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Including Spatial Correlations in the Statistical
MIMO Radar Target Model

Mark T. Frankford, Student Member, IEEE, Joel T. Johnson, Fellow, IEEE, and Emre Ertin

Abstract—Previous studies of statistical MIMO radar detection
performance have used a target model that consists of a large
number of point scatterers located within a rectangular target
area. These point scatterers have scattering amplitudes that are
complex random variables and are spatially uncorrelated, so that
the target is a white noise process in space. Spatial correlations are
introduced into the target model in this paper, and the impact of
these correlations on MIMO radar system detection performance
is analyzed.

Index Terms—Statistical MIMO rada.

I. INTRODUCTION

S EVERAL recent publications have examined the poten-
tial advantages of multiple-input multiple-output (MIMO)

radar systems, including their use in target detection and pa-
rameter estimation applications [1]–[6]. A MIMO radar system
consists of transmitters and receivers. If the geometry of
transmit and receive antennas in a MIMO radar system provides
angular diversity in observations of a target, it has been shown
that for sufficiently complex targets the MIMO radar system can
provide benefits in target detection compared to a phased array
system, as the impact of target radar cross section (RCS) varia-
tions with angle can be reduced.

Reference [1] utilizes a statistical target scattering model to
analyze the performance of a MIMO system. This model con-
sists of a finite rectangular area within which an infinite number
of scatterers are contained whose amplitudes are independent
and identically distributed (IID) random variables. A similar
model using a finite number of spatially uncorrelated scatterers
has also been presented [7]. This paper extends the target
scattering model of [1] to include spatial correlations among
the random scatters by introducing an azimuthally symmetric
Gaussian covariance function with only a single new parameter,
the correlation distance. Furthermore, a method is presented
which uses this model to compute the detection performance
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of a MIMO system for any given transmitter/receiver geometry
and varying levels of correlation in the target.

Received signal properties for the correlated scatterers target
model are derived in Section II, and it is shown that introducing
correlation can alter the bistatic scattering behavior of the target
so that forward scattering becomes more prominent. The perfor-
mance of the MIMO detector of [1] is then derived in Section IV,
and an optimal detector for the spatially correlated target is also
examined. Sample results for a fixed total received power are
illustrated in Section V to show that MIMO detection perfor-
mance degrades as the correlation of the target as increased.

II. CORRELATED SCATTERING MODEL

Following [1], a 2-D MIMO geometry is utilized, as illus-
trated in Fig. 1. The target considered is not range resolved, and
a single amplitude and phase characterizes the measurement for
each transmit/receive pair of antennas. It is also assumed that the
range from each transmitter and receiver to the target is similar,
so that the range dependence of the received power (as well as
the transmitter power) can be neglected here and incorporated
later as part of the system signal-to-noise ratio in Section IV.
The rectangular target is of dimensions , and is com-
posed of an infinite number of random scatterers whose com-
plex scattering amplitudes are given by where are
the local coordinates relative to the center of the target .
The vector in Fig. 1 indicates the distance and direction from
the transmitter to the center of the target, while the vector

indicates the direction and distance from the the center of
the target to the receiver. The vectors and are de-
fined identically, except that their amplitude is the electromag-
netic wavenumber ( , where is the electromagnetic wave-
length).

Using this model, the scattered field measured by the re-
ceiver that results from the transmitter (labeled ) is a sum
over all the individual scatterers of the target including appro-
priate phase delays:

(1)

in which only and are functions of and . The measure-
ments of the MIMO system consist of values, which
are grouped into the vector .

If are described as zero-mean complex Gaussian
random variables, then the vector is a zero-mean complex
Gaussian vector whose complete specifi-
cation requires knowledge only of the covariance matrix

. Computation of the covariance matrix elements
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Fig. 1. Bistatic scattering from a rectangular target of size �� by �� . The
antennas are assumed to be in the far field of the target.

requires that the spatial covariance of the target point scatterers
be specified.

