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Abstract—The forward–backward method with a novel spec-
tral acceleration algorithm (FB/NSA) has been shown to be an
extremely efficient iterative method of moments (MoM) for the
computation of scattering from one-dimensional (1-D) perfect
electric conducting (PEC) and impedance rough surfaces [1].
The NSA algorithm is employed to rapidly compute interactions
between widely separated points in the conventional FB method
and is based on a spectral domain representation of source
currents and the associated Green’s function. For fixed surface
roughness statistics, the computational cost and memory storage
of the FB/NSA method are ( ) as the surface size increases,
where is the total number of unknowns to be solved. This
makes studies of scattering from large surfaces, required in
low grazing-angle scattering problems, tractable. In this paper,
the FB/NSA method is extended to analyze scattering from
two-dimensional (2-D) rough surfaces. The NSA algorithm for
this case involves a double spectral integral representation of
source currents and the 3-D free-space scalar Green’s function.
The coupling between two spectral variables makes the problem
more challenging, and the efficiency improvements obtained for
2-D surfaces are appreciable but not as dramatic as those for 1-D
surfaces. However, the computational efficiency of the FB/NSA
method for 2-D rough surfaces remains ( ) as one of the
surface dimensions increases. Comparisons of numerical results
between the conventional FB method and the FB/NSA method
for large-scale PEC rough surfaces show that the latter yields
identical results to the former with a reduction of CPU time
and only a slight increase in memory storage. In addition, the
numerical results of FB/NSA method are in good agreement with
experimental data obtained from the University of Washington,
Seattle, WA.

Index Terms—Forward-backward method, novel spectral accel-
eration algorithm, tough surfaces.

I. INTRODUCTION

E LECTROMAGNETIC (EM) wave scattering from
random rough surfaces has been studied extensively, and

several approximate analytical methods have been developed.
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At present, scattering from surfaces whose properties render
the analytical theories invalid can be accurately calculated only
through the use of numerical methods. The most commonly
used technique is the surface integral equation approach, and its
solution by the method of moments (MoM) [2]–[4]. Standard
factorization techniques of the system matrix, such as LU
decomposition, become intractable as the number of unknowns

increases because of their computational complexity of
. In addition, the standard MoM also requires memory

storage of to store all elements of a dense impedance
matrix. To increase computational efficiency in solving the
surface integral equation, several efficient methods based
on iterative versions of the MoM have been developed. One
iterative MoM, termed the forward-backward (FB) method, has
been shown in many cases to provide a more rapid convergence
than standard CG-like iterative algorithms [1], [5]–[8]. This
method is functionally identical to the method of ordered
multiple interaction (MOMI) [9], [10] and has been shown
to be an algorithm. Due to its rapidly-convergent
property, it is worthwhile to determine ways to improve its
computational efficiency.

Previous use of the FB method has emphasized the one-di-
mensional (1-D) problem. To improve the computational effi-
ciency of the 1-D FB (MOMI) method, the novel spectral ac-
celeration (NSA) algorithm has been used [1]. In this method,
a neighborhood distance around each receiving element on the
surface is defined to separate the strong interaction regions from
the weak interaction regions. Direct matrix-vector multiplica-
tion is performed when the source points are in the strong inter-
action regions. The NSA algorithm is employed to rapidly com-
pute weak interactions between widely separated points in the
conventional FB method and is based on a spectral domain rep-
resentation of source currents and the associated Green’s func-
tion. For fixed surface roughness statistics, it can be shown that
the computational cost and memory storage requirement of the
FB/NSA method is as the surface size increases. Al-
though previously applied exclusively with the FB method, the
NSA algorithm can be easily incorporated into other iterative
techniques as well.

