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Abstract:

The forward-backward method with a novel spectral acceleration algorithm (FB/NSA) has
been shown to be a very efficient O(Ny,) iterative method of moments, where Ny, is the total
number of unknowns to be solved, for the computation of electromagnetic wave scattering from
two-dimensional (2-D) rough surfaces (3-D scattering problems). For relatively large surface cross-
range sizes Dy, the method’s efficiency decreases due to the increase of the direct computation
of the mutual coupling in the strong region. An additional NSA formulation based on spectral
domain representation of the Green’s function in the cross-range direction is incorporated into
the standard NSA algorithm to improve its computational efficiency. In addition, for the case
of extremely large-scale rough surfaces, a “multilevel” algorithm (i.e. decomposing 2-D extremely
large-scale surfaces into more than one weak region and appropriately choosing the NSA parameters
for each weak region) is incorporated into the standard FB/NSA algorithm to improve its accuracy.
It is found that the improved FB/NSA algorithm remains O(N;y). Numerical results show that
the efficiency and accuracy of the standard FB/NSA algorithm are improved by incorporating the
y- expansion and the “multilevel” algorithm at the cost of increasing algorithmic complexity and

memory requirements.



1 Introduction

The forward-backward method with a novel spectral acceleration algorithm (FB/NSA) has been
shown to be a very efficient O(Ny,) iterative method of moments, where Ny, is the total num-
ber of unknowns to be solved, for the computation of electromagnetic wave scattering from two-
dimensional (2-D) rough surfaces (3-D scattering problems) [1, 2]. In the FB/NSA method, a
neighborhood distance in the along-range direction around each receiving element on the surface is
defined to separate the strong interaction region from the weak interaction region. Direct matrix-
vector multiplication is performed when the source points are in the strong interaction region, and
the NSA algorithm is employed to rapidly compute interactions between widely separated points in
the conventional FB method. The NSA algorithm involves a double spectral integral representation
of source currents and the 3-D free space scalar Green’s function in the along-range direction. Effi-
ciency improvements of the FB/NSA algorithm for 2-D surfaces (compared to the conventional FB
method) are appreciable but not as dramatic as those for 1-D surfaces. However, for a fixed surface
cross-range size D, the computational efficiency of the 2-D FB/NSA method remains O(Nyy) as
the surface down-range size D, increases. In addition, the 2-D FB/NSA method is specifically
designed for 2-D large-scale finite rectangular surfaces and remains very efficient for moderately-
rough large-scale surfaces [3]. Use of a large rectangular surface makes the method well suited for
studying rough surface scattering at low grazing angles (LGA).

For relatively large surface cross-range sizes Dy, the efficiency of the 2-D FB/NSA method
decreases due to the increase of the direct computation of the mutual coupling in the strong region.
One way to improve the computational efficiency of the strong-region computation is to incorporate
an additional NSA formulation based on the spectral domain representation of the Green’s function
in the y- direction. In addition, as in the case of 1-D surfaces [4], the 2-D FB/NSA algorithm with
only one large weak region may yield inaccurate results for extremely large-scale rough surfaces.
Inaccuracy comes from the fact that the complex vector radiation function of a source group far
separated from the receiving element is rapidly decayed along the deformed contours away from the
origin in the complex planes. A “multilevel” algorithm for 2-D extremely large-scale rough surfaces

analogous to that for the 1-D case is proposed to solve this problem. Numerical results show that



the efficiency and accuracy of the standard FB/NSA algorithm are improved by incorporating the
y- expansion and the “multilevel” algorithm at the cost of increasing algorithmic complexity and
memory requirements.

This paper is organized as follows. Section 2 presents the formulation of the 2-D FB/NSA
algorithm, using spectral domain representation of the Green’s function in the z- and y- directions,
for the computation of scattering from 2-D perfect electric conducting (PEC) rough surfaces. The
“multilevel” FB/NSA algorithm for 2-D extremely large-scale PEC rough surfaces is discussed in
Section 3. Section 4 discusses the computational cost and memory storage requirements of the
improved 2-D FB/NSA method. Numerical results are presented in Section 5, and conclusions can
be found in Section 6. An e~ time-harmonic convention is assumed and suppressed throughout
this paper, and the propagation constant is defined as k = w./u€, where w is the radian frequency

and € and p are the permittivity and permeability of free space, respectively.

2 Formulation of the 2-D FB/NSA Algorithm Using Spectral Do-
main Representation of the Green’s Function in the z- and y-

Directions

Consider a 2-D PEC rough surface profile S illuminated by an incident field E*(z,, z) centered in
direction I}Z = Zsin6; cos ¢; + §sinb; sin ¢; — Z cosf;, as shown in Figure 1, where 6; and ¢; refer
to the incident polar and azimuthal angles, respectively. The region above the surface profile is
assumed to be free space. The surface height function z = f(z,y) has zero mean and its maximum
and minimum height variations are denoted by z,4, and z,;,, respectively. Let Az,,q, denote the
largest surface variation, which is equal t0 Zyjae — Zmin. The incident field E*(xz,y, ) is tapered
with a Gaussian beam amplitude pattern confining the illuminated rough surface to the rectangular
surface area D, x D, so that surface edges do not contribute strongly to obtained scattered fields.
The tapered incident field is discussed in detail in [3]-[6].

