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Optical Theorem for Electromagnetic Scattering
by a Three-Dimensional Scatterer in the

Presence of a Lossless Half Space
D. Torrungrueng, B. Ungan, and Joel T. Johnson, Senior Member, IEEE

Abstract—The classical optical theorem for a scatterer in free
space is useful in computing the total extinction cross section when
the scattering amplitude in the forward scattering direction is
known. In this letter, the classical optical theorem is extended to
the case of a scatterer in the presence of a lossless half space. The
extended optical theorem is derived based on energy conservation
concepts, and the method of stationary phase is employed to
obtain the final form. It is found that the total extinction cross
section is related to the scattering amplitudes in the specular
directions for reflected and transmitted fields. Numerical results
are presented to illustrate use of the theorem for evaluating the
energy conservation properties of an electromagnetic simulation.

Index Terms—Electromagnetic scattering, electromagnetic
theory, subsurface sensing.

I. INTRODUCTION

THE OPTICAL theorem has been known for more than a
century and has been frequently applied in many areas of

physics [1]–[14]. In electromagnetics (EM), the classical optical
theorem is applicable to scattering of a plane wave by objects in
homogeneous media (i.e., background media having constant
permittivity and permeability throughout all space). The theorem
is useful for computing the total extinction cross section when
the scattering amplitude in the forward scattering direction is
known [2]. This relation facilitates the calculation of the total
extinction cross section, since it otherwise must be obtained
by integration of the power flux density over a closed surface
bounding the scatterer. In addition, the theorem also serves as a
energy conservation condition in the verification of analytical
and numerical methods in EM scattering theory. Although in the
literature the optical theorem is almost exclusively formulated
in the frequency domain, the theorem can be formulated in
the time domain as well [3], [4] (also known as a time domain
energy theorem).

Although the classical optical theorem is very useful, it is lim-
ited to the case of scatterers located in homogeneous media. A
first extension to this case would involve scatterers in the pres-
ence of a lossless isotropic half space; this case is of practical
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value due to interest in problems involving scattering from an
object in the presence of the ground surface. The extended op-
tical theorem also finds application in the computation of the
thermally emitted power flux from an object in the presence of
a half space [15]. The theorem can be derived by using energy
conservation concepts and the method of stationary phase [6]
to evaluate associated double integrals asymptotically. Note the
use of dyadic Green’s functions in the formulation (as in [2]
for the homogeneous medium case) is not required. Previous
works have considered similar problems for acoustic scattering
in waveguides [7], or for EM scattering from two-dimensional
scatterers in the presence of layered media [8]–[10]. However,
the case of EM scattering from a three dimensional scatterer in
the presence of an isotropic half space apparently has not been
previously presented.

In Section II, the basic theorem is formulated, and its
simplified form is presented in Section III. Numerical results
illustrating use of the theorem are provided in Sections IV,
and Section V presents conclusions. An harmonic time
convention is assumed and suppressed throughout, where
is the radian frequency.

II. FORMULATION

Without loss of generality, consider a scatterer at the interface
of a lossless isotropic half space as shown in Fig. 1. It

will be clear later that the scatterer could be located at an arbi-
trary position above or below the interface without changing the
formulation. In Fig. 1, the region above the interface, denoted
as Region 1, is a homogeneous, lossless, and isotropic medium
described by electric permittivity and magnetic permeability

. The region below the interface, denoted as Region 2, is also
a homogeneous, lossless, and isotropic medium described by
electric permittivity and magnetic permeability . An in-
cident plane wave illuminates this geometry in the direction of
incidence as shown in Fig. 1. For practical cases of interest in-
volving fields incident in free space, the medium in Region 2 is
usually denser than the medium in Region 1, which means that
there is no total reflection phenomenon in the absence of the
scatterer. The formulation in this section is restricted to cases
when the total reflection phenomenon does not exist in the ab-
sence of the scatterer. Let be the spherical surface at infinity,
i.e., . In Fig. 1, the surfaces at infinity and de-
note upper and lower hemispherical surfaces of infinite radius,
respectively, and is the outward unit vector normal to these
surfaces.
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Fig. 1. Scatterer on the interface of a lossless isotropic half space is illuminated
by an incident plane wave.