The FB method for two-dimensional (2-D) rough surfaces has
previously been studied by Tran [10], again using an
algorithm. In this paper, the FB/NSA method is extended from
1-D to 2-D random rough surface scattering (RRSS), and em-
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Fig. 1. Two-dimensional (2-D) PEC rough surface profileS illuminated
by a tapered incident field EEE (x; y; z) centered in directionk̂ =
x̂ sin � cos � + ŷ sin � sin � � ẑ cos � .

ployed to perform matrix-vector multiplies for weak group in-
teraction. The NSA algorithm for this case involves a double
spectral integral representation of source currents and the three-
dimensional (3-D) free space scalar Green’s function. The cou-
pling between two spectral variables makes the problem more
challenging, and the efficiency improvements obtained for 2-D
surfaces are appreciable but not as dramatic as those for 1-D
surfaces. However, the computational efficiency of the FB/NSA
method for 2-D RRSS remains as one of the surface
dimensions increases. The FB/NSA method is specifically de-
signed for 2-D large-scale finite rectangular surfaces and re-
mains very efficient for moderately-rough, large-scale surfaces.
Use of a large rectangular surface makes the method well suited
for studying RRSS at low grazing angles (LGA) [11] and also
for studies of backscattering enhancement [12].

In the next section, the FB method for 2-D RRSS is described.
The formulation of the FB/NSA method is presented in detail in
Section III. In Section IV, the computational cost and memory
storage requirements of the FB/NSA method are discussed. Re-
sults and discussions are provided in Section V, and Section VI
presents conclusions. An harmonic time convention is as-
sumed and suppressed throughout, and the propagation constant
is defined as , where is the radian frequency, and

and are the permittivity and permeability of free space, re-
spectively.

II. FORWARD–BACKWARD METHOD FOR2-D RRSS

Consider a 2-D PEC rough surface profile illumi-
nated by an incident field centered in direction

, as shown in
Fig. 1. The surface height function has zero mean,
and its maximum and minimum height variations are denoted
by and , respectively. The incident field
is tapered with a Gaussian beam amplitude pattern confining
the illuminated rough surface to the rectangular surface area

so that surface edges do not contribute strongly to
obtained scattered fields, as described in [13].

Fig. 2. Discretization of a rectangular surface areaD �D of S into an
N �M rectangular grid. Each grid cell has the dimension�x ��y.

Let and denote a
field point and a source point on the rough surface, respectively.
Then, the magnetic field integral equation (MFIE) on the PEC
rough surface is given by

(1)
where the above integral is a principal-value integral

(2)

(3)

, ,
, , and , where is the incident

magnetic field associated with . The normal vector points
upward from the PEC surface, and is the surface obtained
from the projection of the rough surfaceonto the plane.
As usual, this surface integral equation can be solved using a
standard point-matching MoM technique [2].

For the purpose of the MoM formulation, the rectangular sur-
face area of is discretized into the rectan-
gular grid, as shown in Fig. 2. Each ( )th element has the di-
mension , and its center is located at ( ) in the co-
ordinate system, where and . Let

be the total number of unknowns on the surface
[due to two independent components for ]. Using pulse

basis functions and delta testing functions (i.e., point matching),
the above MFIE can be discretized into the following MoM ma-
trix equation:

(4)

where
MoM impedance matrix;

excitation vector;
solution vector.

Using pulse basis functions, point matching, and alinearsurface
model (no surface curvatures), it can be shown that the principal-
value integration over the self ( )th element vanishes

(5)
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Fig. 3. Forward-stepping (FS) and backward-stepping (BS) processes. (a) FS process, (b) BS process, (c) alternative FS process, and (d) FS and BS projected
surfaces.

To develop the FB method for the 2-DRRSS, it is desirable to
make the following decomposition for the current vector :

(6)

where and are the forward-stepping (FS) and back-
ward-stepping (BS) currents, respectively. The FS and BS pro-
cesses as described in Tran [10] are illustrated in Fig. 3(a) and
(b), respectively. For the FS process as shown in Fig. 3(a), the
procedure starts from the ( ) current element and moves
from bottom to top and then from left to right until reaching
the ( ) current element, called the receiving element here-
inafter. For the BS process, the sweep starts from the ( )
current element and moves from top to bottom and then from
right to left until reaching the receiving element, as shown in
Fig. 3(b). It should be mentioned that these stepping processes
can be defined differently. For example, for the FS process, one
may start from the ( ) current element and move from
left to right first and then from bottom to top, as illustrated
in Fig. 3(c). However, for the finite rectangular surface where

, it can be shown numerically that the FS and BS
schemes given in Fig. 3(a) and (b) require a smaller number
of plane waves when the NSA algorithm is incorporated into
the FB method. In addition, Tran observed that these schemes

shown in Fig. 3(a) and (b) usually provide better convergence
except for some types of surfaces that exhibit resonant scattering
effects.

