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Abstract

Strategically prefetching data has been utilized in practice to improve caching performance. Apart from caching
data items upon requests, they can be prefetched into the cache before requests actually occur. The caching and
prefetching operations compete for the limited cache space, whose size is typically much smaller than the number
of data items. A key question is how to design an optimal prefetching and caching policy, assuming that the future
requests can be predicted to certain extend. This question is non-trivial even under an idealized assumption that the
future requests are precisely known.

To investigate this problem, we propose a cost-based service model. The objective is to find the optimal offline
prefetching and caching policy that minimizes the accumulated cost for a given request sequence. By casting it as a
min-cost flow problem, we are able to find the optimal policy for a data trace of length N in expected time O(N3/2)
via flow-based algorithms. However, this requires the entire trace for each request and cannot be applied in real
time. To this end, we analytically characterize the optimal policy by obtaining an optimal cache eviction mechanism.
We derive conditions under which proactive prefetching is a better choice than passive caching. Based on these
insights, we propose a lightweight approximation policy that only exploits predictions in the near future. Moreover,
the approximation policy can be applied in real time and processes the entire trace in O(N) expected time. We prove
that the competitive ratio of the approximation policy is less than

√
2. Extensive simulations verify its near-optimal

performance, for both heavy and light-tailed popularity distributions.

1. Introduction

Proactively prefetching data items instead of passively caching them has been utilized in practice to accelerate data
access, e.g, for content data networks [1, 2]. This strategy becomes even more appealing given that the advances in
learning techniques provide effective tools to predict various data request patterns [3, 4, 5, 6]. For certain applications,
the prediction can be reasonably accurate [7, 8]. To design an optimal strategy that combines prefetching and caching
demands careful investigation. Proactively prefetching data brings the data into the cache before the actual requests
occur. Passively caching data, on the other hand, only fetches the missed data from the backend storage after the
requests arrive.

There is a trade-off between prefetching and caching. Due to competing the limited cache space, loading a
prefetched data item into the cache typically has to trigger cache evictions, which may potentially introduce more
cache misses for future requests. Although great efforts have been put to approximate the short-term and long-term
data statistics to prefetch the most popular data [9, 10, 11, 12, 13, 14], a fundamental question remains to be answered:
even with a perfect knowledge of future requests, how to optimally prefetch data items beforehand instead of caching
them upon requests?
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Knowing the entire request sequence defines an offline algorithm, which nevertheless can help an online de-
ployment. Using predictions has successfully made optimal offline policies practical in real applications [4, 5, 6].
Theoretically, the optimal offline policy provides an effective performance bound for online cases [15]. It can also be
used to guide the online design. For example, by leveraging machine learning, an optimal offline policy can be used
to train an online decision model using history information [16].

Previous studies on optimal offline prefetching and caching policies mainly focus on file systems [17, 18, 19, 20,
21, 22], where prefetching and caching are not clearly distinguished. However, in many other important scenarios, e.g.,
for CDNs, prefetching and caching have significant differences. First, prefetching and caching can design separate
cache update rules. For prefetching, the prefetched data remain in the cache until the future requests arrive. For
caching, when a miss occurs, the requested data item is directly fetched from the backend, but whether to put it into
the cache or not is up to the cache policy [15]. Second, prefetching incurs lower costs than caching. If fetching a
missed data item is scheduled after the arrival of a request, it must be performed urgently to satisfy delay requirements.
Prefetching, on the other hand, is performed beforehand and is not time-sensitive. It can be performed at a lower rate
and avoid congestions, which allows more flexibility for scheduling. For example, data can be prefetched at off-peak
times to reduce costs [23, 24]. Third, prefetching can achieve a lower service delay by loading the data into the cache
in advance. Therefore, the existing analysis on prefetching and caching for file systems does not directly apply in the
above-mentioned scenarios.

To address this issue, we propose a cost-based service model to jointly optimize prefetching and caching, by
assuming that prefetching incurs a lower cost than caching, due to less I/O consumption, more flexibility in scheduling
and lower service delays. If the requested data is not cached, it can be served by fetching the data from the backend data
storage after the request arrives, by paying a fetching cost. And the fetched data can be either loaded into the cache,
or discarded to save space. Based on the predictions, we can prefetch the data items before they are requested. The
prefetched data items need to remain in the cache until the requests arrive. Otherwise, they should not be prefetched at
the first place, assuming that we know the future requests. With the goal to minimize the accumulated cost, we decide
whether to cache a missed data item when a request occurs or prefetch it before the request arrives. We propose flow-
based algorithms to find the optimal offline policy, as well as a lightweight “look-ahead” approximation policy that
only knows the request information in the near future. These new designs not only reveal the fundamental trade-off

between prefetching and caching, but also provide useful insights to improve real applications.
Our contributions are summarized as follows.

• We propose a cost-based caching model where different costs will be incurred depending on whether a missed
data item is prefetched or fetched. With the objective to understand the fundamental trade-off between prefetch-
ing and caching, we investigate the optimal offline policy that minimizes the accumulated cost (see Section 2).

• We reformulate the optimal prefetching and caching problem as a min-cost flow problem. For a given request
sequence of length N, the optimal policy can be obtained by flow-based algorithms in O(N3/2) expected time
(see Section 4).

• We analytically characterize the optimal policy by providing sufficient conditions under which prefetching the
missed data is the optimal choice (see Section 5). Moreover, we prove that consistently prefetching is not always
optimal, with a competitive ratio as high as 2, depending on the future requests and the prefetching cost (see
Section 6).

• We propose a lightweight “look-ahead” approximation policy based on the insights revealed by the characteris-
tics of the optimal policy. The approximation policy can be executed in real time and processes the entire trace
in O(N) expected time. Performance guarantees are provided by deriving the competitive ratio (see Section 6).

• We conduct extensive experiments using real CDN traces and synthetic data requests that are generated from
both heavy and light-tailed popularity distributions. The approximation policy always achieves near-optimal
average performance (see Section 8).

Related Works: Caching algorithms have been extensively studied. It is known that Belady’s algorithm [25] is an
optimal offline eviction policy that minimizes the number of misses, assuming that the data items have identical sizes.
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Specifically, it evicts the data item that is requested farthest in the future. When the data sizes are not identical, Be-
lady’s algorithm is no longer optimal, and finding the optimal offline policy is NP-hard. A few approximation policies
have been proposed with different complexities and performance bounds [26, 27, 28, 20]. One recent work [15]
provides an asymptotically optimal solution and practical approximation algorithms with tight performance bounds
for real traces. It leverages a flow-based representation, and shows that the optimal offline caching policy can be
obtained by solving a min-cost flow problem. These offline policies have successfully guided the design of online
algorithms [16].

