J r� � J r�ˆs

1 .f , Žk� b , Žk�1.2� � Ž Ž . Ž ..n� � k n� � J r� � J r�ˆs �� � 	s � �i�� n�0

Ž .17

and C and C are the deformed contours in the complex� �k kz y
k - and k -planes as shown in Figures 2 and 3, respectively.z y

Žk .Ž .Like the PEC case, the vector function F r, k , k canz y
be computed from weak element currents in a recursi�e

Ž . Ž .Figure 3 Integration contour of g r, r� and �g r, r� on the com-
plex k -plane for a fixed value of k . C is the original contour, andy z k y

C is the deformed contour�k y
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� � Ž .fashion 1 . Equation 15 can be discretized and mapped to
the real axis according to the following mappings: dk �z
�k e�i� k z , k � k � p�k e�i� k z for p � �P, . . . , P, dkz z z z yp

� � k e�i� k y , and k � k � q� k e�i� k y for q �y y y yq

�Q , . . . , Q , where �k and �k are the integration stepp p z y
sizes in the complex k - and k -planes, respectively, P �z y
Ž . Ž � � .k ��k � 1, Q � Re k ��k � 1, k andz, max z p y, max y z, max

� �Re k are the maximum domains of integration in they, max
complex k - and k -planes as shown in Figures 2 and 3,z y
respectively, and the total number of plane waves in both
planes Q is given byTOT, x

P

Ž . Ž .Q � 2Q � 1 . 18ÝTOT, x p
p��P

Ž .Finally, the discretized version of Eq. 15 can be written as

f , Žk . Ž .J rw

1
� � ��24�

Q Žk .pP Ž . Ž .W k , k n � F r, k , kz y z yp q p q
� Ý Ý k xp��P q��Q p ,qp

�i� k �i� k Ž .z y� e e 19

12 2 2 2Ž .where k � k � k � k , �� � �k �k , andx y z y zp ,q q p
Ž .W k , k is a weighting function for numerical integration.z yp q

The 2-D NSA parameters in both complex k - and k -planesz y
are

� � z
 max�1, tan � 0.1ž /4 Lx� Ž .� � 20kz � zmax�1 �1tan � , tan � 0.1
 ž /Lx


 20k � zmax�1, tan � 0.1( ž /L Lx x� Ž .k � 21z , max
� zmax�1k � k , tan � 0.1z , s z , tail
 ma x ž /Lx

1 C kz Ž .�k � 22z (22 Lx

Ž .� � � 23k y


 D20k y�1, tan � 0.1( ž /L Lx x�� �Re k �y , max
Dy�1� �Re k � k , tan � 0.1y , s y , tail
 ma x ž /Lx

Ž .24

C k1 y Ž .�k � 25y (22 R x y

where

k � k� z �R , k � �D �R ,z , s max x z y , s y x yma x max

22 2 2Ž .'R � L � � z , R � L � D ,'x z x max x y x y

� 4and � � 1�max � , 1 , where � is the solution of the follow-
ing nonlinear equation:

Ž .L � � � � � � 0 26'x 1 2 3

2 2 2 2 2� Ž .'where � � 0.5 4� � � , � � 0.5 k 1 � � � k1 2 4 2 z, sma x
Ž 2.� Ž . 21 � � , � � 1 � � a � k � z , � � 2� k ,3 max z, s max 4 z, sma x max

Ž .and a is some constant typically found to be less than 3 .max
Note that � can be solved numerically via a standard root-
finding technique. In addition, there are six unknown con-
stants in the above formulas: � , a , k , k , C , andmax z, tail y, tail z
C , and these unknowns can be determined empirically byy

Ž .comparing the analytical solution of g r, r� to the solution
obtained from its spectral-domain representation as discussed

� �in detail in 1 .

4. NUMERICAL RESULTS

To illustrate the computational efficiency and accuracy of the
2-D FB�NSA algorithm, consider a deterministic IBC large-
scale rough surface with 
 � 10.0 � i10.0 of size 128
 �r1

Ž .16
 illuminated by a vertical polarized TM tapered plane
� �wave with the tapered parameter g � � 6 4 at an incident

angle of 40�, where 
 is the EM wavelength in free space.
The surface of interest is a realization of a Gaussian random
process with a Gaussian spectrum given by

l l h2
1 2 2 2 2x y Ž .� k l �k lx x y y4Ž . Ž .W k , k � e 27x y 4�

Ž .where W k , k represents the spectrum amplitude, l andx y x
l are the correlation lengths in the x- and y-directions,y

Ž .respectively, h is the surface root-mean-square rms height,
and k and k are the spatial frequencies in the x- andx y
y-directions, respectively. The surface spectrum parameters
of interest are l � l � 1.414
 and h � 1.0
. The surfacex y
Žhaving z � �3.651
, z � 4.103
, and � z �min max max

.7.754
 is sampled with eight points per 
, resulting in
262,144 unknowns for x- and y-polarization surface currents.
The following results of CPU time for the above deterministic
case are based on a Pentium II 333 MHz computer with 128
Mbytes of RAM. The standard 2-D FB method is employed
to compare with the 2-D FB�NSA method, and requires six
iterations to converge to within 1% accuracy based on the

� �normalized pseudoresidual test 1 . Its total CPU time for this
example is 20,990.88 min. The 2-D FB�NSA method employs
the following 2-D NSA parameters: L � 4.5
, � � 0.08 rad,x

� �a � 2.0, k � 0.20k, k � 0.20 Re � , C � 10.0, andmax z, tail y, tail z
C � 15.0, and requires the same number of iterations toy
converge within the same accuracy as in the 2-D FB method.
However, its total CPU time is only 2368.23 min. Thus, with
the 2-D FB�NSA algorithm, a CPU time reduction of 8.86 is
achieved in this case.

