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A Novel Acceleration Algorithm for the Computation
of Scattering From Two-Dimensional Large-Scale
Perfectly Conducting Random Rough Surfaces with
the Forward-Backward Method

Danai Torrungruengviember, IEEEHsIi-Tseng ChouMember, IEEEand Joel T. JohnspiMember, IEEE

Abstract—The forward-backward method with a novel spec- At present, scattering from surfaces whose properties render
tral acceleration algorithm (FB/NSA) has been shown to be an the analytical theories invalid can be accurately calculated only
extremely efficient iterative method of moments (MoM) for the through the use of numerical methods. The most commonly

computation of scattering from one-dimensional (1-D) perfect d techni is th f int | ti h and it
electric conducting (PEC) and impedance rough surfaces [1]. used technique is the surface Integral équation approach, ana its

The NSA algorithm is employed to rapidly compute interactions Solution by the method of moments (MoM) [2]-[4]. Standard
between widely separated points in the conventional FB method factorization techniques of the system matrix, such as LU
and is based on a spectral domain representation of source decomposition, become intractable as the number of unknowns
currents and the associated Green’s function. For fixed surface N, increases because of their computational complexity of

roughness statistics, the computational cost and memory storage 3 L ;
of the FB/NSA method areO(N;..) as the surface size increases, O(Ni5)- In addition, the standard MoM also requires memory

where N,., is the total number of unknowns to be solved. This Storage of0(NN7,) to store all elements of a dense impedance
makes studies of scattering from large surfaces, required in matrix. To increase computational efficiency in solving the

low grazing-angle scattering problems, tractable. In this paper, surface integral equation, several efficient methods based
the FB/NSA method is extended to analyze scattering from o jiarative versions of the MoM have been developed. One

two-dimensional (2-D) rough surfaces. The NSA algorithm for . -
this case involves a double spectral integral representation of iterative MoM, termed the forward-backward (FB) method, has

source currents and the 3-D free-space scalar Green’s function. P€€n shown in many cases to provide a more rapid convergence
The coupling between two spectral variables makes the problem than standard CG-like iterative algorithms [1], [5]-[8]. This
more challenging, and the efficiency improvements obtained for method is functionally identical to the method of ordered
2-D surfaces are appreciable but not as dramatic as those for 1-D multiple interaction (MOMI) [9], [10] and has been shown

surfaces. However, the computational efficiency of the FB/NSA . . -
method for 2-D rough surfaces remainsO(N,,;) as one of the to be anO(Nf,,) algorithm. Due to its rapidly-convergent

surface dimensions increases. Comparisons of numerical results Property, it is worthwhile to determine ways to improve its
between the conventional FB method and the FB/NSA method computational efficiency.

for large-scale PEC rough surfaces show that the latter yields . : A
identical results to the former with a reduction of CPU time Previous use of the FB method has emphasized the one-di

and only a slight increase in memory storage. In addition, the mensional (1-D) problem. To improve the computational effi-
numerical results of FB/NSA method are in good agreement with ciency of the 1-D FB (MOMI) method, the novel spectral ac-

experimental data obtained from the University of Washington, celeration (NSA) algorithm has been used [1]. In this method,

Seattle, WA. a neighborhood distance around each receiving element on the
Index Terms—Forward-backward method, novel spectral accel-  surface is defined to separate the strong interaction regions from
eration algorithm, tough surfaces. the weak interaction regions. Direct matrix-vector multiplica-

tion is performed when the source points are in the strong inter-
action regions. The NSA algorithm is employed to rapidly com-

pute weak interactions between widely separated points in the

I. INTRODUCTION conventional FB method and is based on a spectral domain rep-

. resentation of source currents and the associated Green'’s func-

E LECTROMAGNETIC (EM) wave scattering from tion_For fixed surface roughness statistics, it can be shown that

random rough surfaces has been studied extensively, 3R computational cost and memory storage requirement of the
several approximate analytical methods have been developeg/NsA method iSO(N,;) as the surface size increases. Al-

though previously applied exclusively with the FB method, the
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Fig. 2. Discretization of a rectangular surface atgax D, of 5., into an
N x M rectangular grid. Each grid cell has the dimension x Ay.

Letr = Tz + 9y + 2z and?’ = 22’ + ¢y + 22’ denote a
field point and a source point on the rough surface, respectively.
Then, the magnetic field integral equation (MFIE) on the PEC

Fig. 1. Two-dimensional (2-D) PEC rough surface proffieilluminated rough surface is given by
by a tapered incident field E‘(z, y, z) centered in directionk; =
& sin 6; cos ¢; + ¢ sin 8; sin ¢; — 2 cos 6;.