Prefetching strategies, together with caching algorithms, have been widely explored in real applications, including
processor architectures [29, 30], file systems [31, 32] and networks [33, 34, 35, 24, 36]. The offline optimal strategies
have been studied for disk systems with an objective to minimize the stall time [17, 18, 19, 20, 21, 22]. It is shown
in [37] that the optimal offline solution can be found in polynomial time for single-disk systems. This problem is
reformulated as a min-cost multi-commodity flow problem in [21]. For disk systems, the existing work does not
distinguish the costs caused by caching and prefetching, which makes proactive prefetching almost always a better
choice than passive caching. In this paper, we consider the scenarios where prefetching and caching can have different
costs. Interestingly, we show that consistently prefetching is not always optimal. The new insights can be used to
further improve the design of prefetching and caching mechanisms.

2. Problem Formulation

Consider a set of data items D = {di : 1 ≤ i ≤ M} of unit sizes, and a sequence of data requests that arrive at the
time points {τn, 1 ≤ n ≤ N}. Let Rn (Rn ∈ D) denote the data item that is requested at time τn and {Rn}

N
n=1 denote the

entire request sequence. We assume that {Rn}
N
n=1 is known.

If the requested data item is already in the cache, then the request can be served without paying a cost. However,
if it is not cached, we have two options to serve the corresponding data request at different costs. The first option is
to fetch the data from the backend after the request arrives, paying a fetching cost 1. We can decide whether to load
the fetched item into the cache or not. The second option is to prefetch the data item before it is requested, paying a
prefetching cost c, 0 ≤ c ≤ 1. Note that the prefetched data item has to be loaded into the cache. If the cache space is
full, other items must be evicted before storing a new one. For ease of analysis, we first assume a best-case scenario
where the prefetched data item is loaded into the cache right before it is requested. In Section 7, we will show that
this assumption could be waived to some extent.

We observe that the optimal offline policy shall satisfy the following two properties.
Property 1 (Interval caching decisions): As illustrated in [15], the optimal offline policy will not evict a cached data
item di between two requests for di. Consider an example where di is initially cached and requested at τ1 and τ5. It
is suboptimal to evict di at some time (e.g., τ3) between τ1 and τ5, because storing di in (τ1, τ3] does not serve any
requests and is a waste of caching resource. A wiser decision will be evicting di right after serving R1 or caching it
at least until R5 arrives. Therefore, we focus on caching policies that only evict a cached data item immediately after
serving a request for it.
Property 2 (Fetching without caching): When the optimal policy fetches a missed request, it must not load the
fetched data into the cache and trigger evictions, because otherwise prefetching will be a better option. Therefore, it
is sufficient to consider the policies such that data items will only be loaded into the cache by prefetching.

In the rest of the paper, we restrict the design space by only considering the policies that satisfy these two proper-
ties, and call them feasible policies. An optimal offline policy is guaranteed to exist in this design space.

Let ln = max {i < n : Ri = Rn}, which indicates that τln is the most recent time when Rn is requested. If Rn is the
first request for that item, then set ln = 0. Formally, we define three decision variables for each request Rn, 1 ≤ n ≤ N:

xn , 1(Store Rn in the cache during (τln , τn]),

fn , 1(Fetch Rn),

pn , 1(Prefetch Rn),

where 1(E) is an indicator function that takes value 1 if the event E occurs, and 0 otherwise. The optimal offline policy
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for a cache of size b is the solution of the following optimization problem.

min
∑

1≤n≤N

(1 − xn)( fn + c · pn) (1)

subject to pn +
∑

i:li<n≤i

xi ≤ b for ∀n (2)

xn + fn + pn ≥ 1 for ∀n (3)
xn, fn, pn ∈ {0, 1} for ∀n (4)

If xn = 0, i.e., Rn is not stored in cache at τn, then a cost fn + cpn will be induced depending on whether Rn is
fetched or prefetched as shown in the objective function (1). The cache capacity constraint is described by (2). If Rn

is prefetched (i.e., pn = 1), then the cache should have an available space to accommodate the prefetched data at τn.
Furthermore, Constraints (3) and (4) guarantee that the request Rn must be either directly served from the cache or
prefetched/fetched from the backend data storage.

Solving the optimal solution is equivalent to answering the following two questions:
Q1: If a request is not cached, should we prefetch it beforehand or fetch it upon the request?
Q2: If a data item is prefetched and the cache is full, which item should be evicted?
We will analytically answer these two questions in Section 5. And here are the short answers:
A1: Prefetching the requested data is a better choice, if

• there exist requests for popular items in the near future, and the popular items are not cached currently, or

• the prefetching cost is sufficiently low.

A2: The farthest-in-future data item should be evicted, if we choose to prefetch an item and the cache is full.

3. Motivating Example

In this Section, we will introduce a motivating example to show that 1) prefetching is not always beneficial; 2) the
optimal policy is non-trivial and depends on the prefetching cost.

Figure 1: Always prefetching before the request.

Example 1. Consider a cache of size 2. Assume that d1, d2 are initially stored in the cache. For a given sequence of
requests d3, d1, d2, d4, d5, d2, d1, we apply three different strategies and compare their costs.
Strategy 1 (Always prefetching): We always prefetch the requested data that are not cached, and evict the cached item
that is requested farthest in future. The operations as well as the cache content after serving each request are shown
in Figure 1. Strategy 1 prefetches requests R1, R3, R4, R5, R7 and evicts d2, d3, d1, d4, d5, respectively. The total cost
for the given sequence is 5c.
Strategy 2 (Always fetching): We always fetch the missed data after the request arrives, and make caching decisions
based on Belady’s algorithm which is optimal for caching without prefetching [38]. For this specific example, Belady’s
algorithm will never update the cache content. As shown in Figure 2, a total cost 3 will be incurred for the given
sequence.
Strategy 3 (Combination of fetching and prefetching): As shown in Figure 3, the first request is not stored in the cache
and the requested data d3 is fetched. Then, R4, R5, R7 are prefetched with d1, d4, d5 being evicted, respectively. A total
cost 3c + 1 is incurred by this strategy.
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Figure 2: Always fetching upon the request. Figure 3: Combination of fetching & prefetching.

We have the following two observations from this motivating example.
Observation 1: Prefetching is not always beneficial. If c > 3/5, Strategy 1 (always prefetching) will even incur
a larger accumulated cost than Strategy 2 (always fetching). If the prefetching cost c is considerably small, then
prefetching the data item before the request will be a better choice than fetching it upon the request.
Observation 2: The optimal policy is non-trivial and highly depends on the prefetching costs. Actually, all the three
strategies described above are optimal policies for the given trace and some specific c values. Specifically, Strategies 1,
2, 3 are optimal for c ∈ (0, 1/2], (2/3, 1], (1/2, 2/3], respectively.

Therefore, the optimal prefetching and caching decision depends on the joint effect of future requests and the
prefetching cost c. Even for the same given trace, a fixed policy cannot work uniformly well for different c values.
When the trace is long, the design space can be considerably large, since the possible combinations of fetching and
prefetching will increase exponentially. How to efficiently find the optimal policy is a challenging task.

