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Abstract—Existing content caching mechanisms are predom-
inantly geared towards easy-access to content that is static
once created. However, numerous applications, such as news
and dynamic sources with time-varying states, generate ‘dy-
namic’ content where new updates replace previous versions.
This motivates us in this work to study the freshness-driven
caching algorithm for dynamic content, which accounts for the
changing nature of data content. In particular, we provide new
models and analyses of the average operational cost both for the
single and distributed edge caching scenarios. In both scenarios,
we characterize the performance of the optimal solution and
develop algorithms to select the content and the update rate
that the user(s) must employ to have low-cost access to fresh
content. Moreover, our work reveals new and easy-to-calculate
key metrics for quantifying the caching value of dynamic
content in terms of their refresh rates, popularity, number of
users in the distribute edge caching group, and the fetching and
update costs associated with the optimal decisions. We compare
the proposed freshness-driven caching strategies with bench-
mark caching strategies like cache the most popular content.
Results demonstrate that freshness-driven caching strategies
considerably enhance the utilization of the edge caches with
possibly orders-of-magnitude cost reduction. Furthermore, our
investigations reveal that the distributed edge caching scenario,
benefiting from the multicasting property of wireless service to
update the cached content, can be cost-effective compared to
the single edge caching, as the number of edge caches increases.

Index Terms—Wireless Content Distribution, Caching, Dy-
namic Content.

I. INTRODUCTION

With the wide availability of content delivery networks,
many applications utilize edge cache at end-users to deliver
dynamic contents, reducing the network latency and system
congestion during the peak-traffic time. By caching a large
number of dynamic contents in the edge caches, the average
response time can be reduced, benefiting from a higher cache
hit rates. However higher hit rates come at the expense of a
less fresh content, resulting in a higher overall system cost.

Numerous works study the content delivery in caching
systems (see [1], [2], and [3]) and effective strategies have
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been proposed [4], [5]. In [6], authors consider the problem
of video on-demand streaming through distributed caching
helpers to direct the traffic to the nearest small cell access
points using short-range links. The challenges of demand
fluctuations and storage prices are addressed in [7]. In [5]
and [8], authors study the benefits of caching with the focus
being mainly on exploiting the history or statistics of the
user demand. These works are based on the promise that the
content stored in the cache will ultimately be used (see [9],
[10] and [11]). An important factor that may greatly affect
the caching decision is the content generation dynamics.
However, these studies fail to take into consideration the
possibility of content refreshment which renders the current
version of the cached content less relevant or possibly
obsolete [12]. These types of dynamic contents include news
and social network updates where the users prefer to have
the most fresh version of the content while also making sure
that the total cost of the network remains low.

As the data gets updated in the backend databases, cur-
rently cached content at local caches becomes out of date or
stale since users are interested in the latest version of data
[13], [14]. Most caching policies, however, do not consider
the content generation dynamics and focus alternatively on
the content popularity [15]. It turns out that the content
generation rate plays a crucial role in deciding which data
to be cached and with what rate should the cached data be
updated to account for the dynamically varying content at
the data source [16]. On the other hand, most works that
consider the caching for dynamic content, focus mainly on
minimizing the miss rate [14] or minimizing the average
age of the cached content (see [17], [16]). In [18], Can-
dan, et al. propose a framework which enables dynamic
content caching for database-driven e-commerce sites by
intelligently invalidating dynamically generated web pages
in the caches. In [19], authors mention that great benefits
can be reached by incorporating the freshness in caching
but do not investigate the case due to complexity of it. In
[20], authors study a least recently used (LRU) policy for
cache management in a web browser but they suggest that
finding a good caching policy that is conscious of document
size and delay may be difficult. In [21], Chen et al. propose
LA2U and LAUD policies to implement the update rate
in caching. LA2U computes the access-to-update ratio for
the cached data items, and evicts the one with the smallest
ratio. Notably, LA2U is equivalent to least frequently used
(LFU), in the absence of content updates. LAUD works in
the same way as LA2U except that LAUD uses popularity-
to-update differences rather than access-to-update ratios to



decide which items to cache.
References that are most closely related to our work are

[22], [13] and [23]. Reference [22] studies the problem of
cache updating system with a source, a single cache, and a
user. Authors provide a maximization-based method to find
the update rates for the cache and for the user to maximize
the total freshness of the files at the user. Even though the
problem setting in [22] is similar to ours, our freshness
metric is different and our goal is to jointly minimize the
freshness cost and the cost of fetching the fresh item from
the database.