J(r)=Jpo(r)+ 2n x // dx’ dy' V g(r, v') x J(v")
PV, S,,
ployed to perform matrix-vector multiplies for weak group in- 0}

teraction. The NSA algorithm for this case involves a doublghere the above integral is a principal-value integral
spectral integral representation of source currents and the three-

di_mensional (3-D) free space sc_:alar Green'’s function. The cou- Vy(r,v) =GR)R 2)
pling between two spectral variables makes the problem more kR 1
challenging, and the efficiency improvements obtained for 2-D G(R) = oyl <Lk - E) 3)

surfaces are appreciable but not as dramatic as those for 1-D
surfaces. However, the computational efficiency of the FB/NS _ _ i IS _
method for 2-D RRSS remaing(V,,;) as one of the surface 9((5}/—8;1;5(:7‘1 {Pﬁ(;)nd—;ijg (:v)ﬁgre_HZ; isxt(haefi/niﬂivd)em
dimensions increases. The FB/NSA method is specifically e 2 N PPN X

. . magnetic field associated with*. The normal vectos points
signed for 2-D large-scale finite rectangular surfaces and re-

. - usoward from the PEC surface, ag, is the surface obtained
mains very efficient for moderately-rough, large-scale surfacif.

from the projection of the rough surfa¢etonto thexy plane.
Use of a large rectangular surface makes the method well sui ; . . .
. . S usual, this surface integral equation can be solved using a
for studying RRSS at low grazing angles (LGA) [11] and alsg . : .
X . Standard point-matching MoM technique [2].
for studies of backscattering enhancement [12] For the purpose of the MoM formulation, the rectangular sur
In the next section, the FB method for 2-D RRSS is descrlbefg purp ’ 9

The formulation of the FB/NSA method is presented in detail in ce argd)x x Dy of S“Jy IS discretized into thev x M rectan-_
. . . ular grid, as shown in Fig. 2. Each,(m)th element has the di-
Section lll. In Section 1V, the computational cost and memo

storage requirements of the FB/NSA method are discussed. eensmrAa: x Ay, and ts centeris located at, yy,) inthe co-

sults and discussions are provided in Section V, and Sectionyfinate system, where=1, -- -, Nandm =1, .- -, M. Let
. ot L R Ny,e = 2N M be the total number of unknowns on the surface
presents conclusions. AT%* harmonic time convention is as-

”ia[r%ue to two independent components f#)]. Using pulse

sumed and suppressed throughout, and the propagation CoNHETLS functions and delta testing functions (i.e., point matching),

Is defined as: = w\/ﬁ yvherew s the raq_lan frequency, andthe above MFIE can be discretized into the following MoM ma-
¢ andp are the permittivity and permeability of free space, rei equation:

spectively.

ZI=V (4)
Il. FORWARD-BACKWARD METHOD FOR2-D RRSS

Consider a 2-D PEC rough surface profilg illumi- Where

nated by an incident fieldz’(z, v, z) centered in direction Ntor X Nior MOM impedance matrix;

/;'i = & sin 6; cos ¢; + 4 sin 6; sin ¢; — Z cos 6;, as shown in Nior x 1 eXC't‘T"t'on vector,

Fig. 1. The surface height functien= f(x, y) has zeromean, { Nt x 1 solution vector.

and its maximum and minimum height variations are denotétsing pulse basis functions, point matching, afidear surface

BY Zmax @Nd zmin, respectively. The incident field” (z, i, z) model (no surface curvatures), it can be shown that the principal-
is tapered with a Gaussian beam amplitude pattern confini#glue integration over the self( m)th elementS,.,, vanishes

the illuminated rough surface to the rectangular surface area

D, x D, so that surface edges do not contribute strongly to I X // de’ dyf G(R)R x J(+') = 0. (5)
PV, S;eir

Z
v

obtained scattered fields, as described in [13].
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Fig. 3. Forward-stepping (FS) and backward-stepping (BS) processes. (a) FS process, (b) BS process, (c) alternative FS process, and (d) F& &t BS proj
surfaces.

To develop the FB method for the 2-DRRSS, it is desirable ghown in Fig. 3(a) and (b) usually provide better convergence

make the following decomposition for the current veclg¢r):  except for some types of surfaces that exhibit resonant scattering
effects.
J(r) = I (r) + J°(r) (6) Substituting (6) into (1), (1) can be separated into two coupled
integral equations

whereJ/ (r) andJ’ (r) are the forward-stepping (FS) and back-
ward-stepping (BS) currents, respectively. The FS and BS pro- f o ,
cesses as described in Tran [10] are illustrated in Fig. 3(a) and Jf(T) =Jro(r) +2n x //m si, da’ dy’V g(r, 7')
(b), respectively. For the FS process as shown in Fig. 3(a), the
procedure starts from the:{, ) current element and moves X [Jf(T/) + Jb(T/)} @)
from bottom to top and then from left to right until reaching
the (v, ¥, ) current element, called the receiving element here- J(r) =2n //m o da’ dy' ¥ g(r, ')
inafter. For the BS process, the sweep starts fromihe {/a/) ’ yb
current element and moves from top to bottom and then from x [Jf(T/) +J (7‘/)} (8)
right to left until reaching the receiving element, as shown in
Fig. 3(b). It should be mentioned that these stepping proces&émresa{fy andsgy are the surfaces corresponding to the FS and
can be defined differently. For example, for the FS process, 0B processes respectively, as shown in Fig. 3(d). The adding
may start from the «£;, y1) current element and move fromof the results of (7) and (8) in (1), due to the fact tisaf, =
left to right first and then from bottom to top, as iIIustratecHg;y + Sgy, is noted. The integral term on the right-hand side
in Fig. 3(c). However, for the finite rectangular surface wher@RHS) of (7) represents the FS contribution due to the radiation
D, > D,, it can be shown numerically that the FS and B8f current elements belonging to the surfﬁ{g. Similarly, the
schemes given in Fig. 3(a) and (b) require a smaller numbategral term on the RHS of (8) represents the BS contribution
of plane waves when the NSA algorithm is incorporated infiue to the radiation of current elements belonging to the surface
the FB method. In addition, Tran observed that these schenﬁ@ (7) and (8) can be solved using an iterative method, the
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FB method, by first initializing* (r) = 0, and at thekth f
(k > 1) iteration
J5 (k)(r) =Jpo(r) +2n x // dr' dy' V g(r, ') D,
rv,s’ ., i
x [JE Bty 4 a» )] ©)