4. Optimal Policy via Min-Cost Flow

Instead of directly exploring the optimization problem (1), we leverage the underlying structure of prefetching and
caching, and reformulate it as a min-cost flow problem which aims to send a certain amount of flow through a flow
network at a smallest cost. We will show that the optimal prefetching and caching policy can be constructed from the
min-cost flow.

In this paper, we use the flow notations that are shown in Figure 4. A flow network is represented by a directed

Figure 4: Notations for the flow network.

graph where each edge is associated with a parameter tuple (capacity, cost). The total amount of flow going through
an edge must not exceed its capacity. And a cost per unit flow will be charged for the flow going through the edge.
The node i is associated with a number βi representing its surplus/demand. If βi > 0, then the node is a source node.
If βi < 0, then the node is a sink node. We will not label βi in the graph if it is zero.

In [15], the min-cost flow representation is used to solve optimal offline caching without prefetching, where each
request is represented by a node. By constructing a proper flow network, the optimal offline caching can be con-
structed from the min-cost flow solution. However, the flow network constructed in [15] does not support prefetching
operations, and therefore cannot be applied to our settings. To this end, we propose a more general min-cost flow
representation, which supports both proactive prefetching and passive caching. In Section 4.1, we will show how
to construct a flow network for a given sequence of requests. Then, we will prove that the optimal prefetching and
caching policy can be obtained by finding the min-cost flow in Section 4.2.

Trace: d1 d2 d1 d3

Table 1: Example trace of requests for d1, d2 and d3
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4.1. Flow Network Construction

For a given sequence of requests, a corresponding flow network can be constructed, where each request is rep-
resented by four or five nodes and the nodes are connected by five types of edges including caching edges, fetching
edges, prefetching edges, eviction edges and auxiliary edges. Detailed construction steps are presented as follows.
The result of each step is illustrated in Figure 6 for the request sequence shown in Table 1 and a cache of size 2.
Step 1 (Generate nodes): For each request in the trace, if it is the first time to request the data, then generate five
nodes where three of them are placed in the first row and two in the second, as shown in Figure 5. To facilitate the
description of the following steps, we denote these nodes by n0, n1, n2, n3 and n4. If the request is not the first request
for the data, then we will only generate n1, n2, n3 and n4 nodes for that request. Moreover, for each data item, let the
n0 node of its first request be the source node, and the n2 node of its last request be the sink node. These nodes are
added for the example trace in Figure 6a.

Figure 5: Representative nodes for each request

Step 2 (Add caching edges): As shown in Figure 6a. link the nodes in the second row by edges with capacity = b,
cost = 0, where b is the cache size. These edges are named caching edges. A flow going through these edges
represents that the corresponding request is stored in the cache.
Step 3 (Add prefetching edges): For each request, add an edge that is directed from the n2 node of the last request
for the same data and to the n3 node of the request. If the request is the first request for that data, then add an edge
directed from its source node n0 to the n3 node. The capacity of the edge is 1 and the cost is c. The flow going through
these edges means that the corresponding requested data is prefetched. We add these prefetching edges in Figure 6b.
Step 4 (Add eviction edges): For each request, add an edge directed from its n4 node to its n1 node with capacity = 1
and cost = 0, as shown in Figure 6c. The flow going through these edges indicates that the corresponding requested
data is evicted.
Step 5 (Add fetching edges): For each request, if it is not the last request for that data item, add an edge directed
from the n2 node of the request and to the n1 node of the next request for the same data item, as shown in Figure 6d.
Moreover, if it is the first request for the corresponding data item, add an edge directed from its n0 to its n1 node. The
parameter tuple (capacity, cost) for these edges is set to be (1, 1). The flow going through these edges indicates that
the corresponding request is a miss and the requested data is fetched.
Step 6 (Add auxiliary edges): For each request, add an auxiliary edge directed from its n1 node to the n2 node, as
shown in Figure 6e. The parameter tuple (capacity, cost) is set to be (1, 0). The capacity of the auxiliary edge guar-
antees that the amount of flow going through the prefetching and the fetching edges must not exceed 1. The function
of these auxiliary edges is to ensure that an integer flow routing solution can correspond to a feasible prefetching and
caching policy (see Section 4.2).

According to the proposed six steps, a flow network can be constructed for a given data trace. See Figure 6e for the
flow network constructed for the example trace in Table 1. In Section 4.2, we will demonstrate how the constructed
flow network can be leveraged to solve the caching problem.

4.2. Optimal Prefetching and Caching Policy

In this section, we will leverage the constructed flow network to find the optimal offline prefetching and caching
policy. Specifically, we will show that there is an one-to-one correspondence between feasible prefetching and caching
policies and integer flow routing solutions in the flow network.

Theorem 1. For a given data trace, a feasible prefetching and caching policy corresponds to an integer flow routing
solution in the constructed flow network, and vice versa. An optimal prefetching and caching policy corresponds to
an integer min-cost flow, and vice versa.
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(a) Steps 1 & 2: Add nodes and caching edges.

(b) Steps 3: Add prefetching edges.

(c) Step 4: Add eviction edges.

(d) Step 5: Add fetching edges.

(e) Step 6: Add auxiliary edges.

Figure 6: Flow network construction.

The proof of Theorem 1 is straightforward. For a feasible prefetching and caching policy, we can construct an
integer flow routing solution in the constructed flow network where the amount of flow going through each edge is an
integer. Specifically, any cache operation (i.e., fetching, prefetching or eviction) corresponds to an edge (i.e., fetching,
prefetching or eviction edge) in the flow network. Based on how the request is served, we can route the flow through
the corresponding edges. Similarly, given an integer flow routing solution, a corresponding feasible prefetching and
caching policy can be constructed from it.

Furthermore, the cost achieved by a prefetching and caching policy is the same as the cost of its corresponding
flow routing solution. Therefore, the optimal prefetching and caching policy can be obtained by finding the integer
min-cost flow solution.

Theorem 1 shows that an optimal prefetching and caching policy can be obtained by finding an integer min-cost
flow. Formally, we define the flow-based optimal offline policy as follows.
Flow-based optimal offline policy (πOPT ): Given a sequence of data requests, solve the integer min-cost flow for the
flow network constructed according to the steps introduced in Section 4.1. Then prefetch, fetch or evict the data item
if the min-cost flow is routed through the corresponding prefetching, fetching or eviction edges, respectively.

Note that the integer min-cost flow always exists, since the capacities, surpluses and demands are all integers
in the flow network [39]. Moreover, the integer min-cost flow can be efficiently solved, if the prefetching cost c is
assumed to be a rational number. Given a trace with N requests, there are at most 5N nodes and 6N − 1 edges in
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the corresponding flow network. For rational prefetching costs, the problem is solvable in O(N3/2) expected time
[40, 41, 42].

Although the proposed flow-based policy πOPT is offline optimal, the problem is not satisfactorily solved for the
following reasons:

• The flow-based algorithm cannot reveal the underlying insights of the optimal decision. It does not provide
analytical answers to the two questions proposed in Section 2, i.e., whether to prefetch or fetch the missed data,
and which data item to evict.