Let r = Zx + §y + 2z and r/ = Zx/ + §y/ + Zz! denote a field point and a source point on the

rough surface, respectively. Then, the magnetic field integral equation (MFIE) on the PEC rough



surface is given by

I(r) = Ipo(r) + 2n x / /P L dardyVg(e.zr) x 3(o) (1)

where the above integral is a principal-value integral,

eikR
gr,r) = @
Vg(r,rr/) = G(R)R (3)
eik:R

V denotes the gradient operator in the three-dimensional coordinate system, J(r) = n x H(r),
Jpo(r) = 2n x Hi(r),n = 2 — &5 — 3L, R = r — v/ and R = |R|, , where H' is the incident
magnetic field associated with E. The normal vector n (not a unit vector) points upward from the
PEC surface and Sy, is the surface obtained from the projection of the rough surface S onto the
z —y plane. As usual, this surface integral equation can be solved using a standard point-matching
MM technique [7]. For the purpose of the MM formulation, the rectangular surface area D, x D,
of Sy is discretized into the N x M rectangular grid. Each element has the dimension Az x Ay,
where Az = % and Ay = %. Let Nyt = 2N M be the total number of unknowns on the surface
S (due to 2 independent vector components for J(r)).

In the 2-D FB method, the current vector J(r) is decomposed into the the forward-stepping

(FS) J/(r) and backward-stepping (BS) J°(r) currents as follows:
J(r) = I/ (r) 4+ Ib(x). (5)

The FS and BS processes are shown in Figure 3 in [1]. The detail of the 2-D FB method can be found
in [1]. For convenience in understanding the 2-D NSA algorithm, the computation of the F'S process
is considered only; the BS computation can also be treated in a similar fashion. The original 2-D
NSA algorithm [1] starts with selection of a neighborhood distance in the z- direction, L,, within
which interactions between points are classified as strong and outside of which interactions are
classified as weak, as illustrated in Figure 2. It can be seen that the FS surface S:{:y is decomposed

into the FS strong (S7

1y,s) and weak (Sf, ,,) regions. In the strong region, the F'S current is computed

Ty, w

in the conventional manner, and the NSA algorithm is employed to compute the F'S current in the



weak region. The original 2-D NSA algorithm is based on the spectral domain representation of
the free space 3-D scalar Green’s function in the z- direction, and it is discussed in detail in [1].
For relatively large surface cross-range sizes Dy, the efficiency of the original 2-D NSA algorithm
decreases due to the increase of the direct computation of the mutual coupling in the strong region.
One way to improve its computational efficiency of the strong-region computation is to incorporate
an additional NSA formulation based on the spectral domain representation of the Green’s function
in the y- direction. As shown in Figure 3, the strong region contribution to the F'S current on the

kth iteration J1'* (r) can be written as follows:

I () — 2nx / /P Ly Ay GRR (355 (xr) + 30D ()| (6)
= M) +J£’?§’( )+ 355 ), (7)
where
JAE)(r) = 2nx //PVS dz! dy' G(R) R X [Jf( ) (rr) 4 Jo(= 1)(rl)] (8)
Lyrs

Jf’(;g( ) = 9nx // dat dyt Vg (r, r1) X [Jfa(k)(r/) -|—Jb,(k—1)(rl)] 9)

E t
Jf,(gfb)( ) = 2nx // h dzt dyr Vg(r,rr) x [Jf’(k)(rl) +Jb’(k_1)(1")] ) (10)

Szy.ub

The terms JZ3* )( ), Jhk )( ) and Jhk )( ) in Eq. (6) represent

andeys—SwyTs—i-Syyt—l-Sf w,yt w,yb

Ty,yb"
the new strong region contribution, and the weak region contributions using the spectral domain

(k)()-

representation in the y- direction for y < y/ and y > y/, respectively. Note that the term J7 I is

computed in the conventional manner, and the NSA algorithm is employed to compute the terms

Jij(kt) (r) and J 5)(:,)) (r). Let L, be a neighborhood distance in the y- direction as illustrated in

Figure 3. Note that the size of the strong region Sxy s is reduced to Swy rs Of approximate size

L, x 2L, ; i.e. the reduction of the direct computation, but the complexity of the NSA algorithm
increases. Thus, a neighborhood distance L, must be chosen appropriately to compromise between
the direct computation of J 1,(k) (r) and the NSA computation of J w(yt) (r) and J f;’(;g( )-

To illustrate the 2-D FB/NSA algorithm using both z- and y- expansions, consider the FS
process as shown in Figure 4 for a simple configuration with the following parameters: N =5, M =