Jo B () = 2n x // de' dy' V g(r, ')
PV, St

1 Fzy

‘We,ali;/ ]:ie’git/)n’/ :f e

Fig. 4. Strong and weak regions in the FS direction.
x [ W) + a8 O] (10)

The currents?”> ®)(r) in (9) are first solved for all receiving
elements, and then employed in (10) to solve for the currents
J¥® (7 for all receiving elements. Iterative processes are con-
tinued in the FB fashion until surface currents exhibit conver- _of f £ £ (0
gence to within a specified accuracy criterion. The normaliz@@d5%, = 51, 481, .- Theterms/{> ) (r) andJ;; " (r) in

pseudo-residuaPRyy is used to monitor convergence of the Fg12) represent the strong and weak region contributions, respec-
method. defined as follows: tively. The currents?>®)(r) is computed in the conventional

manner, and the NSA algorithm is employed to compute the cur-

JL®E )—2n><// dr' dy' V g(r, 1)

x [ (k)(r ) + g% ()] (14)

7 — 76-n) rentJ’; ) r).
PRy = Hj(k) H (11) The NSA algorithm starts with the spectral representation of
the free space 3-D scalar Green’s functign, ') for x — 2’ >
where|| - || is the vector norm. It is noted that tHéRy con- ¢
vergence test does not require a matrix-vector multiply. From kR
numerical experience in RRSS problems of interest, the conver- g(r, ) / / dk. dk, (15)
gence test based dAR seems to yield quite accurate results ~sn? Cr, JChy

for tolerance of 0.01. However, it may not be an acceptable stQprqre
ping test for general scattering problems [14]. k = ik, + Ok, + 2k.;
Although the FB method provides very rapid convergence ;. (k; k.? Y kQ)lfé

in many RRSS problems, it requires a direct computation of ",/ denote the--coordinates of a field (receiving) point
the matrix-vector multipliers to compute the mutual coupling and a source point, respectively [15], [16].

between all pairs of points on the rough surface. In addItIOﬁlhe contourg”;_ andC;, are theoriginal contours of integra-
the impedance matri¥ must be stored at a cost 6(N,,)  tion on the real axes in the compléx andk, planes, respec-
memory storage, or all elements of the matrix must be recoggely,

puted at each iteration with a time-consuming computation.  applying the gradient operatar tog(r, ') in (15), the spec-

tral representation 0¥ g(r, »') is obtained as
I1l. NOVEL SPECTRAL ACCELERATION ALGORITHM FOR THE R
ik

1 k
FORWARD-BACKWARD METHOD (FB/NSA) Vg(r, v') = e / dk. dk, ek . (16)
In order to accelerate the FB method mutual coupling com- T, Ja, ¥
putation, the NSA algorithm is employed to obt&hiNy,. ) for  supstituting (16) into (14) and interchanging the spatial and
both CPU time and memory storage requirements. For con@ntour integrations, (14) can be rewritten as
nience in understanding the FB/NSA method, only the com-

putation of the FS process is considered. The BS computatieﬁf ) () = 1 nx Ik di F®(r, k., k)
can be treated in a similar fashion. The NSA algorithm starts * N c.. Jo Kz
with the selection of a neighborhood distance in:thdirection an

L,., within which interactions between points are classified aghere F*)(r, k., k,) is called the complex vectardiation
strong, and outside of which, interactions are classified as weélnction (or plane wave spectrum) on theh iteration, defined
as illustrated in Fig. 4. It can be seen that the FS surﬂjge’s as

decomposed into the FS stron@{g .) and weak §7, yow) T€"

gions. Using this decomposition, (7) can be rewritten as F®(r, k., k,) // dx’ dy' VP (r)e* B (18)
JEE )y = Tpo(r) +IL B @)+ ILF () (12)  \where

where VB ') =k x [Jf, ®) () + be(k—l)(,_/)} )
I B(r) =20 % //m o d' dy' G(R)R Thus, weak element contributiont: *)(r) can be obtained

zy, s

£ b, (k1) through a spectral domain integral of the complex vector radia-
[J I GOE i (r )} (13) tion functionF®(r, k., k,). One property o X (r, k., k,)
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Fig. 5. Integration contour gf(r, r’) on the complex. plane.C). is the original contour, and's, is the deformed contour. The SDP and SAP contours for
a flat surface Az = 0) are also shown. N

is that it can be computed from weak element currents in a tée original contour€’y, . andC},, are deformed to the new con-
cursive manner. To see this, ¥gt, ,,,) denote a position vector toursCs, _ anngky , respectively, as shown in the above figures.
starting from the origin of the coordinate system to the cent&his is possible since there are no singularities between the orig-
of the (n, m)th element on the surfacg wheren =1, ---, N inal and deformed contours. These contour deformations yield
andm = 1, ---, M. Discretizing the double spatial integralsmaller integration intervals and smaller sampling rates to eval-
on the RHS of (18), the radiation functidi® (r, k., k,) in  uate the double spectral integral involvif§®' (r, k., k,). This
the FS direction can be recursively computed through a “phdselue to the fact that the functidﬂ(’“)(r, k., k) is relatively
shifting” process as follows: smooth and localized in the compléxandk, planes along the
0 bk deformed complex contours, as illustrated via numerical exam-
((n,m)s kzr Fey) ples later in Section V.
o (T(n_l Ay Fiss ky) g Ad.vantageous.defgrmed contours, _ andcéky can be de-
’ termined by considering the spectral representatigrxafr’).