Substituting (6) into (1), (1) can be separated into two coupled
integral equations

(7)

(8)

where and are the surfaces corresponding to the FS and
BS processes respectively, as shown in Fig. 3(d). The adding
of the results of (7) and (8) in (1), due to the fact that

, is noted. The integral term on the right-hand side
(RHS) of (7) represents the FS contribution due to the radiation
of current elements belonging to the surface. Similarly, the
integral term on the RHS of (8) represents the BS contribution
due to the radiation of current elements belonging to the surface

. (7) and (8) can be solved using an iterative method, the
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FB method, by first initializing , and at the th
( ) iteration

(9)

(10)

The currents in (9) are first solved for all receiving
elements, and then employed in (10) to solve for the currents

for all receiving elements. Iterative processes are con-
tinued in the FB fashion until surface currents exhibit conver-
gence to within a specified accuracy criterion. The normalized
pseudo-residual is used to monitor convergence of the FB
method, defined as follows:

(11)

where is the vector norm. It is noted that the con-
vergence test does not require a matrix-vector multiply. From
numerical experience in RRSS problems of interest, the conver-
gence test based on seems to yield quite accurate results
for tolerance of 0.01. However, it may not be an acceptable stop-
ping test for general scattering problems [14].

Although the FB method provides very rapid convergence
in many RRSS problems, it requires a direct computation of
the matrix-vector multipliers to compute the mutual coupling
between all pairs of points on the rough surface. In addition,
the impedance matrix must be stored at a cost of
memory storage, or all elements of the matrix must be recom-
puted at each iteration with a time-consuming computation.

III. N OVEL SPECTRAL ACCELERATION ALGORITHM FOR THE

FORWARD–BACKWARD METHOD (FB/NSA)

In order to accelerate the FB method mutual coupling com-
putation, the NSA algorithm is employed to obtain for
both CPU time and memory storage requirements. For conve-
nience in understanding the FB/NSA method, only the com-
putation of the FS process is considered. The BS computation
can be treated in a similar fashion. The NSA algorithm starts
with the selection of a neighborhood distance in the-direction

, within which interactions between points are classified as
strong, and outside of which, interactions are classified as weak,
as illustrated in Fig. 4. It can be seen that the FS surfaceis
decomposed into the FS strong ( ) and weak ( ) re-
gions. Using this decomposition, (7) can be rewritten as

(12)

where

(13)

Fig. 4. Strong and weak regions in the FS direction.

(14)

and . The terms and in
(12) represent the strong and weak region contributions, respec-
tively. The current is computed in the conventional
manner, and the NSA algorithm is employed to compute the cur-
rent .

The NSA algorithm starts with the spectral representation of
the free space 3-D scalar Green’s function for

(15)

where
;
;

and denote the -coordinates of a field (receiving) point
and a source point, respectively [15], [16].

The contours and are theoriginal contours of integra-
tion on the real axes in the complex and planes, respec-
tively.

Applying the gradient operator to in (15), the spec-
tral representation of is obtained as

(16)

Substituting (16) into (14) and interchanging the spatial and
contour integrations, (14) can be rewritten as

(17)
where is called the complex vectorradiation
function (or plane wave spectrum) on theth iteration, defined
as

(18)

where

Thus, weak element contributions can be obtained
through a spectral domain integral of the complex vector radia-
tion function . One property of
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Fig. 5. Integration contour ofg(rrr; rrr ) on the complexk plane.C is the original contour, andC is the deformed contour. The SDP and SAP contours for
a flat surface (�z = 0) are also shown.

is that it can be computed from weak element currents in a re-
cursive manner. To see this, let denote a position vector
starting from the origin of the coordinate system to the center
of the ( )th element on the surface, where
and . Discretizing the double spatial integral
on the RHS of (18), the radiation function in
the FS direction can be recursively computed through a “phase
shifting” process as follows:

(19)

where
;

;
;

;
.