Numerical results are presented in terms of the normal-
Ž . Ž .ized bistatic radar cross section RCS � � , � in the�� s s

plane of incidence, defined for a scattered wave in �-polari-
Ž �zation and an incident wave in �-polarization see 1, Eq.

Ž .�34 , where � and � refer to the scattered polar ands s
Ž . Ž .azimuthal angles, respectively. Figure 4 a and b plots the

normalized bistatic RCS in decibels versus the scattering
Ž .angle � when � � � � 0� in plane scattering for HV ands i s

VV polarizations, respectively, comparing between the stan-
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Figure 4 Comparison of the normalized bistatic RCS in decibels by
the standard 2-D FB method and the 2-D FB�NSA method for
a deterministic IBC rough surface with 
 � 10.0 � i10.0 of sizer1

Ž .128
 � 16
 illuminated by a vertical polarized TM tapered plane
wave with the tapered parameter g � � 6 at an incident angle of 40�.
The surface of interest is a realization of a Gaussian random process
described by a Gaussian spectrum with l � l � 1.414
 and h �x y

Ž . Ž .1.0
. a HV polarization. b VV polarization

dard 2-D FB and 2-D FB�NSA methods. From the plots, the
normalized bistatic RCSs obtained from both methods are in
very good agreement. Thus, the 2-D FB�NSA method pro-
vides very accurate results with a great reduction of CPU
time.

5. CONCLUSIONS

In this paper, the 2-D FB�NSA algorithm for 2-D PEC
surfaces is extended to treat impedance rough surfaces. It is
found that two additional terms are required in the MFIE
formulation for the PEC case to account for nonzero surface
impedance, and one of them involves the surface divergence
of the associated currents which require a numerical differ-
entiation. The 2-D NSA algorithm for the IBC case is similar
to the one for the PEC case. Thus, the method is still an
Ž .OO N algorithm for a fixed surface dimension in the y-di-tot

rection D , and is most suited for rectangular surfaces due toy
the treatment of surface cross-range size as a ‘‘roughness’’
parameter. Comparisons of numerical results between the
standard 2-D FB and 2-D FB�NSA methods for a determin-
istic surface have shown that the 2-D FB�NSA method yields
very accurate results, with a great reduction of CPU time.
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LOW-LOSS WIDEBAND MICROWAVE
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ABSTRACT: A low-loss and well-matched wideband microwa�e coaxial
bias T is presented. A simple structure makes the bias T easy and low
cost to design and fabricate. Test results demonstrate the excellent
performance of the bias T. The measured return loss is better than 30 dB,
and the insertion loss is close to 0.1 dB o�er a wide frequency range. The
0.5 dB insertion loss bandwidth is 3�16 GHz. Furthermore, the RF
isolation is more than 30 dB. � 2001 John Wiley & Sons, Inc.
Microwave Opt Technol Lett 29: 236�238, 2001.

Key words: bias T; microwa�e; wideband; coaxial

1. INTRODUCTION

In many applications, bias Ts are needed to provide an active
component with a proper dc operation point while not af-
fecting the RF performance. Although bias Ts often are
integrated with the RF circuit, they are also desirable as
separate components, especially in test assemblies. Wideband
bias Ts have been designed to cover microwave frequencies

� �over a decade bandwidth 1 . However, some applications
require lower losses with good matching.

We have designed and constructed a low-loss coaxial bias
T for testing of the noise properties of millimeter- and
submillimeter-wave planar diodes and mixers where loss and
matching characteristics are important. The applied structure
enables an easy design and fabrication of a bias T with an
excellent performance. The low-loss and low-cost structure
makes this bias T competitive with the commercial ones.

2. DESIGN

The design method of the bias T is based on the idea used in
� �constructing microstrip and strip-line bias Ts in 1 , extended

here to coaxial lines for a low-loss performance. Figure 1

* Present address: European Space Research and Technology Centre,
2200 AG, Noordwijk ZH, The Netherlands.
Contract grant sponsor: European Space Agency�European Space Re-
search and Technology Centre
Contract grant number: ESA�ESTEC Contract 11806�96�NL�CN with
DaimlerChrysler Aerospace, Dornier Satellitensysteme GmbH

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 29, No. 4, May 20 2001236


	1.INTRODUCTION
	Figure 1

	2.THE FB METHOD FOR IMPEDANCE ROUGH SURFACES
	3.THE 2-D NSA ALGORITHM FOR IMPEDANCE ROUGH SURFACES
	Figure 2
	Figure 3

	4.NUMERICAL RESULTS
	Figure 4

	5.CONCLUSIONS
	1.D.Torrungrueng,The design method of the bias T is based on the idea used in