M .
_ +A5myz v® ("'(n—NLI,i)) G =1 (15) can be rewritten as

=1 / i ik, (z—2'
F (P ety Koy By) %5 m £ 1 glr, ') =32 /cgk dk, === /Cék dk,
(19) z Y
ik (e =a )k (53]
where X 2 : (20)

v, =k [T(n,1) — T(n—-1, M)]i ‘
Vo =k [rn1) — TN, 0l It can be seen from (20) that the two spectral variakleand
Vs =k -[rom = Tn,m-1l k, are coupled through, = (k* — k2 — k2)*/2. Ask. changes
Np, = (L./Az); along the contou€’s, , the topology in the complek, plane
ASyy = AzAy. is modified. For convenience, first consider the topology in the

(19) illustrates that the functiof™ (r(,, ,..), k., k,) continu- complexk. plane for a single pair of points and+' on a flat
ously updates when the receiving element is at the bottomsfrface. In Fig. 5, there are a pair of branch cuts originating at
the 2-D grid S, (m = 1) as a new set of source elementshe branch points-k. For a flat surface, the steepest descent
enters the weak interaction group. Fer # 1, the function path (SDP)Csppr(Az = 0) and steepest ascent path (SAP)
F® (5, ), k., k,) can be computed by simply multiplying Cssp(A~ = 0) intersect at the saddle point at the origin in
the previous valud?‘(’“)(r(nm,_l), k., k,) by a “phase” func- the complex:. plane. From an asymptotic analysis, most of the
tion. contribution occurs on portions of the SDP path near a saddle

Figs. 57 illustrate various contours in the complgxandk,  point on the real axis. As the distance from the saddle point in-
planes. A solid line indicates that a contour is in pineperRie- creases along the SDP path, the integrand of (20) with respect
mann sheet, which satisfies the radiation condition foettfe®  to k. is exponentially attenuated so that the contributions be-
harmonic time convention, while a dashed line indicates thatame negligible. Thus, itis numerically advantageous to deform
contour is in theimproper Riemann sheet. To gain numericathe original contoulCy, to the SDP contour for a flat surface
efficiency when performing the numerical contour integratiot/spp(Az = 0).
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Fig. 6. Integration contour of(r, r’) on the complext. plane.Cspp(Az = Aznax) andCsap(Az = Az,.x) are the SDP and SAP contours when
Az = Az, respectively.

An SDP path can also be determined for a pair of patreisd  outside the interval is negligible due to either exponential atten-
r with Az = |z — 2/| # 0, for which the saddle point is locateduation or fast oscillation of the integrand. For a flat surfage,
at is chosen to be /4, which is the angle of 'spr(Az = 0) mea-
sured with respect to the negative real axis. For a rough surface,

k., , = k(z —2) (21) 6. must be chosen to be smaller than or equai/tto avoid
T V=P (2= )2 extreme growth rates in the interval fromk, ;. tok, .,
where the contou€s, mixes both descent and ascent paths.
wherep = iz 4§y andp’ = 22’ + ', as illustrated in Fig. 6,  Numerical tests show that,. = =4 still provides accu-

but the path equation is more complicated. However, when cQdte results wheman ! (AZmax/Le) < 0.1. However, when
pling between many pairs of points is considered as in the weglg -1 (Azmax/Ls) > 0.1, 6. can be obtained by limiting the
region contribution to ther(, m)th receiving element, there is maximum of the integrand on the contally, to e®mx, where

no longer a unique SDP path for a rough surface along whigh _ is some constant to be determined later. Based on numer-
only attenuation of the integrand is obtained away from a singles| experimentsg,,.x is typically found to be less than three.
saddle point. Thus, the deformed contdly, . must be chosen Employing this criterion and performing a first-order Taylor’s
as a compromise between extreme exponential growth and ragifies expansion of the SAP contaligap(Az = AzZyax)
oscillation of the integrand. Lehz,,.x denote the largest sur-jn the neighborhood of the saddle poit . results in a
face variation, which is equal ty,.x — 7min. The saddle points nonlinear equation, which must be solved to deterngine A

in this case are distributed along the real axis betwe®y)..... two-step procedure is involved. First, numerically solving the

wherek. ..., is the outermost possible saddle point on the regfliowing nonlinear equation fo, where¢ is a possible value
axis whenAz = Azyax and|p — p'| = L. Consider contours of 1/ tan 6.

Cspp(Az = AZmax) aNdCsap(Az = Azyax), Which inter-

sect at the saddle poift ... ,computed numerically in Fig. 6. Lovmi—T2+713=0 (22)
It is noted that the portion of the deformed contary;, be-
tweentk. . . mixes both descent and ascent paths where th
integrand of (20) with respect fo. may exponentially increase. )
Note that the magnitude of the integrand is maximum near the’? SIR(L +€)” + k2, s,,,K(l _.52)]'
intersection poinf ., as shown in Fig. 6, where the SAP contour :3 B 25]:; §)max — Kz, sy, Aina
Csar(Az = Az, ) intersects the deformed contatly, . For 4= Z, Smax .

conve(nience, wher)l performing the numerical inteérzation, tl%nce£ Is solved 3, can be determined as follows
contourCs, _ is defined to be a straight line, making an angle 1 1 1 Azpax

5. with respect to the negative real axis in the interval from - = tan {m} , tan < L. ) 0.1.