5, Ny =3 and Ny = 2, where N, = ﬁ—; and N, = i—z. The FS process starts from Figure 4 (a) and

ends with Figure 4 (y). Note that the receiving element moves from bottom to top, and then from



left to right. In addition, the weak region employing the NSA algorithm with the z- expansion is
the same as shown in Figure 2, and only the old strong region is modified. Thus, it is sufficient to
consider only the F'S process when the receiving element moves in the vertical direction; i.e. consider
along a column instead of a row. Without loss of generality, it is convenient to consider only the
“middle” column of Figure 4; i.e. Figures 4 (k) to 4 (0). When the receiving element is located at

the bottom as shown in Figure 4 (k), only the regions Sg;y,,.s (which employs direct computation)

and S

zyt (Which applies the NSA algorithm with the y- direction for y < y/) contribute. Note that

there is no region Sgy,yb employing the NSA algorithm with the y- direction for y > 3/ in Figure 4

(k). As the receiving element moves upward, the region S:{:y’yt decreases, but the region S:fy ub

increases. Note that the region S]:y,m tends to maintain the same size except when the receiving

element is near the bottom or the top. Finally, as the receiving element approaches the top (see

Figures 4 (n) and 4 (0)), there are only the regions S, .. and S/

. . f .
Tyrs zy.bs 1-€- the region Sz, ; vanishes.

Next, consider the formulation of the 2-D FB/NSA algorithm using the y- expansion in detail.

fi(k)

w,yb (r) associated with the spectral domain represen-

f(k)

w,yt

Without loss of generality, only the term J

tation in the y- direction for y > y/ is considered. The term J; ",/ (r) for y < y/ can be formulated

in a similar fashion, except for minor changes as will be discussed later in this section. The NSA

fi(k)

wyb (T) starts with the spectral integral representation of the Green’s

algorithm associated with J

function g(r,r/) and Vg(r,r/) propagating in the y- direction for y — y7 > 0 as follows:

i ok R
glr,r) = / dk, dk, (11)
82 Jay, Je, y
1 ke'k R
/) = ——— dk, dk, ——— 12
Vg(I',I‘) 87‘!‘2 /Ckz Ckm 2z T ky ) ( )

where k = &k, + gk, + 2k, and k, = (k2 — k2 — k2)2. The contours Cj, and Cj, are the original
contours of integration on the entire real axis starting from —oo to oo in the complex k, and k,
planes, respectively. Substituting Eq. (12) into Eq. (10) and interchanging the spatial and contour

integrations, Eq. (10) can be rewritten as follows:

()
ik 1 F b (rak27k:1,‘)
@ = —ggnx [ ke, (13)
FO b, k) = / dzr dyr VE (rr) e* R, (14)
Y Siy,yb Y



where VZ(/IZ) (r7) is defined as
VI (r) =k x [35E) () + JHED ()] (15)

As in the case of the z- expansion, the discretized version of the complex vector radiation function
FZ(/]Z) (*(n,m), kz, kz) can be computed from currents in the region S;J:y,yb in a recursive manner through
a “phase shifting” process, where r(, ,,) denotes a position vector starting from the origin of the
coordinate system to the center of (n,m) th element on the surface S. To see this, first consider

the region S g;y yb when the receiving element moves in the vertical direction. The radiation function

Fg(jz) (T(n;m)s Kz, kz) can be computed numerically as follows. For 1 <m < N, where N, = i—z,
k
By (xnm)s ke ko) = O (16)

since the weak region s/

Zy.b does not exist. For m > Ny; i.e. the weak region s/ , exists,

Ty,
ng) (r(n,m)a kza k:c) , N = 1
Fy(;lz) (I‘(n,m)a ky, ky) = ng)(r(nym), kyke) ,1<n< N, (17)

Fi(%k) (r(n,m)a ks, kx) ,n> N,

where
0 ym < Ny
ng) (r(n,m)a ks, kw) = %) ) k) (18)
F; (r(n,mfl)a ks, kz) e'lue1 Fl,add ;M > Ny
ng) (r(n,m)’ kz, kz) = F?(jlc)) (r(n—l,m)a kz, km) e Vu.2 + F§k) (r(n,m)7 k., km) (19)
Fi(ik) (r(n,m)a Kz, kz) = [F;IZ) (r(nfl,m)a k., km) - Fz(Lk) (r(nfl,m) 2Kz, km)] ’
EATTERS Ty (20)
and
0 ym < Ny
Fz(Lk) (I‘(n,l,m), k., kw) = ng) (r(n—l,m—l)a kz, k‘m) etYyb,3 (21)
+F ,m > N,
ngd = ASmyVé'Z)(r(n,mfNy)) e Vvbs (22)
Fz(ll,cc)zdd = ASwag(,’Z)(r(n—Nx meny)) €S, (23)



The “phase” functions W ;, where j = 1,...,5, are defined as follows:

Iy = k- [r(n,m) - r(n,mfn] (24)
Uyp2 = k- [r(n,m) - r(n—l,m)] (25)
U3 = k- [r(n—l,m) - r(n_1,m_1)] (26)
Uypa = k- [r(n,m) - r(n,m,Ny)] (27)
Uy = k- [r(n—l,m) - r(n—Nz,m—Ny)] . (28)

To implement the 2-D FB/NSA algorithm associated with the y- expansion efficiently, it is required
to store F;’Z) (T(n,m), k2, kz) for each row associated with the weak region S;fy,be i.e. requiring an
additional memory requirement of O(M Qrot,y), where Qror,y is the total number of plane waves
associated with the y- expansion. Thus, for the case of extremely large-scale 2-D rough surfaces
with relatively large D, the efficiency of the standard 2-D FB/NSA algorithm can be improved by
incorporating the y- expansion, however the total memory requirement is increased as well.