(19) illustrates that the function continu-
ously updates when the receiving element is at the bottom of
the 2-D grid ( ) as a new set of source elements
enters the weak interaction group. For , the function

can be computed by simply multiplying
the previous value by a “phase” func-
tion.

Figs. 5–7 illustrate various contours in the complexand
planes. A solid line indicates that a contour is in theproperRie-
mann sheet, which satisfies the radiation condition for the
harmonic time convention, while a dashed line indicates that a
contour is in theimproperRiemann sheet. To gain numerical
efficiency when performing the numerical contour integration,

the original contours and are deformed to the new con-
tours and , respectively, as shown in the above figures.
This is possible since there are no singularities between the orig-
inal and deformed contours. These contour deformations yield
smaller integration intervals and smaller sampling rates to eval-
uate the double spectral integral involving . This
is due to the fact that the function is relatively
smooth and localized in the complexand planes along the
deformed complex contours, as illustrated via numerical exam-
ples later in Section V.

Advantageous deformed contours and can be de-
termined by considering the spectral representation of .
(15) can be rewritten as

(20)

It can be seen from (20) that the two spectral variablesand
are coupled through . As changes

along the contour , the topology in the complex plane
is modified. For convenience, first consider the topology in the
complex plane for a single pair of points and on a flat
surface. In Fig. 5, there are a pair of branch cuts originating at
the branch points . For a flat surface, the steepest descent
path (SDP) and steepest ascent path (SAP)

intersect at the saddle point at the origin in
the complex plane. From an asymptotic analysis, most of the
contribution occurs on portions of the SDP path near a saddle
point on the real axis. As the distance from the saddle point in-
creases along the SDP path, the integrand of (20) with respect
to is exponentially attenuated so that the contributions be-
come negligible. Thus, it is numerically advantageous to deform
the original contour to the SDP contour for a flat surface

.
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Fig. 6. Integration contour ofg(rrr; rrr ) on the complexk plane.C (�z = �z ) andC (�z = �z ) are the SDP and SAP contours when
�z = �z respectively.

An SDP path can also be determined for a pair of pointsand
with , for which the saddle point is located

at

(21)

where and , as illustrated in Fig. 6,
but the path equation is more complicated. However, when cou-
pling between many pairs of points is considered as in the weak
region contribution to the ( )th receiving element, there is
no longer a unique SDP path for a rough surface along which
only attenuation of the integrand is obtained away from a single
saddle point. Thus, the deformed contour must be chosen
as a compromise between extreme exponential growth and rapid
oscillation of the integrand. Let denote the largest sur-
face variation, which is equal to . The saddle points
in this case are distributed along the real axis between ,
where is the outermost possible saddle point on the real
axis when and . Consider contours

and , which inter-
sect at the saddle point , computed numerically in Fig. 6.
It is noted that the portion of the deformed contour be-
tween mixes both descent and ascent paths where the
integrand of (20) with respect to may exponentially increase.
Note that the magnitude of the integrand is maximum near the
intersection point , as shown in Fig. 6, where the SAP contour

intersects the deformed contour . For
convenience, when performing the numerical integration, the
contour is defined to be a straight line, making an angle

with respect to the negative real axis in the interval from
to , where is the upper limit of integra-

tion that will be specified later. Outside this interval, the contour
is deformed and joined to the original contour (the real

axis). It is noted that the contribution of the integral along

outside the interval is negligible due to either exponential atten-
uation or fast oscillation of the integrand. For a flat surface,
is chosen to be , which is the angle of mea-
sured with respect to the negative real axis. For a rough surface,

must be chosen to be smaller than or equal to/4 to avoid
extreme growth rates in the interval from to ,
where the contour mixes both descent and ascent paths.