In [1]n the target point scatterers are spatially uncorrelated,
so is defined as

(2)

where the factor of one over the target area ensures that the total
target “energy” is independent of its size. Correlation among the
random scatterers is introduced by modifying (2) to

(3)

where an azimuthally symmetric Gaussian correlation function
has been chosen as a direct extension of (2). The parameter
is a correlation length: as approaches zero, the point scat-
terers in the target become fully uncorrelated, and (2) is recov-
ered. As is increased, the point scatterer amplitudes are cor-
related over larger distances. The Gaussian correlation function
does not guarantee that the integration of over the target area
yields unity, unless is significantly less than the target di-
mensions. This difference is accounted for by a normalization
in Section IV.

The entries in the covariance matrix can be calculated from
(1) and (3), resulting in (4):

(4)

The two double integrals can each be transformed into a product
of two single integrals by a rotation of coordinates, namely
( , ) and ( , ),
where and . Analytical
solutions can then be found both for the diagonal ( , )
and off-diagonal entries of the covariance matrix through use of
an integral table [8]. Both cases have the general form

(5)

where and are functions of and the geometry of the
system. For diagonal entries, (where or , and

or ) is

(6)

and for off-diagonal entries:

(7)

where

(8)

with the error function denoted by evaluated for a complex ar-
gument [8]. The covariance matrix element amplitudes are now
a function of the angular geometry (as included in for ex-
ample), the target sizes ( , ), and the correlation length

.

III. SCATTERING BEHAVIOR OF A CORRELATED TARGET

In the case of the uncorrelated target, it was shown by [1]
that the diagonal terms of were unity, while the off-diagonal
terms were negligibly small for spatially diverse antennas. This
implies that each pair of antennas receives on average an equal
amount of scattered power from the target and that
the received fields are uncorrelated . How-
ever, if target spatial correlations are introduced, these conclu-
sions are no longer true.

Fig. 2 shows the normalized bistatic scattering pattern, or
, as a function of the angle between transmitter and

receiver , of a target. When , as is the case
in Fig. 2(a), the pattern is uniform as expected. However, for

[Fig. 2(b)], the target has a tendency to scatter power
in the forward direction. Therefore, the amplitudes of the diag-
onal elements of become dependent on the locations of the
transmitters and receivers. A tendency to scatter in the forward
direction by complex targets has been previously demonstrated
through both numerical simulation [9] and experimental mea-
surement [10].

To study the amount of correlation in the received fields due
to spatially correlated scatterers, a target is placed at the origin
and a co-located transmitter and receiver observe the target at 0
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Fig. 2. Normalized bistatic scattering patterns in dB. (a) � � ��; (b) � �

��.

Fig. 3. Normalized covariance in dB of two monostatic transmitter and receiver
pairs as a function of the difference in observation angle. (a) � � ��; (b)
� � ��.

incidence. A second co-located transmitter and receiver pair is
moved in a circle about the target, and is calculated
as a function of the angle between the monostatic pairs. Fig. 3
plots the resulting normalized magnitude of versus
the angle between the two monostatic radars. When , the
covariance is maximum when the two monostatic pairs are close
to one another in angle, and decreases as the angular separation
increases. Equation (16) in [1] applied to this geometry shows
than an angular separation of approximately 20 [marked by
dashed lines in Fig. 3(a)] is required to achieve approximately
independent observations. Increasing tends to increase the
covariance in all directions, particularly the covariance between
the monostatic returns when the two radars are 180 from each
other as illustrated in Fig. 3(b), which uses .

IV. DETECTOR FORMULATION

MIMO radar measurements are corrupted by thermal noise
in the radar receivers; noise corrupted measurements are repre-
sented by the vector . In the investigation that follows, a fixed
system signal-to-noise ratio (SNR) is assumed and is defined in
[1] as the ratio of the average total received power (summed over
all transmit-receive antenna pairs and neglecting thermal noise)
to the average thermal noise power summed over receivers.
This results in

(9)

where is the total transmitted power (divided equally among
the transmit antennas), and is the average thermal noise
power in each receiver. The term in parenthesis ensures that the
total “energy” of the target is normalized to unity.