—k= max t0 k= max, Wherek. max is the upper limit of integra- h (23)
tion that will be specified later. Outside this interval, the contour Next, consider the topology in the compléx plane, which
Cs, _ isdeformed and joined to the original contdty, (thereal varies withk, asillustrated in (20). Note also that surface rough-
axis). Itis noted that the contribution of the integral aldig_ ness is not involved in (20) but thedimension of the surface

ere
71

0.5\/477 + 77,
0.5
(1
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Fig. 7. Integration contour gf(r, r’) on the complex, plane for a fixed value of .. C,, is the original contour, and}ky is the deformed contour.

D, appears as a “roughness” parameter. For a fixed valueeofjiven finite surface size, surface statistics, dndwill be

k., the topology in the complek, plane is illustrated in Fig. 7. explained in more detail later. Note that the appearande,of

A pair of branch cuts originating from the branch poigats, as a roughness parameter makes the method most suited for
wherex = (k2 — k2)'/2 = x’ +ix", are observed in Fig. 7 with rectangular surfaces with larde, /D, ratios.

+’ andr” defined to be greater than or equal to 0. It is noted Once the deformed contou¢%,  andCs, —are known, (17)
thatx acts as a complex propagation constant infth@lane. can be rewritten in terms afs, andcéky as

In general, an SDP path can be determined from a pair of points 1 F® (e, k. k)
r and+’ with the saddle point located at JEH® () = ~ gz / / dk.. dky#
sy —9y') Con. 7O, *
by, = —"—°22, (24) 25
= o= -

For convenience when performing the numerical double contour

;illgel;the ﬁnflysﬁ in the r::omp;lek(z plane, :cphere isdr('j? unic.weintegration, the double contour integral of (25) is discretized

OP path for the rough surface case. The saddle points jfiy mapped to the real axis according to the following map-
this case are distributed along the straight line joining t ngs:dk. — Ak.c=: k. — k. — pAk.c=%: forp —
branch pointstx. The saddle point real coordinate range T i i “r N

, 2P, -, P,dk, — Akye v, andky, — ky,, = qAkye Ok
frotm _Rf[kygglax] o tRe[kt@lﬁS“‘a’[)]’ wr|1_ere k%en / E gle forg=—-Q,, ---, Qp, whereAk, andAk, are the integration
outermost saddle point on the above fine whea v = Ly step sizes in the complek, andk, planes, respectively, and

and|p — p/| = /L3 + D, and R¢] denotes the real partop 1 1 js the number of plane waves in the plane. It is noted
of its argument. The contour€spp(y — %' = D,) and thatQ, depends omp, and it can be shown th&_, = Q,.
Csar(y — v = D,) intersect at the saddle poi&t, ;. .. Thus, for a fixedk. (p is fixed), the number of plane waves in
Let Rk, .ax] denote the upper limit of the integration onthe, plane is equal t&Q, + 1 and the total number of plane
the real axis, which is specified later. In the interval betweemaves in both plane€ror is given by

Smax

—Relky, max| and Rék, 1ax], the deformed contout’s, is a r
straight line with the slope- tan(éy, ). Outside this interval, Qror = Z (2Q,+1) (26)
the contour Cs, | is deformed and joined to the original p=—"

contourCy, . As in the case of the angl®._, it can be shown whereP = (k. yax/Ak.)+1 andQ, = (Relky, max]/Aky)+1.
numerically thaté,, = 7 /4 provides accurate results wherlsing the above mapping, the discretized version of (25) can be
tan~!(D,/L,) < 0.1. However, whenan (D, /L,) > 0.1, written as

it is quite difficult to obtain an analytical formula fd#,, due 1 r @

to the complexity of the topology in the compléy plane. For Ji:’ (k)(T) = —RAQ Z Z

convenience in discussion later, g0 < v < #/4) be the p=—P ¢=—Q,

value of 6, for this case. One solution to this problem is to Wik, ky,) [n « F(k)(,n ko, ky )}
determine’,, empirically by comparing the analytical solution X P P
of ¢(r, 7/) to the solution obtained from its spectral domain ke,

representation. This empirical procedure of determinjrfgr X @7 10ks T 0ky (27)
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| _ Rx Elmt.
] (n,m)

e e -—Lyx— Fig.9. Decomposition of regions in the FS direction for extremely large-scale
D 2-D RRSS problems.
X

Fig. 8. Worst-case configuration of a pair of source and field points fg§ccuracy, these unknown constants can be determined. For
t 7
computingy(r. r’). convenience, consider only the FS direction. Fig. 8 illustrates
this worst-case configuration of a pair of source and field

where points. In this figure,S; and F; denote source and field
ke, . = (K — K — K2 )2 points, respectively, wheré =1, 2. In the spectral domain
AQ = Ak,Ak; point of view, this configuration of source and field points