Numerical tests show that 4 still provides accu-
rate results when . However, when

, can be obtained by limiting the
maximum of the integrand on the contour to , where

is some constant to be determined later. Based on numer-
ical experiments, is typically found to be less than three.
Employing this criterion and performing a first-order Taylor’s
series expansion of the SAP contour
in the neighborhood of the saddle point results in a
nonlinear equation, which must be solved to determine. A
two-step procedure is involved. First, numerically solving the
following nonlinear equation for, where is a possible value
of

(22)

where
;

;
;

.
Once is solved, can be determined as follows

(23)
Next, consider the topology in the complex plane, which

varies with as illustrated in (20). Note also that surface rough-
ness is not involved in (20) but the-dimension of the surface
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Fig. 7. Integration contour ofg(rrr; rrr ) on the complexk plane for a fixed value ofk . C is the original contour, andC is the deformed contour.

appears as a “roughness” parameter. For a fixed value of
, the topology in the complex plane is illustrated in Fig. 7.

A pair of branch cuts originating from the branch points,
where , are observed in Fig. 7 with

and defined to be greater than or equal to 0. It is noted
that acts as a complex propagation constant in theplane.
In general, an SDP path can be determined from a pair of points

and with the saddle point located at

(24)

Like the analysis in the complex plane, there is no unique
SDP path for the rough surface case. The saddle points in
this case are distributed along the straight line joining the
branch points . The saddle point real coordinate ranges
from Re to Re , where is the
outermost saddle point on the above line when

and , and Re denotes the real part

of its argument. The contours and
intersect at the saddle point .

Let Re denote the upper limit of the integration on
the real axis, which is specified later. In the interval between

Re and Re , the deformed contour is a
straight line with the slope . Outside this interval,
the contour is deformed and joined to the original
contour . As in the case of the angle , it can be shown
numerically that provides accurate results when

. However, when ,
it is quite difficult to obtain an analytical formula for due
to the complexity of the topology in the complex plane. For
convenience in discussion later, let be the
value of for this case. One solution to this problem is to
determine empirically by comparing the analytical solution
of to the solution obtained from its spectral domain
representation. This empirical procedure of determiningfor

a given finite surface size, surface statistics, andwill be
explained in more detail later. Note that the appearance of
as a roughness parameter makes the method most suited for
rectangular surfaces with large ratios.

Once the deformed contours and are known, (17)
can be rewritten in terms of and as

(25)
For convenience when performing the numerical double contour
integration, the double contour integral of (25) is discretized
and mapped to the real axis according to the following map-
pings: , for

, , and
for , where and are the integration
step sizes in the complex and planes, respectively, and

is the number of plane waves in theplane. It is noted
that depends on , and it can be shown that .
Thus, for a fixed ( is fixed), the number of plane waves in
the plane is equal to and the total number of plane
waves in both planes is given by

(26)

where and Re .
Using the above mapping, the discretized version of (25) can be
written as

(27)
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Fig. 8. Worst-case configuration of a pair of source and field points for
computingg(rrr; rrr ).

where
;

;
weighting function for numerical integration.

Various integration parameters in theand planes are given
as follows:

(28)

Re Re

,

(29)

and , ,
, and ,

where and . The
constants , , and are to be determined. The
first lines of (28) and (29) and the forms for and are
obtained by studying the behavior of the integrand of (15) for
the flat surface case and employing the physical optics approx-
imation for the current distribution on the rough surface, and
numerical tests confirm the accuracy of these expressions. It is
noted that the constants and are some tolerances
added to and , respectively, to ensure that the
integrand of (15) is exponentially decayed. Note that increasing

and results in a smaller number of plane waves required,
while increasing and results in a larger number of
plane waves.