• The flow-based algorithm requires the knowledge about all future requests to find the optimal policy. Moreover,
the policy cannot be executed in real time, since the optimal decision for a request is unavailable unless the
process for the entire data trace is completed. In real practice, the request sequence could be too long to make
this method practical [15].

These unanswered questions motivate us to

• analytically characterize the properties of the optimal policy and explicitly answer the questions proposed in
Section 2 (see Section 5);

• design a lightweight approximation policy that requires only near-future information, can be executed in real
time and achieves near-optimal performance (see Section 6).

5. Characteristics of Optimal Policy

In this section, we will analyze the characteristics of the optimal policy and explicitly answer the two questions
proposed in Section 2. Notably, the questions will be addressed in reverse order. We will first show that evicting
the farthest-in-future item is optimal when prefetching. Then, we will provide sufficient conditions under which
prefetching is a better choice than fetching.

5.1. Optimal Eviction Mechanism
The farthest-in-future item is defined as the data item that is stored in the cache and will be reused after the other

cached items. It is known that evicting the farthest-in-future item minimizes the number of misses for caching without
prefetching [38]. In this section, we will generalize this result and show that evicting the farthest-in-future item is the
optimal choice to minimize the accumulated costs for caching with prefetching. We start by proving the following
lemma.

Lemma 1. Assume that a policy πn evicts the farthest-in-future items for the first n prefetching operations. Then,
there exists a policy πn+1 that evicts the farthest-in-future items for the first n + 1 prefetching operations and does not
incur a larger cost than πn.

Proof. Assume that τm1 is the first time when πn prefetches a request (i.e., Rm1 ) but does not evict the farthest-in-future
item. Let di be the item that is evicted by πn when prefetching Rm1 . We will construct a policy πn+1 that prefetches Rm1

and evicts the farthest-in-future item without incurring a larger cost than πn. The idea is to let πn+1 eventually have the
same cache content as πn at some time point without introducing additional costs before that.

Assume that the next request for the farthest-in-future item arrives at τm2 , m2 > m1. We may interchangeably use
Rm2 to denote the farthest-in-future item and the request for it. Next, we will prove the lemma by considering two
possible cases.
Case 1: Consider the case where Rm2 is evicted by πn before τm2 . For each request, let πn+1 make the same prefetch-
ing/fetching decision as πn if the data is not cached by πn+1, and evict the same data as πn if the data is stored in the
cache. Then, there will be at most one item that is cached by πn+1 but not cached by πn. When πn evicts Rm2 , which is
not cached by πn+1 according to the described update rule, let πn+1 evict the only item that is not cached by πn. Then
the two policies lead to the same cache content, and no additional cost is introduced by πn+1.
Case 2: Consider the case where πn does not evict Rm2 before τm2 . Similar to Case 1, let πn+1 always make the same
decisions as πn when possible. There is only one item that is cached by πn+1 but not cached by πn before τm2 . Then, at
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τm2 , let πn+1 prefetch Rm2 and evict the item that is not cached by πn. So far, the two policies will have the same cache
content. Next, we will show that this prefetching operation by πn+1 will not result in a larger accumulated cost. Since
Rm2 is the farthest-in-future item at τm1 , there must exist a request for di between Rm1 and Rm2 . Note that di should be
prefetched or fetched by πn, but can be directly served by πn+1 from the cache. This prefetching/fetching operation
by πn compensates for the prefetching operation performed by πn+1 at τm2 . Therefore, πn+1 will not incur a larger cost
than πn.

Next, we will prove the optimal eviction mechanism by leveraging Lemma 1.

Theorem 2. There exists an optimal policy that evicts the farthest-in-future item for all prefetching operations.

Proof. Let π∗ be an optimal prefetching and caching policy. Assume that π∗ evicts the farthest-in-future items for
the first n prefetch operations. Applying Lemma 1, we can construct a new policy which evicts the farthest-in-future
items for the first n + 1 prefetching operations without increasing the accumulated cost. Using an induction argument,
we can conclude that there must exists an optimal policy that evicts the farthest-in-future item for all prefetching
operations.

Theorem 2 shows that evicting the farthest-in-future item is optimal when a data item is prefetched and the cache
is full, which provides an explicit answer to the question Q2 proposed in Section 2. In the rest of the paper, we always
follow the farthest-in-future eviction principle unless other specific mechanisms are stated.

5.2. Optimal Conditions for Prefetching

In this section, we will analytically answer the question: whether we should prefetch or fetch an item if it is not
stored in cache, assuming that the cache content is updated according to the farthest-in-future principle. In particular,
we will provide sufficient conditions, under which prefetching is the optimal choice.

Let Sn denote the set of cached data items before serving Rn. If Rn < Sn, then Rn should be prefetched or fetched.
Without loss of generality, assume that the cache is initially full and let S1 denote the initial cache content. It suffices
to analyze whether R1 should be prefetched or fetched given that R1 < S1. Define

σ = max{n > 1 : Rn ∈ S1 and Rn is not requested in [τ1, τn)}.

Rσ is the farthest-in-future item, and τσ is the first time when Rσ is requested after τ1. Define

ω = min{n > 1 : Rn ∈ S1 and Rn is not requested in (τn, τσ)}.

Note that Rσ is always the farthest-in-future item in the time interval [τ1, τω], if no prefetching operation is performed.
We start by proving the following lemma.

Lemma 2. Assume c < 1. For any optimal policy π∗, if π∗ decides to fetch R1, then it must also fetch all requests Rn,
1 ≤ n ≤ ω, such that Rn < S1.

Proof. Suppose for the sake of contradiction that there exists an optimal policy π∗ which fetches R1 and prefetches Rn,
1 ≤ n ≤ ω. Assume without loss of generality that Rn is the first prefetched item after R1. Therefore, we have S1 = Si

for all 1 ≤ i ≤ n. Moreover, the farthest-in-future eviction principle yields Sn+1 = Sn ∪ {Rn}\{Rσ}. To introduce a
contradiction, we will design a new policy π◦ which achieves the same cache state Sn+1 as π∗, but incurs a lower cost.

For the same request sequence and initial cache state S1, let π◦ prefetches R1 and evicts Rσ at τ1. For the requests
arrive in the interval (τ1, τn), let π◦ make the same caching decision as π∗. We have Sn = S1∪{R1}\{Rσ}, since there is
no prefetching operations by π◦ in (τ1, τn). Then, let π◦ prefetch Rn and evict R1. Consequently, it achieves the same
cache state Sn+1 as π∗. Notably, the caching decisions of π∗ and π◦ in [τ1, τn] are all identical, except that π∗ fetches
R1 but π◦ prefetches R1. As a result, the cost of π◦ is lower than the cost of π∗ since c < 1, which contradicts to our
assumption that π∗ is the optimal policy. Therefore, we prove the lemma.