W(k.,, k,,) weighting function for numerical integration. (51 and f1 or 5, and ) yields the outermost saddle point
P q . ;o
Various integration parameters in theandk, planes are given ¥v. smax I t€ ky plane. The SAP patlisap(y —y' = Dy)

as follows: passes througlt, ; __ and intersects the deformed contour
Cs,, at I, where the integrand is nearly maximum, as
20k 1 AZmax shown in Fig. 7. In additionk. ., in this configuration is
L, tan <T) <01 close tok; ;... sincez — &’ is minimum ¢ — =’ = L,
N S and as;uming thaz'ﬁz —  Aznax). Other source points in
%1 Pmax A the regionsf, , vield —k. ... < k.5 < k... and
+k. tair, tan~ < ‘“ax> 0.1 —Rek,, ,...] < Relky, s] < Relk, s, ] It should be pointed
N out that the unknown constaRt_;,;; can be determined first
(28) by considering the case when the source and field points are
20k D, located at the samg-coordinate (e.g.S; and F»> or S; and
.’ tan™ <L_x> F1). This is due to the fact that the differenge- ¢/ does not
Relky, max] = 4 R dk ] _directly influ_ence the expo_nentia!ly decayed _behavior of the
’ Yo Smax D integrand with respect té. in the interval outsidetk. ... .
+ky, tait, tan~! <L_y> > 0.1, Numerical values of these constants for specific examples are

provided in Sections IV and V.

It is noted that the integration parameters given in this sec-
tion (for large-scale surfaces) may not yield accurate results for
andk. s,... = (FA%Zmax/Raz), Akz = (1/22)\/(CLE/Ly), g pair of pointsr and+/, wherez — 2’ >> L, corresponding
Ry smae = (£Dy/Ray), and Aky = (1/22)\/(Cyk/Rey), o extremelylarge-scale surfaces, since they are determined by
whereR,. = /L2 + (Azmax)? andR,, = /L3 + D3. The consideringtheworst case configuration only (i.e., separated by
constants:. i1, ky, tait, C-, andC, are to be determlned Thez — 2’ = L;). One way to solve this problem is to decompose
first lines of (28) and (29) and the forms fewk. andAk, are the old weak regiot/, , into more than one weak regions, as
obtained by studying the behavior of the integrand of (15) fdltustrated in Fig. 9 for the FS direction. Appropriate integra-
the flat surface case and employing the physical optics apprdin parameters are then determined for each separate region.
imation for the current distribution on the rough surface, arlg addition, extremely large-scale rough surfaces with ldpge
numerical tests confirm the accuracy of these expressions. Itggluire a large approximate strong region of sizex D, or a
noted that the constants ;. andk, . are some tolerancessignificant increase in the total number of plane WGQQ%T
added tok. .., andk,, ..., respectively, to ensure that theTo reduce the size of the strong regis), ,, the oldL.. x D,
integrand of (15) is exponentially decayed. Note that increasiagproximate strong region can be decomposed into three sep-
C. andC, results in a smaller number of plane waves require@fate regions, as also shown in Fig. 9. The SUF@J%?
while mcreasmgcé tai1 aNdEky, 1447 results in alarger number of the reduced strong region. The surfa&{@ yt andSTJ b are
plane waves. the weak regions that employ the spectral domain expansion in

One way to determine the unknown constant$e y-direction fory < ' andy > %/, respectively. These de-

v, Gmax, K= tail, ky, tait, C=, andC,, for large-scale surfaces iscompositions can be advantageous when considering extremely
to study the scalar Green'’s functigfy, ') for a pair of source large-scale 2-D rough surfaces and are still under investigation.
and field points in the worst-case scenario for computing the next section, the computational cost and memory storage
g(r, 7’) in the spectral domain. Comparing the exact solutiaequirements of the FB/NSA method for 2-D RRSS problems
of g(r, #') to its spectral domain solution within a specifiedare discussed.

(29)
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CPU Time Comparison for PEC Case CPU Memory Comparison for PEC Case
W o —

—— Std.FB
| v FBINSA:Case1 | .
-~ FBINSA: Case 2

CPU Time Per lteration (sec.)
CPU Memory (Mbytes)

1’ 1 1 1 1 10 10 10 10 10
Number of unknowns Number of Unknowns

(a) (b)

Fig. 10. Comparison of computational efficiency between the conventional FB and FB/NSA methods for 2-D PEC RRSS problems. (a) CPU time per iteration
versus number of unknowns. (b) CPU memory versus number of unknowns.

[V. COMPUTATIONAL COST AND MEMORY STORAGE Numerical tests show that the neighborhood distahgeés
REQUIREMENT OF THEFB/NSA METHOD dependent oD,. As D, increasesL, should be increased
&o compromise between the total number of plane waves used
in the FB/NSA algorithm and the size &f, x D,. However,
or fixed D, frequency, and surface roughness, the parameters
L., N, andQro are fixed, and a®,, increases, it can be seen
from (30) and (31) that TOC and TMSR at¥ N,,:). Thus, the
TOC ~ CyNyNetmit + CoQror(Netme — Ny (30) FB/NSA method is an extremely efficient method for studying
low grazing-angle RRSS problems in whi€¢h, > D,.
where Nojp = NM = 0.5N;:, Ny = Ny M, andC; are Fig. 10(a) and (b) illustrates plots of CPU time per itera-
constants. It is noted thaf.;,..; is the total number of elementstion and CPU memory versus number of unknowns respectively,
on the surfaces,.,, and N, is approximately the total numberbased on a Pentium Il 200 MHz computer with 128 Mb of RAM.
of elements in the strong region. The first term on the RHS Bfue to theD,-dependency of the FB/NSA method, two sur-
(30) is the number of operations involved in the computatidace sizes of differenD, are considered. Surfaces sizes of in-
of the strong-region contribution fdv,,,.,, receiving elements, terest are scaled in terms of the electromagnetic wavelehngth
and the second term involves the number of operation countaiod sampled with eight points par Case 1 ha®, () x 8\
computeQ o plane waves in (27) faW,;,..; — N, source ele- Gaussian surfaces with a Gaussian spectrum given by