The received signal vector has the form under
(no target), and under (target present), where

is an additive complex Gaussian vector that
models receiver thermal noise contributions, and where a divi-
sion of by has been included. The vector
is proportional to the received signal vector such that

with defined in terms of and the SNR as:

(10)

The detection problem reduces to testing the hypothesis of
whether a given complex vector observation is drawn from a
complex Gaussian distribution having a first or a second

covariance matrix under the null and al-
ternate hypothesis respectively. For problems with no unknown
parameters, the likelihood ratio test (LRT) provides the optimal
detector in the Neyman-Pearson sense. The LRT for this case
reduces to [11]

(11)

where . Implementing this detector requires
a-priori knowledge of , which implies knowledge of the target
size, orientation, correlation distance, and SNR. Because such
information is unlikely to be available, implementation of (11)
is not expected in practice. However, the performance of this
LRT detector is utilized to assess the applicability of the “energy
detector” in equation (24) of [1] to the correlated target model.

Under the null hypothesis, the energy detector is
a scaled chi-square random variable such that

, and the decision threshold can be set as a
function of the probability of false alarm [1]. In order
to calculate the probability of detection , the covariance
matrix is calculated for a known MIMO geometry and
target properties using the analytic expressions for
derived in Section II. Reference [7] provides a procedure for
numerically computing using the singular value decompo-
sition (SVD) of to create a random vector whose entries are
uncorrelated.

Following [7], the final form for is

(12)

where are the partial fraction expansion coefficients de-
fined by [7, eq. (10)], is the eigenvalue of , is
the algebraic multiplicity of , and is the decision threshold
calculated as a function of .

V. RESULTS

Fig. 4 illustrates a representative MIMO geometry with
for which the probability of detection was calcu-

lated for targets with varying degrees of spatial correlation. The
rectangular target has . This configuration
satisfies the conditions derived in [1] for the covariance matrix
to be approximately diagonal in the uncorrelated target case.

The probability of a missed detection
for both the energy detector and the LRT (quadratic) detector is
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Fig. 4. MIMO geometry with� � � transmitters and� � � receivers spaced
around a target located at the origin. The units of the� and � coordinates are
in wavelengths �.

Fig. 5. Probability of missed detection for both the LRT detector (QD) and the
energy detector (energy) for � � �� .

shown on a log scale in Fig. 5. This result, which depends on the
closed form expression for the covariance matrix, has been in-
dependently verified through Monte Carlo simulations as well.
For comparison, [1] also derives the probability of detection for
a phased array system, and the reader is directed to the refer-
ence for details. The with both the energy detector and
LRT (quadratic) detector for agree closely with the
uncorrelated scatterers case presented by Fishler et al. modified
for . As the correlation is increased from zero to

, the performance of the system decreases such that
the SNR required for the MIMO radar to outperform the phased
array increases by approximately 10 dB. These results suggest
that the uncorrelated target model represents a best case sce-
nario for evaluating the performance of a MIMO system using
the energy detector.

Fig. 5 also compares the performance of the energy and
LRT quadratic detectors for . As expected, the two
perform identically in the uncorrelated target case. However, the
performance of the LRT detector is only slightly better than the
energy detector derived for the uncorrelated target case even for
targets consisting of correlated scatterers.

VI. CONCLUSIONS

A correlated target scattering model was introduced in order
to assess the impact of target spatial correlations on the MIMO
detection algorithm derived for uncorrelated targets in [1]. A
closed form solution for the covariance matrix was
derived that can be calculated for any arbitrary MIMO geometry
and level of target correlation. The energy detector derived in [1]
for the uncorrelated target model was applied to the correlated
target problem and was shown to have a similar performance
to the optimal detector. Since the energy detector does not re-
quire prior knowledge of target properties, it is the preferred de-
tector in this case. The MIMO system appears to perform best
for uncorrelated targets, for which the bistatic scattering pattern
is uniform in all directions, with decreasing performance for in-
creasing correlation in the target. Further analysis of the target
model presented is in progress to assess the degree to which this
approach can describe scattering properties of realistic targets.
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