Leveraging the property of the optimal policy illustrated in Lemma 2, we will show that prefetching before the
request is the optimal choice under some insightful conditions.
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Theorem 3. Assume that the upcoming request R1 is not stored in the cache. Prefetching R1 is the optimal choice, if
any of the following two conditions is satisfied:

• C1: There is a request Rn, 1 ≤ n ≤ ω, such that Rn < S1 and Rn is requested at least twice in the time interval
[τ1, τσ];

• C2: The prefetching cost c satisfies c ≤ L/(L + 1), where L =
∑ω

n=1 1(Rn < S1) is the number of requests that
arrive in the time interval [τ1, τω] but do not belong to S1.

Proof. Assuming that the upcoming request R1 is a miss, we will prove that under any of the proposed conditions,
prefetching R1 is the optimal choice to minimize the accumulated cost.

First, we will show that under Condition C1, prefetching R1 is a better choice than fetching. Assume that R1 is
requested at least twice in the time interval [τ1, τω]. Suppose for the sake of contradiction that the optimal policy π∗

fetches R1. Next, we will construct a new policy π◦ that prefetches R1 and incurs a lower accumulated cost than π∗.
Consider the case where π∗ evicts Rσ when prefetching some missed request Rk for 1 < k < σ. Then let π◦

prefetches R1 and evict Rσ, and then prefetch Rk and evict R1. Furthermore, let π◦ perform the same operation as π∗

for other requests. Then, π◦ will reduce the cost of π∗ by 1 − c.
Then, consider the case where π∗ keeps Rσ in the cache until τσ. Let Rn1 = R1 for some n1 ∈ (1, σ). If R1 is

fetched by π∗, then let π◦ prefetches R1 and evict Rσ, and then prefetch Rsigma and evict R1. For other requests, let π◦

perform the same operation as π∗. Note that Rn1 will be a hit for π◦, and therefore, π◦ reduces the accumulated cost of
π∗ by 2 − 2c. Instead, if Rn1 is prefetched by π∗ and meanwhile some cached data di is evicted, then the next request
for di must arrive after τσ due to the farthest-in-future eviction principle. Let π◦ prefetches R1 and evict Rσ, and then
prefetch Rσ and evict di. For other requests, let π◦ make the same decisions as π∗. Then, π◦ reduces the cost of π∗ by
1 − c. Therefore, we prove that prefetching is the optimal choice if R1 is requested twice before τσ.

Using a similar argument, we can prove that if there is a request Rn, 1 < n < ω, such that Condition C1 holds, then
prefetching Rn is the optimal choice. Moreover, since n < ω, we can conclude that prefetching R1 is also the optimal
by applying Lemma 2.

Next, we will show that if Condition C2 holds, then prefetching R1 is optimal. Let Rni , 1 ≤ i ≤ L, 1 = n1 < n2 <
· · · < nL < ω, denote the L requests that are not in the set S1. Suppose for the sake of contradiction that the optimal
policy π∗ fetches R1. Then, Lemma 2 indicates that π∗ must also fetch all the L missed data items before τω. Let π◦

prefetch R1 and evict Rσ, prefetch Rni+1 and evict Rni for 1 ≤ i ≤ L − 1, and then prefetch Rσ and evict RnL . For these
requests, π◦ pays a total cost (L + 1)c and π∗ pay a total cost L. For other requests, let π◦ make the same decisions
as π∗. Since c ≤ L/(L + 1), π◦ induces a lower cost than π∗. Therefore, we prove that prefetching R1 is the optimal
choice if Condition C2 holds.

Theorem 3 provides sufficient conditions under which prefetching is the optimal choice. And these conditions
reveal the following useful insights that can be leveraged to guide practical designs:

• Prefetching the upcoming request is optimal, if there exist popular items that will be requested in the near future
and are not stored in the cache currently. Note that the upcoming request may not necessarily be popular. The
reason is that the popular data will be prefetched and trigger evictions. Thus, evicting these items earlier can be
even more beneficial, because more prefetching opportunities (e.g., prefetching the upcoming request) will be
provided. This insight is characterized by Condition C1.

• Prefetching is optimal if the prefetching cost c is sufficiently low. This insight is straightforward. Condition C2
characterizes the critical value of c to make prefetching a better choice than fetching. Note that, since 1/2 ≤
L/(L + 1) for L ≥ 1, prefetching is always optimal for any data traces if c ≤ 1/2.

Note that the proposed conditions only depend on the current cache content S1 and the request information be-
tween R1 and Rσ. No information after τσ or before τ1 is required. In Section 6, we will leverage this nice property to
propose an approximation policy that only requires near-future information. However, if neither C1 nor C2 is satisfied,
the optimal decision will depend on the future requests after Rσ.
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6. Approximation Using Near-Future Information

In this section, we propose an approximation policy using near-future information, and show that it is close to
optimal by deriving the competitive ratio.

6.1. Lightweight Approximation Policy

Based on the analytical results obtained in Section 5, we propose an approximation policy as follows.
Approximation Policy (πA): Prefetch the missed request and evict the farthest-in-future item, if c ≤

√
2/2, or any of

the conditions C1 and C2 introduced in Theorem 3 is satisfied. Otherwise, fetch the missed item but do not store it
into the cache.

Applying Theorem 3, we know that, for c ∈ [0, 1/2]∪ [
√

2/2, 1], πA prefetches a data item only when prefetching
is the optimal choice. The threshold

√
2/2 is chosen to achieve a better competitive ratio, as shown in Section 6.2.

Notably, the proposed approximation policy makes caching and prefetching decisions merely based on the request
information before τσ. If the data requests are generated independently from a popularity distribution (e.g., Zipf’s
distribution as observed in real practice [43]), then τσ is independent of the trace length N. Although τσ can depend
on the cache size b, considering the fact that the trace length is typically far larger than the cache size in real practice,
N is the dominant term in the time complexity and the impact of b is negligible. Therefore, πA has an expected time
complexity O(1) to make decisions for a single request and O(N) to process the entire trace. In Section 8, we verify
through simulations that the required information for πA to make decisions for a single request does not scale with the
trace length. In summary, unlike the flow-based algorithm that need all future requests to make optimal decisions, πA

is lightweight and practical since

• it only exploits near-future information to make decisions;

• it does not have to process the entire trace to find the optimal decision for a single request and can be executed
in real time.

6.2. Competitive Ratio Analysis

In this section, we will show that the proposed approximation policy achieves near-optimal performance by char-
acterizing its competitive ratio.

We introduce two additional policies (i.e., always prefetching policy and always fetching policy) as benchmarks.
Always Prefetching Policy (πP): Always prefetch the missed item. If the cache is full, evict the farthest-in-future
item.
Always Fetching Policy (πF): Always fetch the missed item. If the next request for the fetched item arrives before
the farthest-in-future item, then evict the farthest-in-future item and store the fetched one in cache. Otherwise, do not
load the fetched item into the cache.