Reference [23] considers a similar model to our dis-
tributed edge caching scenario where the BS refreshes the
cached content based on AoI upon user requests. The av-
erage AoI and service delay have been derived in closed
forms, demonstrating a trade-off relationship concerning
the refreshing window size. Different from [23] where the
freshness of the local cache is measured using the AoI
metric, we use a completely new metric to measure the
freshness of content and call it Age-of-Version (AoV).

While AoI is a meaningful metric for measuring the
freshness of content in some systems, there are many real-
world scenarios where content does not lose its value simply
because of elapsed times since it put into the cache. These
types of dynamic contents include news and social network
updates where the users prefer to have the freshest version
but so long as there is no new update, that content is
considered to be the freshest version. It turns out that the
content generation rate plays a crucial role in deciding which
data to be cached and with what rate should the cached data
be updated to account for the dynamically varying content at
the data source [24]. In this work, we use our proposed fresh
metric AoV which counts the integer difference between the
versions at the database and the local caches [25], [26] and
[27]. We also introduce a new cost function for dynamic
content caching which captures both the cost due to the
missed event and the cost due to content freshness [28]
which grows with the AoV metric. Moreover, our model
utilizes the multicasting property of the wireless medium to
opportunistically update the cached contents over the edge-
caches [29] and [30].

In this paper, we focus on the design of new caching
strategies in the presence of dynamically changing data
content and provide a design framework and performance
analysis of relevant efficient caching strategies. With dy-
namically changing data content, the older content versions
lose their value at different rates. A freshness-driven caching
paradigm must account for these dynamics so as to optimally
balance the costs of caching content and the costs of serving
the content non-fresh.

In particular, we propose a freshness-driven caching al-
gorithm for dynamic content, which accounts for the update
rate of data content both for distributed edge caching and
single edge caching scenarios and provide an analysis of the
average operational cost for both cases. We aim to reveal
the gains of freshness-driven caching compared to other

basic caching strategies. Our contributions, along with the
organization of the paper, are as follows.
• In Section II, we present a tractable caching model
that utilizes distributed edge caches for serving dynamic
content over wireless broadcast channels.
• In Section III, we provide an overview of the main
findings.
• In Section IV, for a database of N data items with an

arbitrary popularity distribution that locally serves a group
of users by utilizing a single local edge cache with a
limited cache space, we propose a suboptimal caching
algorithm, Algorithm 1, that gives the cache checking and
update rate together with the set of items to be cached in
order to minimize the average system cost. We prove that
our proposed algorithm optimally minimizes the average
cost for any given cache check and update rate, and always
outperforms the traditional cache the most popular items
strategy, even with optimized cache check and update
rates.
• In Section V, using the distributed edge caches to serve
the requests of the neighbouring users, we develop an
optimal caching algorithm, Algorithm 2, that reveals the
potential benefits of the multicasting property in wireless
networks for optimal caching. We show that our proposed
algorithm always minimizes the aggregate average cost of
the system.
• In Section VI, comparing the average cost per user for
the distributed edge caching with the average cost of
the system with a single local edge cache, we highlight
scenarios in which each of these approaches are more cost
effective. Finally, we conclude the work in Section VII.

II. SYSTEM MODEL

Consider the network setup shown in Fig. 1, with a
database hosting a set N of N data items and serving groups
of users by utilizing K distributed edge caches. Each edge
cache is equipped with a limited-storage cache that can hold
M different items.

Content update dynamic: Each data item n ∈ N is
dynamically refreshed with a content refresh being sufficient
for the user to consume without the need for older content
from the same data item. Content refreshes arrive to data
item n according to a Poisson process with rate λn ≥ 0. We
consider the vector λ = (λn)Nn=1 as the collection of the
data items refresh rates.

Content popularity: Each edge cache k serves a group of
users which generate requests according to a Poisson process
with rate β ≥ 0. A generated request from any user targets
data item n with probability pn. That is, the vector p =
(pn)Nn=1 captures the popularity profile of the data items.

Channel Failure is incurred due to the unreliability of the
wireless transmission. We assume every transmission over
the wireless medium is successful with probability α > 0.
Therefore, 1 − α is the probability of channel failure. We
also assume that channel failure is independent over the K
edge caches.
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Fig. 1: Caching with freshness dynamics.