After deforming the contours Cy, and Cy, to Cs, and Cs,  respectively (see Figure 6 in [1] for

Csi,; Csy, is similar to Cy, - as shown in Figure 7 in [1]), Eq. (13) can be discretized as follows:

U Ya W(ksy,koo)n x B (0, ks by )]
1:(k) _ 1 Zyy Ty b 3 Nz s vy
Jw,yb (I') = _WAQ Z Z ky Y
u=—Uv=—-V,, w,v

e_i(skz e_i(skm , (29)

where ky, , = (k*—kZ —k2.) 3, W (ky,, kz,) is a weighting function for numerical integration, 2U +1
and 2V, + 1 are the number of plane waves in the complex k, and k; planes respectively, and ¢,
and J, are the tilt angles of the deformed contours Cy, and Cjy, with respect to the negative real

axis. The total number of plane waves for y- expansion is given by

U

Qrory = Y 2V, +1). (30)
u=—U

Note that the topology in the complex k, and k; planes for the y- expansion is similar to the topology
in the complex k, and k, planes for the z- expansion (see in [1, 3]), respectively. Thus, the 2-D
NSA parameters associated with the y- expansion can be obtained using the same approach as
employed in the z- expansion. Comparing the weak region Sg:y,w for the z- expansion and the weak

region S /

Ty.b for the y- expansion with y > g/, it is observed that the 2-D NSA parameters for the y-

expansion can be obtained from the corresponding 2-D NSA parameters for the z- expansion (see



in [1, 3]) by simply interchanging the following quantities: L, — Ly, Dy — Ly, ky — kg, ky — ky

and R;, — R,,. Thus, the 2-D NSA parameters in both complex k, and k, planes are given as:

T , tan~! (BZmaz ) < (.1
S, = < ° ( Ly ) (31)
tan™' S (AZ’”‘”) > 0.1
20k -1 (Azpmap
Eomar = V Ly ( Ly ) (32)
kz ,Smaz + kz tail -1 ( m”)
1 [C,k
Ak, = —|=£ (33)
‘ 22\ L,
Ok, = 7 (34)
QI?—k , tan™1 (%&) <0.1
Relky maz) = v v (35)
Re[kCU,Smam] + kw,tail . tan (ﬁ_z) >0.1
1 [C.k
Ak, = — 2=, (36)
’ 22\ Ryy
1
Where kzasmam = %’ kwasmaz = ,;{I;Z’ K= (k2 - kg) ? ’ Ryz = Lz + (Azma$)27 R-'Ey = V LZQI + L?E’
and 8 = m where ¢ is the solution of the following nonlinear equation:
Ly\/Tl —7’2+7’3 :0, (37)
where 7y = 0.5y/473 + 73, > = 0.5 [R2(1L + &2 + K2, (1 = €2)], 75 = (14&)amaz — bz spmae Ama

Ty = 2§k215maw, and a4, 18 some constant (typically found to be less than 3). Note that ¢ can
be solved numerically via a standard root-finding technique. In addition, there are six unknown
constants in the above formulas: <, amaz, Kz tait» Kz,tait, C, and Cz, and these unknowns can be
determined empirically by comparing the analytical solution of g(r,r7) to the solution obtained
from its spectral domain representation as discussed in detail in [1, 3].

The last issue associated with the y- expansion is that the radiation function Fg(jz) (T(nym)» Kz, k)
can grow geometrically as the receiving element moves from left to right in the F'S process. To see
this, consider Egs. (17), (19) and (20) with an observation that computing F;’Z) (T(n,m)s Kz, k) for
n > 1 involves the previous calculated radiation function Fg(/]z) (r(n_l,m), k,,k;) and the term e*¥vb.2.

Note that W, defined in Eq. (25) can be simplified as follows:

\Dyb,2 =k Az + k% - [r(n,m) - I'(nfl,m)] : (38)

10



In general, the magnitude of the term e*¥v.2 along the deformed contours Cs,, and Cy, may be

greater than, less than or equal to 1.0; i.e.

i %yb

21.0 (39)

From Eq. (38), it is noted that ¥,;o does not involve the term kyAy, which typically assists in

e'¥y.2| to be less than one. If |e!%ub.2

controlling > 1.0 along Cj, and Cj,_, as the receiving

element moves from left to right, ng) (T(n,m), kz, kz) will grow geometrically since it involves a

Wy

repeatedly multiplication process with e It should be pointed out that the above problem
arises due to the fact that the NSA parameters for the y- expansion are chosen based on the two
worst-case scenarios (i.e. one in the p — z plane and another in the z — y plane) as in the case
of z- expansion [3]. The maximum of z — z/ employed in determining the NSA parameters in the
complex k, plane is equal to L,. However, the weak region Siy,yb moves to the right with the
approximate distance D,, which is greater than the distance L, employed in determining the NSA
parameters, in the FS process. Note that the above problem can be avoided if the maximum of
x — x/ is set to be D, when determining the NSA parameters. However, the total number of plane
waves Qror,y increases dramatically if using max{z — 2/} = D, since typically D, >> L,, and the
efficiency of the NSA algorithm for the y- expansion degrades significantly.