A. Energy Conservation in the Absence of a Scatterer

Begin by considering the problem in the absence of the
scatterer. The total field consists of the incident and reflected
plane waves in Region 1, and the transmitted plane wave in
Region 2. Let , , and denote the incident, reflected,
and transmitted plane-wave electric fields, respectively, with
corresponding magnetic fields , , and . These fields
can be written as

(1)

(2)

(3)

(4)

(5)

(6)

where , , and are the plane wave amplitudes, , ,
and are their polarization vectors, and , , and are their
propagation vectors. The propagation vectors can be further ex-
pressed as

(7)

(8)

(9)

with the unit vectors , , and in Fig. 1 characterized by
the angles , , and in spherical coordi-
nates, respectively. Mathematically, these unit vectors are given
as follows:

(10)

where , and or . In this problem, and
lie in the following ranges: and
. In the absence of the total reflection and with a lossless

half space, is always real and lies in the following range:
. Here and denote

the wavenumber and the intrinsic impedance of the medium in
Region , respectively, where or 2. Finally

(11)

where is the distance from the origin to an observation point
, and is defined as

(12)

Once values of , , and are specified for the incident plane
wave, the remaining quantities in the above expressions are de-
termined through the standard solution for a half-space reflec-
tion problem.

The time-average Poynting vector is

Re (13)

where Re denotes the real part of its argument, and the su-
perscript “ ” denotes the complex conjugate operator. Applying
energy conservation concepts and using the fact that the half
space is lossless, the following equation is obtained:

(14)

where and . Using (13) and the total
field in Region 1, the first term on the left-hand
side (LHS) of (14) can be expressed as

(15)

where

Re (16)

Re (17)

Re

(18)

Similarly, the second term on the LHS of (14) can be expressed
as

(19)

where

Re (20)

Substituting (15) and (19) into (14) yields

(21)

which is the equation of power conservation in the absence of a
scatterer.
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B. Energy Conservation in the Presence of a Scatterer

Next, consider the case when the scatterer is present. In
this case, scattered field intensities and
are produced by the scatterer in Regions 1 and 2, respectively.
Unlike the plane waves , , and ,

and are spherical waves on surfaces and
, respectively, so that

(22)

(23)

(24)

(25)

where and are the far-field scattering
amplitudes associated with and , respectively. These
scattering amplitudes would be determined by solution of
the EM scattering problem for a specific scatterer in the
presence of a specific half space. Standard integral equations
for this problem involve the “Sommerfeld” Green’s functions
[16], and a numerical solution would typically be required to
determine the scattering amplitudes. The spherical wave forms
in (22)–(25) as approaches infinity are obtained from appro-
priate far-field limits of the Sommerfeld Green’s functions, and
are valid everywhere on surface . For finite-sized scatterers,
there are no additional “surface wave” contributions to radiated
power in the far field [16], so such terms are not required in the
following analysis.

Total fields in the presence of a scatterer are then
expressed as

in Region 1
in Region 2

(26)

in Region 1
in Region 2.

(27)

Let denote the average power being absorbed by the scat-
terer. Applying energy conservation concepts and following the
same procedure as in the case when the scatterer is absent, one
obtains the following equation:

(28)

Note that there is a negative sign on the right-hand side (RHS)
of (28), since the sum of the two terms on the LHS of (28)
represents the difference between the power flowing out of
the volume enclosed by the closed surface and the power
flowing into the volume. Using (26), (27), and (13), (28) can
be reexpressed as

(29)

where , , , and are defined as in (16)–(18) and
(20), respectively, and

Re (30)

Re (31)

Re

(32)

Re (33)

Using (21), (29) can be rewritten as

(34)

where and are defined as

(35)

(36)

Note that in (36) represents the total power scattered by the
scatterer into Regions 1 and 2, while is the total power ab-
sorbed by the scatterer. Their total is the total extinction due to
the presence of the scatterer, and is equal to by (34). The
term contains contributions from the interaction between
incident and reflected plane waves and scattered waves on the
surface , and from the interaction between the trans-
mitted plane wave and scattered waves on the surface .
Simplified forms for and would provide a convenient
means for computation of scatterer extinction, and are sought in
Section III.