πP and πF represent two extreme policies that always prefetch or fetch the missed data. To emphasize different
consequences of fetching and prefetching, we eliminate the impact of eviction by applying the optimal eviction to
both πF and πP. Notably, πF is also known as the Belady’s algorithm [38, 44], which is the optimal caching policy
when prefetching is disabled and data sizes are all identical. We will use πF and πP as benchmarks to show that a wise
combination of prefetching and fetching (e.g., policy πA) can yield better performance. Specifically, we will prove
that πA always achieves the smallest competitive ratio among the three policies.

Let cost(π, {Rn}
N
n=1) denote the accumulated cost achieved by a policy π for a given trace {Rn}

N
n=1. The competitive

ratio for a given prefetching policy π is defined as

rπ = sup
{Rn}

N
n=1

cost
(
π, {Rn}

N
n=1

)
cost

(
π∗, {Rn}

N
n=1

) ,
where π∗ represents the optimal policy. The competitive ratio evaluates the worst-case performance of a policy.
From the definition, we have rπ ≥ 1 for any policy π. Let rA, rP, rF denote the competitive ratio of the proposed
approximation policy, always prefetching policy and always fetching policy.
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Theorem 4. Given the prefetching cost c, the competitive ratios of πF , πP and πA can be computed as

rF = 1/c for c ∈ (0, 1],

rP =

1 for c ∈ (0, 1/2],
2c for c ∈ (1/2, 1],

rA =

1 for c ∈ [0, 1/2],
2c for c ∈ (1/2,

√
2/2].

In addition, for c ∈ (
√

2/2, 1], rA can be bounded as

b
b + 1

·
1
c
≤ rA ≤

1
c
,

where b is the cache size.

Proof. For compactness, we omit the term {Rn}
N
n=1 in the cost expression cost(π, {Rn}

N
n=1). The competitive ratio results

for πF , πP and πA are proven as follows.
Competitive ratio for πF:
For the πF policy, we will first show that its competitive ratio is upper bounded by 1/c. Consider a new setting where
fetching cost is the same as the prefetching cost c, 0 ≤ c ≤ 1. Let π◦ and cost◦ denote the optimal policy and the
minimum cost under the new setting. Then, for any request sequence, we have cost◦ ≤ cost(π∗). Note that there is
no additional benefits to prefetch in the new scenario. Therefore, there must exist a π◦ that always makes the same
decision as πF for the same request sequence. As a result, we have, for any request sequence

cost(πF)
cost(π∗)

≤
cost(πF)

costo =
1
c
.

Next, we will show that for any ε > 0, πF can achieve a competitive ratio larger than 1/c − ε. For a given cache
size b, assume without loss of generality that the set of items {di : 1 ≤ i ≤ b} is initially stored in the cache. Consider
the request sequence db+1, db+2, · · · , db+k, d1, d2, · · · , db. πF will choose to fetch di, for b + 1 ≤ i ≤ b + k and achieves
a cost k. In contrast, if we choose to prefetch every missed item and evict the farthest-in-future item, a cost (k + 1)c
will be introduced. Thus, we have

rF ≥
k

(k + 1)c
.

By choosing the k ≥ 1/(εc), a lower bound 1/c − ε can be achieved for ∀ε > 0. Combining the upper and lower
bounds, we prove the tight competitive ratio for πF .
Competitive ratio for πP:
For c ∈ [0, 1/2], we will show that πP is the optimal policy. Assume that R1 is a miss. A cost 1 will be induced if R1
is fetched. However, the request can be served at a lower cost 2c, if we choose to prefetch R1 and evict some cached
data saying di, and then after serving R1, prefetch di back to the cache and evict R1. Therefore, when c ∈ [0, 1/2], the
optimal policy always choose to prefetch the miss requests. Moreover, according to Theorem 2, we can conclude that
πP is the optimal policy for c ∈ [0, 1/2].

For c ∈ (1/2, 1], we will first show that rP is upper bounded by 2c. We know that πP is the optimal policy for
c = 1/2. For a given request sequence, let cost◦ denote the cost achieved by πP with c = 1/2. Then, we have, for the
same request sequence and c > 1/2

cost◦ ≤ cost(π∗) ≤ cost(πP),

and therefore

cost(πP)
cost(π∗)

≤
cost(πP)

cost◦
=

c
1/2

= 2c,
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which implies rP ≤ 2c.
Next, we will show that there exists a request sequence such that a competitive ratio 2c is achieved, if M ≥

b + 2, where M is the total number of data items and b is the cache size. Assume without loss of generality that
di, 1 ≤ i ≤ b, are initially stored in the cache. Consider a periodic request sequence that repeats the request pattern
Rb+2,R1,R2, · · · ,Rb,Rb+1,R1,R2, · · · ,Rb. πP will induce a cost 4c in each period. And the optimal policy is always
fetching the missed data, which induces a cost 2 in each period. Therefore, a competitive ratio 2c is achieved and we
can conclude that rP = 2c.
Competitive ratio for πA:
For c ≤

√
2/2, πA always makes the same decision as πP, and therefore, achieve the same competitive ratio. We have

rA =

1 for c ∈ [0, 1/2],
2c for c ∈ (1/2,

√
2/2].

For
√

2/2 < c ≤ 1, we will first show that rA is upper bounded by 1/c. According to Theorem 3, we know that if
πA decides to prefetch the missed item, then prefetching must be the optimal choice. Therefore, πA only yields worse
performance than π∗, if πA decides to fetch the missed item while π∗ decides to prefetch.

We will introduce a new policy π◦ to bound the competitive ratio. Given a request sequence, let π◦ make the same
decision as πA if the decision is optimal. However, when the decision of πA is not optimal (i.e., when πA decides to
fetch, while π∗ decides to prefetch), let π◦ prefetch the missed data without evicting any cached items. Then, after
serving the request, let π◦ evict the prefetched data. Note that π◦ breaks the cache capacity constraint and is not a
feasible solution. We will use π◦ to provide a lower bound for the cost achieved by the optimal policy π∗. Specifically,
for a given request sequence, let cost◦ denote the cost induced by π◦. We will show cost◦ ≤ cost(π∗) for any given
request sequence.

Assume without loss of generality that R1 is a miss and πA decides to fetch R1, while the optimal choice is to
prefetch. According to Theorem 2, the optimal policy π∗ will evict the farthest-in-future item Rσ and serve R1 at
a cost c. In contrast, the policy π◦ will keep Rσ in cache and serve R0 at the same cost c. Since πA chooses to
fetch R1, according to Condition C1, the next request for R1 must arrive after the farthest-in-future item Rσ. Based
on the farthest-in-future principle, the cache content of π◦ is more beneficial than that of π∗. Therefore, we have
cost◦ ≤ cost(π∗). In addition, since πA and π◦ always have the same cache content before serving each request, we
have cost(πA)/cost(π◦) ≤ 1/c, which yields

cost(πA)
cost(π∗)

≤
cost(πA)
cost(π◦)

≤
1
c
,

for any request sequence.
Next, we will show the lower bound for rA when

√
2/2 < c ≤ 1. Assume without loss of generality that {di, 1 ≤

i ≤ b} are stored in the cache initially. The lower bound can be achieved by a periodic trace that repeats the request
pattern {db+1, d1, d2, · · · , db}. πA will always choose to fetch the missed item. And the cache content under πA is also
updated periodically with period b(b + 1). For the first b(b + 1) requests, the approximation policy achieves a total
cost b, and the optimal policy is to always prefetch the missed item which yields a cost (b + 1)c. Therefore, we have
rA ≥ b/((b + 1)c).