One way to determine the unknown constants
, , and for large-scale surfaces is

to study the scalar Green’s function for a pair of source
and field points in the worst-case scenario for computing

in the spectral domain. Comparing the exact solution
of to its spectral domain solution within a specified

Fig. 9. Decomposition of regions in the FS direction for extremely large-scale
2-D RRSS problems.

accuracy, these unknown constants can be determined. For
convenience, consider only the FS direction. Fig. 8 illustrates
this worst-case configuration of a pair of source and field
points. In this figure, and denote source and field
points, respectively, where 1, 2. In the spectral domain
point of view, this configuration of source and field points
( and or and ) yields the outermost saddle point

in the plane. The SAP path
passes through and intersects the deformed contour

at , where the integrand is nearly maximum, as
shown in Fig. 7. In addition, in this configuration is
close to , since is minimum (
and assuming that ). Other source points in
the region yield and

Re Re . It should be pointed
out that the unknown constant can be determined first
by considering the case when the source and field points are
located at the same-coordinate (e.g., and or and

). This is due to the fact that the difference does not
directly influence the exponentially decayed behavior of the
integrand with respect to in the interval outside .
Numerical values of these constants for specific examples are
provided in Sections IV and V.

It is noted that the integration parameters given in this sec-
tion (for large-scale surfaces) may not yield accurate results for
a pair of points and , where corresponding
to extremelylarge-scale surfaces, since they are determined by
considering the worst-case configuration only (i.e., separated by

). One way to solve this problem is to decompose
the old weak region into more than one weak regions, as
illustrated in Fig. 9 for the FS direction. Appropriate integra-
tion parameters are then determined for each separate region.
In addition, extremely large-scale rough surfaces with large
require a large approximate strong region of size or a
significant increase in the total number of plane waves .
To reduce the size of the strong region , the old
approximate strong region can be decomposed into three sep-
arate regions, as also shown in Fig. 9. The surface is
the reduced strong region. The surfaces and are
the weak regions that employ the spectral domain expansion in
the -direction for and , respectively. These de-
compositions can be advantageous when considering extremely
large-scale 2-D rough surfaces and are still under investigation.
In the next section, the computational cost and memory storage
requirements of the FB/NSA method for 2-D RRSS problems
are discussed.
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Fig. 10. Comparison of computational efficiency between the conventional FB and FB/NSA methods for 2-D PEC RRSS problems. (a) CPU time per iteration
versus number of unknowns. (b) CPU memory versus number of unknowns.

IV. COMPUTATIONAL COST AND MEMORY STORAGE

REQUIREMENT OF THEFB/NSA METHOD

The total operational count (TOC) of the FB/NSA method
to compute the strong-region contribution using direct matrix-
vector multiply, and the weak-region contribution with the NSA
algorithm [see (19) and (27)] is estimated as follows:

TOC (30)

where , , and are
constants. It is noted that is the total number of elements
on the surface , and is approximately the total number
of elements in the strong region. The first term on the RHS of
(30) is the number of operations involved in the computation
of the strong-region contribution for receiving elements,
and the second term involves the number of operation count to
compute plane waves in (27) for source ele-
ments in the weak region. In addition, the total memory storage
requirement (TMSR) of the FB/NSA method is estimated as fol-
lows:

TMSR (31)

where are some constants. The first term on the RHS of (31)
accounts for the storage of necessary matrices and vectors used
in the FB/NSA method, and the second term involves the storage
of the total number of plane waves. It is noted from (31) that
there is no storage for matrix elements associated with the strong
region since they are recalculated on each FB iteration to reduce
overall memory storage.

Numerical tests show that the neighborhood distanceis
dependent on . As increases, should be increased
to compromise between the total number of plane waves used
in the FB/NSA algorithm and the size of . However,
for fixed , frequency, and surface roughness, the parameters

and are fixed, and as increases, it can be seen
from (30) and (31) that TOC and TMSR are . Thus, the
FB/NSA method is an extremely efficient method for studying
low grazing-angle RRSS problems in which .