III. SIMPLIFICATION

From (32), can be rewritten as

(37)

where

Re (38)

Re

(39)

From (38), can be rewritten as

Re

(40)
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Substituting (2) and (23) into (40) and using appropriate vector
identities, one obtains

Re (41)

where

(42)

Substituting (1) and (22) into (42) yields

(43)

where on , and

(44)

Applying the method of stationary phase [6] to evaluate the
above double integral in (43) asymptotically, it can be shown
that

(45)

due to the fact that there is no stationary phase point lying inside
the angular domain of interest ( , ),
and the end-point contributions vanish as . Substituting
(45) into (41) yields

(46)

Similarly, in (39) can be evaluated asymptotically by using
the method of stationary phase, and it is found to be

Im (47)

where Im denotes the imaginary part of its argument. Note
that the only stationary phase point that contributes to

occurs at , and the scattering vector
in (47) is evaluated at . It should be pointed out that the
end-point contributions for the integral in (39) vanish as

. Substituting (46) and (47) into (37) yields

Im (48)

From (48), when there is no reflection (i.e., Brewster angle in-
cidence in vertical polarization), is equal to zero, since

.
Next, consider the term in (33), which can be rewritten

as

Re

(49)

Using (5), (6), (24), and (25) and performing the same asymp-
totic analysis as above, (49) can be simplified to

Im (50)

where the scattering vector in (50) is evaluated at .
Note that the only stationary phase point that con-
tributes to occurs at for the angular
domain of interest ( , ). End-point
contributions associated with the integral in (49) again
vanish as .

Finally, using (35), (48) and (50), (34) can be expressed as

Im

Im (51)

when there is no total reflection. This simplified form shows that
the extinction caused by a scatterer in the presence
of a lossless half space can be determined from knowledge of
the scattering amplitudes and in the directions of the
specularly reflected and transmitted plane waves, respectively.
A verification of energy conservation for an EM computation in
the presence of a lossless half space involves these quantities,
and is illustrated in Section IV.

IV. NUMERICAL ILLUSTRATION

Consider a scatterer in the presence of a boundary between
free space (Region 1) and a dielectric half space (Region 2) with

and , where and are the permittivity
and permeability of free space, respectively The scatterer is
a homogeneous, lossless dielectric cube with side length 0.2
free-space wavelengths, centered 0.5 free-space wavelengths
either above or below the interface. The relative permittivity and
permeability of the cube are equal to 2.0 and 1.0, respectively;
the incident field is vertically polarized and incident from
Region 1 .

The ESP5 code [17] based on the method of moments (MoM)
is employed to compute scattered fields from this object numer-
ically as the incidence angle is varied with . To pro-
vide a reasonable accuracy, the cube was discretized by using
a MoM segment size of , where is the wavelength in
the dielectric cube. Note this discretization implies some error
in the computations so that the optical theorem will not be sat-
isfied exactly; the level of error observed gives some suggestion
as to the accuracy of the numerical computation.

Since the cube is lossless, the average absorbed power in
(51) is equal to zero, resulting in

Im

Im (52)

The above form of the extended optical theorem is used for
convenience in illustrating the numerical results. The terms

and above are the total powers bistatically scattered
into Regions 1 and 2, respectively. Bistatic scattered fields
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Fig. 2. T and T versus incidence angle � when the cube is (a) below or (b)
above the interface (� = 3� and � = � ).

were computed by the ESP5 code (for each incidence angle)
over surfaces and in a 1 degree grid both in and . The
corresponding powers were then numerically integrated over
surfaces and to compute and . The remaining
“cross” terms in (52) were evaluated from the fields computed
in the specularly reflected and transmitted directions.

For convenience in comparison, let and denote the
terms on the LHS and RHS of (52), respectively. Fig. 2 illustrates

and versus incidence angle when the scatterer is
either below [Fig. 2(a)] or above [Fig. 2(b)] the interface. It
should be pointed out that the Brewster angle exists for this
case at , and no total reflection occurs, since medium
2 is denser than medium 1. The good agreement between
and observed confirms that the ESP5 code is providing
relatively good energy conservation (to within a few percent)
in its predictions. Note that and can take either positive
or negative values depending on the relationship between the
scattered power and cross terms. The variations observed with
observation angle are caused both by the varying half-space
reflection properties and the varying response of the cubical
scatterer as the observation angle is varied. Curves similar
to these for thermal emission from a subsurface object have
been reported in [15].

V. CONCLUSION

The optical theorem for an object in the presence of a loss-
less half space has been presented in this letter. Results show

that knowledge of the far-field scattering amplitude in the spec-
ularly reflected and transmitted directions is sufficient to deter-
mine scatterer extinction properties. The theorem can be applied
to evaluate the energy conservation properties of EM methods
(as illustrated in the example) and to assess half-space effects
on scatterer extinction behaviors. The method has also been ap-
plied in the computation of thermal emission from objects in the
presence of a half space. Further extensions to include the case
of critical angle incidence are in progress.
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