In Theorem 4, we provide upper and lower bounds for the competitive ratio achieved by πA, as well as the exact
competitive ratios for πF and πP. Moreover, the upper and lower bounds for rA are asymptotically tight as the cache
size goes to infinity. We plot rF , rP and the upper bound of rA in Figure 7. It is easy to conclude from Theorem 4 and
observe in Figure 7 that

rA ≤ min{rF , rP} ≤
√

2,

for ∀c ∈ [0, 1]. The proposed approximation policy always achieves the smallest competitive ratio which is at most√
2 ≈ 1.414. Therefore, πA is near optimal in terms of the worst-case performance. Furthermore, in Section 8, we will

verify that πA also achieves near-optimal average performance for both synthetic and real data traces.
Note that applying πP for c ≤

√
2/2 and πF for c >

√
2/2 can achieve the same competitive ratio as πA. However,

experiments in Section 8 show that simply switching πF and πP at the threshold c =
√

2/2 will incur considerably
larger average costs than the proposed approximation policy πA.

13



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

F

P

A

Figure 7: Competitive ratios of the proposed policies

7. Discussion and Generalization

In this section, we discuss the possibility of waiving the perfect prefetching time assumption, and the generaliza-
tion of the proposed min-cost flow representation to support heterogeneous prefetching and fetching costs and variable
data sizes.

7.1. Imperfect Prefetching Time
In our previous model, a perfect prefetching time is assumed to simplify the analysis. Specifically, we assume that

the prefetched data item is loaded into the cache right before it is requested. In this section, we will argue that all the
previous results will still hold, even when the prefetched data is loaded some time ahead of the request.

Recall that R1 is the upcoming request and Rσ is the farthest-in-future item. Let {R−n}n≥1 be the sequence of
historical requests as shown in Figure 8. Define

θ = min{n ≥ 1 : R−n = Rσ}.

R−θ is the most recent request that is identical to Rσ. Assume that the policy decides to prefetch R1. We claim that,

Figure 8: Timeline for data requests.

it is equivalent to load R1 into the cache at any time point in the interval (τ−θ, τ1), as long as the farthest-in-future
eviction policy is adopted. According to the definition of θ, the farthest-in-future item is not requested in the time
interval (τ−θ, τ1). Consequently, evicting Rσ (i.e., R−θ) and loading R1 at any time between τ−θ and τ1 does not impact
the cost or the future decisions. In contrast, if R1 is prefetched and loaded into the cache before τ−θ with Rσ evicted,
then R−θ will be a miss and can incur additional costs.

Since the pre-mentioned policies (including πOPT , πA and πP) all adopt the farthest-in-future eviction, the main
results of this paper still hold, if the prefetched data is loaded into the cache in the time interval (τ−θ, τ1). Specifically,

• The proposed policies (including πOPT , πA and πP) still work. In particular, πOPT , πA and πP will first make the
decision of whether a data item should be prefetched or not. Then, we can find the τ−θ for each prefetched item
and schedule the prefetching time accordingly.

• The πOPT is still optimal, and the competitive ratio analysis for πA, πP and πF still hold, since the optimal
decision and the incurred cost will not be impacted if the prefetched data is loaded between τ−θ and τ1.
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The value of θ indicates the flexibility of choosing the prefetching time. When the requests are independently
generated from a popularity distribution, θ is a random variable that depends on the cache size and is independent
of the trace length and the prefetching cost. In Section 8, we will show that θ could be considerably large through
simulations.

7.2. Heterogeneous Costs

In the previous setting, we assume that the prefetching/fetching costs are identical for every requests. However, in
real practice, the cost to fetch a data item can depend on the traffic load and be time-varying. Similarly, the prefetching
costs may also take different values to support more flexible model settings. Our flow-based method can be easily
generalized to heterogeneous prefetching and fetching costs by setting the costs for prefetching and fetching edges
in the flow network as the corresponding values. The cycle-canceling algorithm can still find the optimal solution as
long as the costs are rational numbers.

7.3. Variable Data Sizes

For real CDN traces, data sizes can take disparate values ranging from a few bytes to gigabytes [45, 46]. The
constructed flow network can be modified to accommodate variable data sizes. Specifically, for data item, we can set
its surplus/demand and the capacities of prefetching, fetching, eviction and auxiliary edges as the data size. How-
ever, we may not be able to find the optimal policy via the min-cost flow, since it is possible that the min-cost flow
prefetches/fetches a fraction of the data item, which is not feasible for a caching policy. Instead, by leverage the
min-cost flow, we can construct the upper and lower bounds for the performance of the optimal offline policy.

The cost achieved by the min-cost flow is a lower bound for the cost achieved by the optimal policy, since fractional
solutions are allowed for the min-cost problem. Additionally, we can construct a feasible caching policy from the min-
cost flow by rounding up the fractional solution. Specifically, if a fraction of some request goes through the fetching
edge in the flow network, then we will fetch the whole item. Otherwise, we will perform the same operation as the
min-cost flow. The rounded solution is a feasible prefetching and caching policy and therefore provides an upper
bound for the performance of the optimal policy. Notably, if the lower and upper bounds coincide, the rounded
solution becomes optimal. It is shown in [15] that for caching without prefetching, the bounds are asymptotically
tight under mild assumptions. Whether similar asymptotic results hold for prefetching deserves future investigations.

8. Evaluation

In this section, we evaluate the average performance for various policies of interest using both synthetic and
real data traces. Specifically, in Experiment 1, we evaluate the policies for data requests generated from light-tailed
and heavy-tailed popularity distributions. Real CDN traces are used for evaluation in Experiment 2. Moreover, in
Experiment 3, we illustrate the amount of future information that is required by the approximation policy.

In addition to the pre-mentioned policies (πOPT , πA, πP and πF), we also simulate the optimal static policy (denoted
by πS ). The optimal static policy stores the most popular data in the cache, and will neither update the cache content
nor prefetch future requests. When the requests are generated independently from a popularity distribution, the optimal
static policy can provide a lower bound for the costs incurred by a bunch of statistic-based policies (e.g., LRU, LFU)
that only exploit data statistics and are unaware of the exact request sequence. In the following experiments, the cache
is initially empty and the data items are prefetched, fetched or evicted based on specific policies.