One way to solve this problem is to regenerate the radiation function F;’Z) (T(nm) Kz, kz) for a pre-

specified horizontal distance L, to stop the geometrically growing process before ‘FSZ) (r(n,m), k. kz)

grows too large. The distance L, can be determined by solving the following equation for N,., where

L, = N, Az,

Along Cj, - x !V = 1(Pmas (40)
or

Along Gy, : N, = ﬁ;nﬁ, (41)
where  is the maximum of |e*+2%| and b4, is a given positive constant. Typically, byaz € [4.0,6.0]

yields accurate results with an appropriate value for L,. After F;’Z) (r(n,m),kz, k;) is generated, it
can be computed recursively again using Eqgs. (17) to (28) until it is regenerated for the next L,.

This process continues until the receiving element reaches the final (N, M) th element on the surface

S.

11



For the NSA algorithm using the z- expansion in [1], it should be pointed out that the radiation
function F(*) (T(n,m)s Kz, ky) (see Eq. (19) in [1]) does not grow up too large as the receiving element
moves in the y- direction from bottom to top in the FS process. The reason for this is that the
maximum of |y —y/| employed in determining the NSA parameters in the complex k, plane is equal
to Dy, which is equal to the maximum vertical distance D, that the receiving element can move in
the F'S process; i.e. the NSA parameters for the z- expansion are chosen appropriately. Thus, it is

not necessary to regenerate F(¥) (T(n,m)» Kz, ky) for the z- expansion.

As discussed earlier, the NSA algorithm associated with J {J,(;t) (r) for y < y/ can be formulated

(k)

w,yb (r) for y > yr. However, it should be

fy(k)
w,yt

in a similar fashion as the NSA algorithm associated with J

(k)

ot (r) must be com-

pointed out that the radiation function F (r(n,m), k., kz) associated with J
puted recursively in an increasing manner of the weak region Sgy,yt otherwise Fg(jz) (T(nm)s Kzs k)
will grow geometrically. For example, for the middle column of Figure 4, ng) (r(n,m) ,kz, kz) is com-
puted recursively by starting at Figure 4 (m) and ending with Figure 4 (k). Like FZ(/]Z) (T(nm)s Kzs k)
for y > yi, FZ(/]? (r(n,m),kz,kw) is also regenerated for every horizontal distance L,. It should be
pointed out that it is straight forward to extend the above formulation for impedance surfaces [2].
Finally, numerical results in Section 5.1 will illustrate that the NSA algorithm employing both z-
and y- expansions yields less CPU requirements than the one using the z- expansion for the case

of relatively large Dy. In the next section, the 2-D “multilevel” FB/NSA algorithm for eztremely

large-scale surfaces is illustrated.

3 The 2-D “Multilevel” FB/NSA Algorithm for Extremely Large-

Scale Surfaces

For 2-D eztremely large-scale surfaces, the NSA parameters for the z- expansion given in [1] may
yield inaccurate results for a pair of source and observation points where x — x/ >> L,. Like
the 1-D NSA algorithm [4], this problem can be solved by decomposing the old weak region S£y7w
(see Figure 2) into more than one weak region as shown in Figure 3 for the FS direction. For

1-D eztremely large-scale surfaces [4], it is found that only a few weak region (or even one) are

usually required for most practical problems to obtain the desired accuracy due to the fact that

12



contributions from other far-away weak regions are negligible compared to those for the first few
regions. Thus, it is expected that only a few weak regions are required for most practical 2-D
extremely large-scale surface problems as well.

Due to mathematical complexity, it is difficult to determine the appropriate sizes of the weak
regions Sg;ﬁ w onalytically, where 5 = 1,...,T and T is the total number of the weak regions for a
given surface size, however the appropriate size of each weak region can be determined empirically.
To illustrate the above concept, consider the first weak region S;{yl,w The horizontal distance Ly, 1
of SZ{?’J{W is chosen such that the relative error obtained from computing the scalar Green’s function
g(r, /) using the exact expression (see Eq. (2)) and the spectral integral representation in the z-
direction (see Eq. (20) in [1]), for the case of x — 2/ = Ly + Ly, 1,y — y/ = Dy and Az = Azpq,
is less than a specified tolerance, which is typically set to be 5.0%. In other words, the horizontal
distance L, 1 is adjusted, when the variations of the source and observation points in the y- and z-
directions are maximum, such that the relative error satisfies a specified tolerance. In the first weak
region SZ{’y{w, it should be pointed out that the 2-D NSA parameters are fized before the horizontal
distance L,,; is determined by studying the scalar Green’s function g(r,r/) for a pair of source
and observation points in the two worst-case scenarios (i.e. one in the p — z plane and another in
the z — y plane) as discussed in [3]. Once L,,; is known, the 2-D NSA parameters employed in
the second weak region S;{%/Q,w can be determined empirically by following the same approach as for
the first weak region. Note that the effective strong distance employed in the calculation of the
2-D NSA parameters in Sgﬁw is equal to Lz + Ly,1. This process continues until the sum of the
neighborhood distance L, and all weak-region horizontal distances exceeds the along-range surface
size D,. Numerical results in Section 5.2 confirm that the accuracy of the standard 2-D FB/NSA
algorithm (using only z- expansion) is improved when incorporating the “multilevel” algorithm for