The total operational count (TOC) of the FB/NSA metho
to compute the strong-region contribution using direct matri
vector multiply, and the weak-region contribution with the NS
algorithm [see (19) and (27)] is estimated as follows:

ments in the weak region. In addition, the total memory storage LI K2 e as
requirement (TMSR) of the FB/NSA method is estimated as fol- W ks, ky) = %e—(l/@(’“w lathyly) (32)
lows: T
where
TMSR ~ C, Nepmt + CoQror (31) W(k,, k,) spectrum amplitude im?;

[, andl, correlation lengths in the- andy- directions,
whereC; are some constants. The first term on the RHS of (31) respectively;
accounts for the storage of necessary matrices and vectors uséd surface root mean square (RMS) height;
inthe FB/NSA method, and the second term involves the storage:,, andk, spatial frequencies in the- and y-directions,
of the total number of plane waves. It is noted from (31) that respectively.

there is no storage for matrix elements associated with the strdrftge maximum value oD),, considered is equal to 1024 re-
region since they are recalculated on each FB iteration to redwscdting in 1 048 576 unknowns. In this case, the surface spectrum
overall memory storage. parameters aré = 0.5\ and{, = [, = 1.414A. In addition,
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Fig. 11. Normalized bistatic RCS in dB. (a) HH polarization and (b) VH polarization.

the FB/NSA method employs the following parameters to ole one for both cases. However, the CPU time of the FB/NSA

tain 1% accuracy in the scalar Green'’s functionfor ' = method for Case 2 is greater than for Case 1. This is due to the

Lyi Ly = 3.5, amax = 1.0, 6, = 0.1, k. +,a = 0.35k, fact that the size of the strong region in Case32 & 321) is

ky tair = 0.25Rek], C. = 30.0, andC, = 11.0. Another greater than in Case 3.6\ x 8}), and Case 2 requires a larger

case, Case 2, involved, ()\) x 32X\ Gaussian surfaces with anumber of plane wave@ror in the NSA algorithm than Case

power law spectrum given by 1. Fig. 10(b) shows a comparison of the CPU memory (Mb)

versus number of unknowns between the conventional FB and

Wk, ¢) = aok™, ka <k < kay (33)  FB/NSA methods. For convenience, it is assumed that the max-

. imum number of plane wavedror, max is equal to 10. This
mgegegt/igf’Vfgvreearf;%r:rs;??th:l(j:;;ge a;mféziﬁfgiﬂztzsz_ is sufficient for both cases to provide accurate results. As the
. P lagerepres number of unknowns increases, the memory requirements of
imuthal angle of the 2-D spectrum, is a specified constant,
and k. and k.. are the lower and upper cutoff spatial WaVthe FB/NSA method approach those of the FB method. From

A du 1d upp pat %he plot, large-scale surfaces with 1048576 unknowns require

numbers, respectively. The maximum valuel®f considered :
is equal to 256\, resulting in 1 048 576 unknowns. In this caser CPU memory of approximately 100 Mb, a remarkably low
thegurfaces e’ctrum a?ameters &0636”><1(5—3 b — memory storage requirement compared to other fast algorithms.
45m-1 andpk _ E87 Om-1 ?ﬂrthe.rmo‘r)e the i:E‘:i/lN_SA Thus, it can be concluded from these plots that the NSA algo-
n;()a'g]lod ’em |0d; th_e ?olléw?rl] .arameters o ’obtain 104 aCCrit_hm can yield a great reduction in CPU time for very large
racy: L — 303;\ 1 Ogép 0034 v — 0 4’0k problems while only slightly increasing the memory storage re-

Yoliz = LA, Gmax = 1.3, Ok, = 109 Rz, ta = D20, quirement. In the next section, several numerical results are il-
/{}y7 tait = 0.20 Re[li], C, =25.0, andOy =11.0.

Fig. 10(a) illustrates a comparison of CPU time per iteralll-JStratEd'

tion (in seconds) between the conventional FB method and the

FB/NSA method versus the number of unknowns for two cases V. RESULTS AND DISCUSSIONS

on a log—log scale. It is noted that the CPU time per iteration To illustrate the computational efficiency and accuracy of the
of the standard FB method is independentZgf. Thus, both NSA algorithm, consider a deterministie8A x 8A PEC rough
Case 1 and 2 provide the same CPU time. In the log—log scaarface illuminated by a tapered plane wave with the tapered
the plot of CPU time versus number of unknowns is found fparameter/ = 6 [13] at an incident angle of 20The surface

be a straight line for a large number of unknowns. The plot & a realization of a Gaussian random process described by a
the conventional FB method has a slope approximately equaGaussian spectrumwith = I, = 1.414x andh = 0.5\ having

two, while the FB/NSA method has a slope approximately equal;, = —1.888\ andz,,,x = 2.098X. The surface is sampled
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Refk,] (rad/m) -4 Re[k_] (rad/m)

Fig. 12. Radiation functiod*’(r, k., k,) in the complext. andk, planes for the last backward swedp £ 3) and the receiving element located at the
(z1, y1) element of the rough surface.