Experiment 1. In this experiment, we compare the average performance of the proposed policies under both
light-tailed and heavy-tailed data popularity distributions. In particular, we consider three popularity distributions with
different tails. The first one is a light-tailed exponential distribution with P[Rn = di] = c1 · exp(−0.3i), 1 ≤ n ≤ 105,
1 ≤ i ≤ 106, where c1 = 1/

∑106

i=1 exp(−0.3i) ≈ 0.3499 is a normalization factor. The second popularity distribution is
a heavy-tailed Weibull distribution with P[Rn = di] = c2 · exp(−i0.6), 1 ≤ n ≤ 105, 1 ≤ i ≤ 106, where c2 ≈ 0.8671.
The third one is a heavy-tailed Zipf’s distribution with P[Rn = di] = c3/i2, 1 ≤ n ≤ 105, 1 ≤ i ≤ 106, c3 ≈ 0.6079. For
each popularity distribution, we generate a sequence of 105 requests independently and test the proposed policies for
a cache of size 20. The average cost incurred by a request is plotted in Figure 9.

It can be observed from Figure 9a that the flow-based optimal offline policy πOPT always incurs the smallest cost,
and the proposed approximation policy πA achieves near-optimal performance. The always-prefetching policy πP
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(b) Weibull popularities.
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(c) Zipf’s popularities.

Figure 9: Average costs under different popularities.

achieves the optimal performance when c = 0.5. For c > 0.5, πP always incurs larger costs than πOPT . Note that when
c is close to 1, always prefetching can incur as high costs as the static optimal policy πS , which loses the advantage of
knowing the sample path. Moreover, the always-fetching policy πF (a.k.a. the Belady’s algorithm [38]) only achieves
the optimal performance when the prefetching cost is 1. Although πF and πA have almost the same competitive ratios
for c ∈ [

√
2/2, 1], πA achieves significantly better average performance when c < 1. Therefore, simply switching πF

and πP at the threshold
√

2/2 (≈ 0.71) can incur much larger average costs than πA and πOPT .
The same trend can be observed for heavy-tailed Weibull distributions in Figure 9b. However, the performance

difference between πA and πP are not as large as those for exponential distributions. Moreover, when the distribution
tail is even heavier (e.g., for Zipf’s popularities), both πA and πP achieve almost optimal performance as shown in
Figure 9c. An intuitive explanation is that when the popularity is heavy-tailed, the requests will be less concentrated.
As a result, it is more likely to have an unpopular data item stored in the cache, which provides a harmless eviction
opportunity for prefetching. In such scenarios, prefetching is almost always the optimal choice, and therefore, πA, πP

and πOPT could achieve similar performance.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-7

10
-5

10
-3

10
-1

Empirical popularity

Zipf's approximation
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Figure 11: Average costs under CDN trace.

Experiment 2. In this experiment, we test the proposed policies using a real CDN data trace 1. The trace contains
a million requests for 449380 distinct data items where the data sizes are set to be 1. In Figure 10, we plot the empirical
data popularities which can be approximated by a Zipf’s distribution with P[Rn = di] = 0.0313/i0.88, 1 ≤ i ≤ 449380,
1 ≤ n ≤ 106. We simulate the proposed policies for a cache of size 20000 using the request sequence in the CDN trace.
The average costs are plotted in Figure 11. It can be observed that πA and πP achieve almost the same performance as
πOPT , which coincides with the observation in Experiment 1 for Zipf’s popularities.

1The trace is originally used for evaluation and labeled as “cdn1” in [15]. We use the first one million requests in the trace.
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Experiment 3. In this experiment, we will verify that the approximation policy πA only requires near-future
information to make decisions for a single request. Let T denote the number of future requests required for making
decision for a request. We will evaluate the statistics of T under different trace lengths, prefetching costs and cache
sizes. Generate data requests from the Zipf’s popularity distribution considered in Experiment 1. Note that we omit
the experiments for exponential and Weibull distributions since the obtained results and the revealed insights are
similar. First, set c = 0.85, b = 50. We collect the statistics of T for multiple traces with different lengths. The results
are presented as box plots in Figure 12a, where the central red bar and the green “+” sign represent the median and the
mean, respectively. The top and bottom edges of the box indicate the 75th and 25th percentiles. The whiskers extend
to the extreme values within 1.5 × IQR (interquartile range) [47]. All these statistics of T do not scale with the trace
length N, which verifies the analysis in Section 6.
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Figure 12: Required information for making prefetching decisions.

Furthermore, we investigate how the cache size and the prefetching cost can impact T . Set N = 5 × 105. For a
fixed b = 50, we collect the statistics of T under different prefetching costs. The results are plotted in Figure 12b.
For a fixed c = 0.85 and repeat the experiments for different cache sizes, and present the results in Figure 12c. As we
expect, the required information will increase with the prefetching cost, since Condition C2 of πA becomes stricter
for a larger c. Moreover, T can scale considerably with the cache size, because τσ and τω will take larger values, and
the miss ratio will decrease. Consequently, more future observations are required to check whether Conditions C1
and C2 hold. For a typical scenario where the policy is applied for a fixed cache size and processes requests that keep
arriving, the future information required by πA will not scale up.

Experiment 4. It is shown in Section 7 that the main results of this paper will still hold as long as the prefetched
data is loaded into the cache in the time interval (τ−θ, τ1) for R1. And the value of θ could represent the flexibility
of choosing the prefetching time. In this experiment, we show that θ could be considerably large by evaluating its
statistics for the Zipf’s popularity distribution defined in Experiment 1. Specifically, we first set c = 0.85 and b = 50,
and conduct simulations for different trace lengths. Then, we repeat the experiment for N = 5 × 105, b = 50 and
different prefetching costs. Next, we conduct simulations for N = 5 × 105, c = 0.85 and different cache sizes.
The results are shown as the box plots in Figure 13, where the symbols represent the same statistics as those in
Experiment 3. It can be observed from Figure 13a and 13b that θ will not be impacted by the trace length or the
prefetching cost. The mean of θ is round 250, which is considerably large. Moreover, as shown in Figure 13c, θ
will increase with the cache size. For b = 250, the mean of θ could be as large as 5907, which brings even more
flexibility to choose the prefetching time. The intuition is that, for large cache sizes, the farthest-in-future item will
be less popular. And therefore, the most recent time when the farthest-in-future item was requested (i.e., τ−θ) is far in
the past.
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Figure 13: Flexibility of prefetching time.

9. Conclusion

To characterize the fundamental trade-off between prefetching and caching, we developed a cost-based service
model and investigated the optimal offline policy, assuming that the entire request sequence is known. We casted it
as a min-cost flow problem, and found the optimal policy for a data trace of length N via flow-based algorithms in
O(N3/2) expected time. To apply this offline algorithm without the precise knowledge on future requests, we utilized
the characteristics of the optimal solution and derived non-trivial conditions for an optimal prefetching and eviction
policy. Based on these insights, we proposed a lightweight approximation policy using the predicted requests in the
near future. The approximation policy can be applied in real time and process the entire trace in O(N) expected time,
with a competitive ratio

√
2 ≈ 1.4. Extensive experiments verified that it achieves near-optimal average performance

for both light and heavy-tailed popularity distributions.
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