the case of extremely large-scale surfaces. In the next section, the computational cost and memory

storage requirements of the FB/NSA method for 2-D RSS problems are discussed.

13



4 Computational Cost and Memory Storage Requirement of the

2-D FB/NSA Method

The total operational count TOC of the 2-D “multilevel” FB/NSA method using both z- and y-
expansions is estimated as follows:
T
TOC ~ CyNsyNemi + CyQroryNem: + Y CiQror,z,j(Newmt — Ni,j), (42)
j=1
where N, = 2N; Ny, Nejypt = NM = 0.5Nyot, QT0T,y denotes the total number of plane waves for
the y- expansion as defined in Eq. (30), Qro7,s,; denotes the total number of plane waves for the

z- expansion employed in the j7 th weak region ng;f;w, where j = 1,...,T, C; are constants, and

m=1

7j—1
NS,j: (Nw‘l' ZNw,m) M, j=2,...,T, (43)

where Ny 1 = N;M and N, ,,, = LZ;" , where Ly, ,,, is the horizontal distance of the m th weak region

S{@% and m =1,...,T — 1. It is noted that N, , is approximately the total number of elements in
the reduced strong region SQJ:y’T s- The first term on the RHS of Eq. (42) is the number of operations
involved in the computation of the reduced strong-region contribution for Ng,,; receiving elements
and the second term involves the number of operation count to compute Qror,y plane waves
associated with Jf:)”(:g (r) and J{:,’,(;t) (r) for Ngy,: receiving elements. Note that the operational
count of the regeneration process of complex vector radiation functions F;’Z) (r(nym),kz,kw) and

p®

ot (T(nm), Kz, kz) for every horizontal distance L, (see Eq. (41) is proportional to Nejm¢. Finally,

the last term is the number of operations involved in the computation of Q7orz,; plane waves
associated with the j th weak region Sgif;w.
In addition, the total memory storage requirement M SR of the 2-D “multilevel” FB/NSA
algorithm using both z- and y- expansions can be estimated as follows:
T
TMSR ~ CyNeimt + CnMQrory + > DiQrors. s (44)
j=1
where C; and D; are constants. The first term on the RHS of Eq. (44) accounts for the storage

of necessary matrices and vectors employed in the 2-D “multilevel” FB/NSA algorithm using both

z- and y- expansions. In addition, the second and third terms involve the storage of the total
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number of plane waves associated with the y- expansion and the z- expansions employed in the
“multilevel” algorithm, respectively. As pointed out earlier in Section 2, to implement the 2-D
FB/NSA algorithm associated with the y- expansion efficiently, it is required to store the number
of plane waves for each row associated with the weak regions Sgy,yb and S:fy,yt resulting in an
additional memory requirement of O(MQror,y)-

In practice, it should be pointed out that only few weak regions S{;};w are sufficient to yield
accurate results for 2-D eztremely large-scale surfaces as in the case of 1-D surfaces [4]. Note that
the neighborhood distances L, and L, must be chosen appropriately to compromise between the
direct computation in the strong region and the NSA computation in the weak regions. However, for
fixed Dy, frequency and surface roughness, the parameters Ly, Ly, QroTz,; and Qror,y are fixed,
and as D, increases it is implied from Eqs. (42) and (44) that the computational cost and memory
storage requirement of the 2-D “multilevel” FB/NSA algorithm using both z- and y- expansions
remain O(Niy). Finally, it should be emphasized that the 2-D “multilevel” FB/NSA algorithm
using both z- and y- expansions improves the efficiency and accuracy of the standard 2-D FB/NSA

algorithm using only the z- expansion at the cost of increasing memory storage requirements and

algorithmic complexity.

5 Numerical Results

In this section, several numerical results of rough surface scattering computed by the 2-D FB/NSA
algorithm are illustrated. Numerical results are presented in terms of the normalized bistatic
radar cross section (RCS) 0,4(0s,¢s) in the plane of incidence, defined for a scattered wave in
a-polarization and an incident wave in (-polarization (see Eq. (34) in [1]). For rough surfaces
with relatively large D,, it is recommended to employ the 2-D FB/NSA algorithm using both z-
and y- expansions as described in Section 2, and its results are presented in Section 5.1. The 2-D
“multilevel” FB/NSA algorithm is suitable for extremely large-scale surfaces, and its numerical
results are illustrated in Section 5.2. Note that the information of the CPU time in this section is

based on a Pentium II 200 MHz computer with 256 Mbytes RAM.
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5.1 The 2-D FB/NSA Algorithm Using Both z- and y- Expansions

To illustrate the computational efficiency and accuracy of the 2-D FB/NSA algorithm using both
z- and y- expansions for large-scale surfaces with relatively large D,, consider a deterministic
128X x 32X PEC rough surface sampled with 16 points per A resulting in 2,097,152 unknowns,
where A is the electromagnetic wavelength in free space.