with eight points per\ resulting in 131072 unknowns fat-

andy-polarization surface currents. The standard FB method
employed to compare with the FB/NSA method and require
three iterations to converge to within 1% accuracy based on t
PRy test. Its total CPU time for this example is 1976.2 min
The FB/NSA method employs the parameters of Case 1 a
requires the same number of iterations to converge within ti
same accuracy as in the FB method. However, its total CF z
time is 359.8 min. Thus, with the NSA algorithm, a CPU time 3|
reduction of 5.5 is achieved in this case.
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5/

Incoherent Bistatic RCS (dB )
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. . . -50 0 -50 0 50
Numerical results are presented in terms of the normaliz 0, (deg) 0_(deg.)
bistatic radar cross section (RC8) (8, ¢5), defined for a
scz_;ltte_red wave in-polarization and an incident wave ihpo- 5 T g L 10 —_
larization as 0 A i, :
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000
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whereE?, is thea-polarized scattered fieldy is the free space
intrinsic impedancei;, = n|n| is a unit normal vector pointing
out of the rough surface into the free space region, de
is the time average Poynting vector of tfepolarized inci-
dent wave. Fig. 11(a) and (b) illustrates plots of the normatig. 13. Comparison between Monte Carlo simulation results computed via
ized bistatic RCS in dB wher; = ¢, = 0° (in plane scat- the FB/NSA method and the experimental data for moderately rough surfaces.
tering) versus the scattering angé ) for HH- and VH-polar-

izations, respectively, comparing between the standard FB atively smooth (compared to the function obtained from inte-
FB/NSA methods. From the plots, the normalized bistatic RGf3ating along the original contours) and localized in the com-
obtained from both methods are in good agreement. In additigex 4. andk, planes as illustrated in Fig. 12. In this figure, the

it is also found that the average relative error of the magnitudeagnitude ofF™ (r, k., k,) of the above example is plotted
of surface currents in the main beam is about 0.1%. Thus, tersus Rg:.| and Rék, | for the last backward sweep = 3
FB/NSA method provides very accurate results with a great ngith the receiving element located at the; (%) element of
duction of CPU time, which stems from the properties of thie rough surface. The pld®*=2)(r k., k,) is indeed local-
complex vector radiation functiof ™ (r, ., ky), which can ized and relatively smooth in the complex planes as a result of
be computed recursively via (19E(k)('r, k., k,) is also rel- contour deformation from the real axis.

1
Ny
<

-50 0 50
8 {deg.)

-50 0 50
0, (Geg)

Normalized VV Incoherent Bistatic RCS (dB) Normalized VH Incoherent Bistatic RCS ( dB )

Normalized HV Incoherent Bistatic RCS (dB) Normalized H
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Another example illustrates the application of the FB/NSA
method for moderately rough surfaces to study the backscat-
tering enhancement phenomenon. In this example, the rougl[11]
surface statistics and the tapered parameters of the incident
beam are the same as in the first example, extéptncreased  [2]
from 0.5 to 1.0 in order to see the backscattering enhance- 3]
ment phenomenon more clearly. The FB/NSA method is
employed to perform the Monte Carlo simulation numerically [4]
for 100 realizations. The following FB/NSA parameters are
used:L, = 4.5\, amax = 1.0,6x, = 0.1,k taur = 0.15k,
ky tair = 0.20 Rgk], €. =10.0, and”, = 20.0. Fig. 13 shows
the plots of the normalized bistatic RCS versus the scattering161
angled, for both copolarizations (HH and VV) and cross-polar-
izations (VH and HV). Results are compared with experimental [7]
data obtained from the University of Washington, Seattle, WA
[13]. The backscattering enhancement phenomenon can be
observed at, = — 20, corresponding to the backscattering [8]
direction of an incident angle of 2Qused in this simulation.

In addition, Monte Carlo simulations based on the FB/NSA
method are shown to reproduce the overall trends and level of
the experimental data. Minor differences between the numerical
and experimental Monte Carlo simulations may come from the
differences between the numerical and experimental antendtf]
patterns and the rough surface profiles that were fabricated for
the experiment, as described in [13].

(5]

(11]

(12]

VI. CONCLUSIONS
[13]
The FB/NSA method has been shown to be a very efficient
method for 1-D, moderately rough surfaces. In this paper, it is
extended to treat 2-D large-scale PEC random rough surfaces.
The new NSA algorithm for the 2-D case is derived and involved!“]
a double spectral integral representation of source currents and
the 3-D free space scalar Green'’s functigm, '). The cou-  [15]
pling between two spectral variables is complex, and the metho
is most suited for rectangular surfaces due to the treatment 0
surface cross-range size as a “roughness” parameter. The NSA
parameters for this case can be obtained by comparing the exact
and spectral domain representation solutiong(ef ') for the
worst-case configuration of the source and field points, as shown
in Fig. 8.
The computational efficiency of the FB/NSA method
for 2-D RRSS problems is shown to W@(N,.) for fixed
D,, frequency, and surface roughness. The memory storage
requirement of the method is remarkably low, resulting in
larger surface sizes that can be run on present computer
addition, the FB/NSA method still remains very efficient fo
moderately rough surfaces. Comparisons of numerical res
between the standard FB and FB/NSA methods have sh
that the FB/NSA method yields very accurate results with
great reduction of CPU time and only slightly larger memorn®
storage requirements. Thus, it is a good candidate for study
the physics of moderately rough surface scattering at Icl

6]

grazing angles. Monte Carlo simulations for this case will bge anaiysis of electric

considered in future studies.
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