Fig. 10(a) and (b) illustrates plots of CPU time per itera-
tion and CPU memory versus number of unknowns respectively,
based on a Pentium II 200 MHz computer with 128 Mb of RAM.
Due to the -dependency of the FB/NSA method, two sur-
face sizes of different are considered. Surfaces sizes of in-
terest are scaled in terms of the electromagnetic wavelength
and sampled with eight points per. Case 1 has
Gaussian surfaces with a Gaussian spectrum given by

(32)

where
spectrum amplitude in ;

and correlation lengths in the- and - directions,
respectively;
surface root mean square (RMS) height;

and spatial frequencies in the- and -directions,
respectively.

The maximum value of considered is equal to 1024, re-
sulting in 1 048 576 unknowns. In this case, the surface spectrum
parameters are and . In addition,
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Fig. 11. Normalized bistatic RCS in dB. (a) HH polarization and (b) VH polarization.

the FB/NSA method employs the following parameters to ob-
tain 1% accuracy in the scalar Green’s function for

: , , ,
Re , , and . Another

case, Case 2, involves Gaussian surfaces with a
power law spectrum given by

(33)

where represents the spectrum amplitude,denotes
the spatial wave number of the surface,represents the az-
imuthal angle of the 2-D spectrum, is a specified constant,
and and are the lower and upper cutoff spatial wave
numbers, respectively. The maximum value of considered
is equal to 256 , resulting in 1 048 576 unknowns. In this case,
the surface spectrum parameters are 10 ,

, and . Furthermore, the FB/NSA
method employs the following parameters to obtain 1% accu-
racy: 1.0, 0.03, ,

Re , 25.0, and 11.0.
Fig. 10(a) illustrates a comparison of CPU time per itera-

tion (in seconds) between the conventional FB method and the
FB/NSA method versus the number of unknowns for two cases
on a log–log scale. It is noted that the CPU time per iteration
of the standard FB method is independent of. Thus, both
Case 1 and 2 provide the same CPU time. In the log–log scale,
the plot of CPU time versus number of unknowns is found to
be a straight line for a large number of unknowns. The plot of
the conventional FB method has a slope approximately equal to
two, while the FB/NSA method has a slope approximately equal

to one for both cases. However, the CPU time of the FB/NSA
method for Case 2 is greater than for Case 1. This is due to the
fact that the size of the strong region in Case 2 ( ) is
greater than in Case 1 ( ), and Case 2 requires a larger
number of plane waves in the NSA algorithm than Case
1. Fig. 10(b) shows a comparison of the CPU memory (Mb)
versus number of unknowns between the conventional FB and
FB/NSA methods. For convenience, it is assumed that the max-
imum number of plane waves is equal to 10. This
is sufficient for both cases to provide accurate results. As the
number of unknowns increases, the memory requirements of
the FB/NSA method approach those of the FB method. From
the plot, large-scale surfaces with 1 048 576 unknowns require
a CPU memory of approximately 100 Mb, a remarkably low
memory storage requirement compared to other fast algorithms.
Thus, it can be concluded from these plots that the NSA algo-
rithm can yield a great reduction in CPU time for very large
problems while only slightly increasing the memory storage re-
quirement. In the next section, several numerical results are il-
lustrated.

V. RESULTS AND DISCUSSIONS

To illustrate the computational efficiency and accuracy of the
NSA algorithm, consider a deterministic PEC rough
surface illuminated by a tapered plane wave with the tapered
parameter 6 [13] at an incident angle of 20. The surface
is a realization of a Gaussian random process described by a
Gaussian spectrum with and having

and . The surface is sampled
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Fig. 12. Radiation functionFFF (rrr; k ; k ) in the complexk andk planes for the last backward sweep (k = 3) and the receiving element located at the
(x ; y ) element of the rough surface.

with eight points per resulting in 131 072 unknowns for-
and -polarization surface currents. The standard FB method is
employed to compare with the FB/NSA method and requires
three iterations to converge to within 1% accuracy based on the

test. Its total CPU time for this example is 1976.2 min.
The FB/NSA method employs the parameters of Case 1 and
requires the same number of iterations to converge within the
same accuracy as in the FB method. However, its total CPU
time is 359.8 min. Thus, with the NSA algorithm, a CPU time
reduction of 5.5 is achieved in this case.