The surface is illuminated by a tapered plane wave with g/ = 6 [5] at an incident angle of 80°.

The surface is a realization of a Gaussian random process described by a power law spectrum,
W(k,¢) = aok™, ka <k < kqu, (45)

where W (k, ¢) represents the spectral amplitude, k denotes the spatial wave number of the surface,
¢ represents the azimuthal angle of the two dimensional spectrum, ay is a specified constant, and kg
and kg, are the lower and upper cutoff spatial wave numbers, respectively. The surface spectrum
parameters of interest are ag = 0.6365 x 1072, kg = 210.0 rad./) and kg, = 27,393.3 rad./), and its
maximum surface variation Az, is equal to 1.6435\ (2pmin = —0.8311A and 2, = 0.81241). In
this case, numerical tests show that only the first weak region Safg’},w employed for the z- expansion
is sufficient to yield accurate results. The 2-D FB/NSA parameters for this case are listed below

(see the definitions of the 2-D NSA parameters for the z- expansion in [1]):

e For the z- expansion: L; = 3.0}, d, = 0.03 rad., amaz = 1.0, k; 0 = 0.60k,

ky tait = 0.25 Re[x], C, = 30.0, Cy = 11.0, Qrors,1 = 8,971
e For the y- expansion: L, = 3.0}, 0, = 0.3 rad., amaz = 1.0, bpag = 4.0, k; 15 = 0.60k,

kg tait = 0.30 Re[k], C, = 40.0, C; = 40.0, Qrory = 1,305
Note that the y- expansion employs by, = 4.0, and from Eq. (41) it is required to regenerate the
radiation function FSZ) (T(n,m), k2, k) for every 75 points (i.e. L, = 4.6875)\). The standard 2-D
FB/NSA algorithm using the z- expansion is employed to compare with the 2-D FB/NSA algorithm
using both z- and y- expansions, and the former employs the same 2-D NSA parameters as the latter
for the z- expansion. It is found that both methods require only 2 iterations to converge to within
1% accuracy based on the normalized pseudo-residual test [1]. Figure 5 (a) and (b) illustrates plots

of the normalized bistatic RCS in dB when ¢; = ¢; = 0° versus the scattering angle 65 for HH-
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and VH- polarizations respectively, comparing between the former and the latter. From the plots,
the results obtained from both methods are in excellent agreement. The former requires the total
CPU time of 21,622.5 minutes, and the latter’s CPU time is equal to 13,755.3 minutes. Thus, it
is obvious that the latter provides very accurate results, and the former’s efficiency can be indeed
improved by incorporating the y- expansion.

To further verify the computational efficiency and accuracy of the 2-D FB/NSA algorithm
using both z- and y- expansions, consider another deterministic 64\ x 64\ square PEC rough
surface sampled with 8 points per A resulting in 524, 288 unknowns. The surface is illuminated by
a tapered plane wave with g/ = 6 at an incident angle of 40°. Same surface statistics as in the
above example are employed in this case, and its maximum surface variation Azp.; is equal to
1.9115X (Zmin = —0.9377X and zpe; = 0.9738)). Numerical tests show that only the first weak
region S{iw employed for the z- expansion is sufficient to yield accurate results. The 2-D FB/NSA

parameters for this case are listed below:

e For the z- expansion: Ly = 6.0}, dx, = 0.02 rad., amaz = 2.0, k; taq = 0.05k,

ky,tail =0.04 RG[K,], Cz = 45.0, Cy = 7.0, QTOT,w,l = 5, 933

e For the y- expansion: L, = 3.0\, 0x, = 0.1 rad., amaez = 2.0, byezr = 4.0, k; 145 = 0.05k,

kg tait = 0.20 Re[k], C, = 35.0, Cy = 15.0, Qrory = 1,747
Note that the y- expansion employs by, = 4.0, and from Eq. (41) it is required to regenerate the
radiation function F;’Z) (T(n,m) Kz, k) for every 103 points (i.e. L, = 12.875)). Figure 6 (a) and (b)
plots the normalized bistatic RCS in dB when ¢; = ¢, = 0° versus the scattering angle 6, for HH-
and VH- polarizations respectively, comparing between the 2-D FB/NSA algorithm using only the
z- expansion and the one using both z- and y- expansions. Both methods require only 2 iterations
to converge to within 1% accuracy based on the normalized pseudo-residual test [1]. From the plots,
the results obtained from both methods are in excellent agreement. The former requires the total
CPU time of 4, 816.4 minutes, and the latter’s CPU time is equal to 2, 848.2 minutes. Thus, it can
be concluded that incorporating the y- expansion assists in improving the computational efficiency
of the standard 2-D FB/NSA algorithm without degrading its accuracy for rough surfaces with

relatively large D,. It should be pointed out that the y- expansion shows better improvement for
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larger problems with relatively large D, as can be seen from the above two examples. In the next

section, numerical results of the 2-D “multilevel” FB/NSA algorithm are illustrated.