Numerical results are presented in terms of the normalized
bistatic radar cross section (RCS) , defined for a
scattered wave in -polarization and an incident wave in-po-
larization as

(34)

where is the -polarized scattered field, is the free space
intrinsic impedance, is a unit normal vector pointing
out of the rough surface into the free space region, and
is the time average Poynting vector of the-polarized inci-
dent wave. Fig. 11(a) and (b) illustrates plots of the normal-
ized bistatic RCS in dB when 0 (in plane scat-
tering) versus the scattering angle () for HH- and VH-polar-
izations, respectively, comparing between the standard FB and
FB/NSA methods. From the plots, the normalized bistatic RCS
obtained from both methods are in good agreement. In addition,
it is also found that the average relative error of the magnitude
of surface currents in the main beam is about 0.1%. Thus, the
FB/NSA method provides very accurate results with a great re-
duction of CPU time, which stems from the properties of the
complex vector radiation function , which can
be computed recursively via (19). is also rel-

Fig. 13. Comparison between Monte Carlo simulation results computed via
the FB/NSA method and the experimental data for moderately rough surfaces.

atively smooth (compared to the function obtained from inte-
grating along the original contours) and localized in the com-
plex and planes as illustrated in Fig. 12. In this figure, the
magnitude of of the above example is plotted
versus Re and Re for the last backward sweep 3
with the receiving element located at the ( ) element of
the rough surface. The plot is indeed local-
ized and relatively smooth in the complex planes as a result of
contour deformation from the real axis.
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Another example illustrates the application of the FB/NSA
method for moderately rough surfaces to study the backscat-
tering enhancement phenomenon. In this example, the rough
surface statistics and the tapered parameters of the incident
beam are the same as in the first example, exceptis increased
from to in order to see the backscattering enhance-
ment phenomenon more clearly. The FB/NSA method is
employed to perform the Monte Carlo simulation numerically
for 100 realizations. The following FB/NSA parameters are
used: , 1.0, 0.1, ,

Re , 10.0, and 20.0. Fig. 13 shows
the plots of the normalized bistatic RCS versus the scattering
angle for both copolarizations (HH and VV) and cross-polar-
izations (VH and HV). Results are compared with experimental
data obtained from the University of Washington, Seattle, WA
[13]. The backscattering enhancement phenomenon can be
observed at 20 , corresponding to the backscattering
direction of an incident angle of 20used in this simulation.
In addition, Monte Carlo simulations based on the FB/NSA
method are shown to reproduce the overall trends and level of
the experimental data. Minor differences between the numerical
and experimental Monte Carlo simulations may come from the
differences between the numerical and experimental antenna
patterns and the rough surface profiles that were fabricated for
the experiment, as described in [13].

VI. CONCLUSIONS

The FB/NSA method has been shown to be a very efficient
method for 1-D, moderately rough surfaces. In this paper, it is
extended to treat 2-D large-scale PEC random rough surfaces.
The new NSA algorithm for the 2-D case is derived and involves
a double spectral integral representation of source currents and
the 3-D free space scalar Green’s function . The cou-
pling between two spectral variables is complex, and the method
is most suited for rectangular surfaces due to the treatment of
surface cross-range size as a “roughness” parameter. The NSA
parameters for this case can be obtained by comparing the exact
and spectral domain representation solutions of for the
worst-case configuration of the source and field points, as shown
in Fig. 8.

The computational efficiency of the FB/NSA method
for 2-D RRSS problems is shown to be for fixed

, frequency, and surface roughness. The memory storage
requirement of the method is remarkably low, resulting in
larger surface sizes that can be run on present computers. In
addition, the FB/NSA method still remains very efficient for
moderately rough surfaces. Comparisons of numerical results
between the standard FB and FB/NSA methods have shown
that the FB/NSA method yields very accurate results with a
great reduction of CPU time and only slightly larger memory
storage requirements. Thus, it is a good candidate for studying
the physics of moderately rough surface scattering at low
grazing angles. Monte Carlo simulations for this case will be
considered in future studies.
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