5.2 The 2-D “Multilevel” FB/NSA Algorithm

To see that the “multilevel” algorithm can improve the accuracy of the standard (one-level) 2-D
FB/NSA algorithm, consider a deterministic 256 A x 32X\ PEC rough surface sampled with 8 points
per A resulting in 1,048,576 unknowns. The surface is a realization of a Gaussian random process
described by a power law spectrum defined in Eq. (45) with ag = 0.6365 x 1073, kg = 210.0
rad./\ and kg, = 27,393.3 rad./A, and its maximum surface variation Az, is equal to 2.361)\
(zmin = —1.359X and zpe; = 1.002)). The surface is illuminated by a tapered plane wave with
g/ = 6 [5] at an incident angle of 80°. The 2-D two-level FB/NSA parameters using only the z-

expansion for this case are given as follows:

e The firstlevel: Ly = 3.0A, Ly,1 = 50.0], o, = 0.03 rad., amas = 1.0, k; taa = 0.45k,

ky.tai = 0.20 Re[x], C, = 25.0, Cy = 11.0, QT0oT,2,1 = 8,473

e The second level: Ly + Ly,1 = 53.0], &, = 0.20 rad., amas = 1.0, k; taq = 0.20k,

ky.tai = 0.10 Re[x], C, = 30.0, Cy = 15.0, Qro1,0,2 = 5,217
It is found that the 2-D two-level FB/NSA algorithm requires only 2 iterations to converge to within
1% accuracy based on the normalized pseudo-residual test [1]. The sparse-matrix canonical grid
(SMCG) method [8] is employed to compare with the 2-D FB/NSA algorithm. Figure 7 (a) and
(b) shows plots of the normalized bistatic RCS in dB when ¢; = ¢s = 0° versus 6, for HH- and VH-
polarizations respectively, comparing between the 2-D two-level FB/NSA algorithm and the SMCG
method. Note that the results obtained from both methods are in good agreement. In addition,
Figure 8 illustrates the same plots as in Figure 7, but comparing between the 2-D one-level FB/NSA
method and the SMCG method. It is found that the 2-D one-level FB/NSA method requires 2
iterations as well as the 2-D two-level FB/NSA method. From the plots, the discrepancy of the
results obtained from the 2-D one-level FB/NSA method and the SMCG method is noticeable.

Note that the 2-D one-level and two-level FB/NSA methods require the total CPU time of 4994.1
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and 8327.2 minutes, respectively. Thus, the “multilevel” algorithm can indeed improve the accuracy

of the 2-D one-level FB/NSA algorithm at the cost of increasing the total CPU time.

6 Conclusions

The FB/NSA method has been shown to be an efficient O(N;y) method for 2-D large-scale rough
surfaces with moderate surface cross-range size Dy. For rough surfaces with relatively large D,, it
is more efficient to employ the 2-D FB/NSA algorithm using both z- and y- expansions. The y-

expansion is employed to reduce the computational complexity of the large strong region S7, ., and

Ty,
it can be formulated in a similar fashion as the z- expansion. Note that the 2-D FB/NSA algorithm
using both z- and y- expansions requires an additional memory storage of O(MQror,y) compared
to the standard 2-D FB/NSA algorithm using only the z- expansion. Numerical results illustrate
that incorporating the y- expansion to the standard 2-D FB/NSA algorithm can indeed improve
its computational efficiency without degrading its accuracy.

For extremely large-scale surfaces, the 2-D “multilevel” FB/NSA algorithm is employed to
improve the accuracy of the original (one-level) 2-D FB/NSA algorithm, however the “multilevel”
algorithm increases both total CPU time and memory storage requirement. Only a few weak regions
are sufficient to obtain accurate results for most practical 2-D extremely large-scale surface problems.
For given surface sizes and surface statistics, it is difficult to determine the appropriate sizes of the
weak regions Sifg’f, w onalytically, but they can be found empirically instead. It is emphasized that the
2-D NSA parameters for the z- expansion must be determined appropriately for each weak region
as well. Numerical results show that the “multilevel” algorithm can indeed improve the accuracy
of the one-level 2-D FB/NSA algorithm at the cost of increasing the total CPU time and memory
storage requirement. Finally, the computational efficiency of the improved FB/NSA method for

2-D extremely large-scale surfaces with relatively large D, remains O(Ny,) for fixed Dy, frequency

and surface roughness.
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Figure 2: Strong and weak regions in the FS direction.
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Figure 7: A comparison of the normalized bistatic RCS in dB when ¢; = ¢s = 0° computed by the

2-D two-level FB/NSA method and the SMCG method: (a) HH polarization (b) VH polarization.
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Figure 8: A comparison of the normalized bistatic RCS in dB when ¢; = ¢s = 0° computed by the

2-D one-level FB/NSA method and the SMCG method: (a) HH polarization (b) VH polarization.
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