Fetching cost is incurred when the requested data is not
in the cache. When a request arrives to the edge cache for
an item that is not stored in the cache, the edge cache will
attempt to fetch the most fresh version from the database
and incur a constant cost Cf ≥ 0. As such attempts over the
wireless channel will be subject to failure with probability
1 − α, the edge cache will keep attempting until the data
item is successfully received by the user requesting that item,
incurring the cost Cf for each attempt.

Freshness cost is incurred due to the fact that the cached
content may not be the most fresh version. When a user
generates a request to a data item that is found in its
assigned edge cache, the request is fulfilled immediately
from the edge cache under a “freshness cost”. We associate
a freshness cost with such events which increases linearly
with the age of the cached content. Age is defined to be
the number of update events occurred to the content in the
database after it has been last cached at the edge cache.
Therefore, age i means that the content has been updated i
times in the database since it has been placed in the edge
cache. If the user, thus, consumes a content from the cache
with age i, the user will incur a freshness cost of i · C0,
where C0 ≥ 0 is a constant showing the freshness cost per
stale version.

Cache check and update mechanism is utilized by each
local edge cache to keep the cached content fresh. We
assume that single local edge cache employs a cache check
and update mechanism generated according to a Poisson
process with rate µ ≥ 0. The local edge cache is not aware
of the age of the cached content, unless it checks with the
database. Each checking process costs Cch ≥ 0 and if the
cached content is found to be not the most updated version,
then the edge cache will fetch the most fresh version from
the database at an additional caching cost of Cca.

Number of replicas indicates the number of times each
item has been cached among the K distributed edge caches.
Let rn be the number of replicas of item n that exist among
the K edge caches. Thus, r = (r1, ..., rN ) is the vector of
the number of times each item has been cached.

In this paper, we will study the caching strategies to
minimize the overall system cost in presence of dynamically
refreshing content which adversely impacts the caching
utility. We will investigate which items to cache and how
many items to cache, both for the distributed and single edge
caching scenarios.

Single Edge Caching concerns a single edge cache with

a limited cache space that keeps local copies of the dynamic
content for local-access. If the requested item is in the
local cache, it is directly served with the possible age-
cost described above. In order to prevent the age-cost from
dominating the overall cost, the local cache needs to check
for updates of stored content at appropriate rates. Therefore,
in this scenario, the questions of interest are which data items
are worth storing and at what rate their updates must be
checked to minimize the overall cost. We will address this
question in Section IV.

Distributed Edge Caching, in contrast, concerns the
distributed edge caches whereby each edge cache, locally
serves the requests for the dynamic content coming from
the neighbouring users. The key new component in this case
is the broadcast nature of the wireless medium whereby
transmissions of content made to one edge cache can be
received and used to opportunistically update content in
other edge cache at no additional transmission cost. This
multicasting property non-trivially couples the decisions
across the distributed cache space for optimal caching solu-
tion. In Section V, we undertake this interesting setting to
provide optimal distributed allocation strategy for minimum
overall cost.

For example, consider a football stadium filled with
people watching the game. Assume there are WiFi access
points distributed in the stadium, each serving the requests
coming from the neighboring users. As it is shown in Fig.
1, assume there are K WiFi access points, each equipped
with M -item storage capacity. The data set of N items is not
static and is continuously changing with a refresh rate vector
λ = (λn)Nn=1. For instance, users may request to watch
the video clips of the most recent tackle, which is subject
to change as a new tackle occurs and renders the previous
versions of the cached videos obsolete. This motivates us to
study the different approaches that can utilize edge caches
to serve a group of users requesting from a dynamic set
of data items. In this scenario, there are two approaches in
order to update the cached contents of each WiFi access
point. One approach is to update the cache of each WiFi
access point individually, i.e., single edge caching. The other
approach is to take advantage of the broadcast nature of
the wireless communication and use multicasting to update
the cached content of all the K WiFi access points, i.e.,
Distributed Edge Caching. Caching the most popular items
in edge caches has been proven to be a good strategy when
the data items are static [31] but what does happen if the data
items become dynamic and change over time? Of course,
in reality, the refresh rate and popularity would not be
known beforehand and they need to be learned overtime, but
our work focuses on understanding their impact on caching
decisions.

In both the local and distributed edge caching scenarios,
we prove the optimality characteristics of our proposed
caching and update strategies, and compare their gains over
natural benchmarks that do not account for the dynamic
nature of the content. In Section VI, we compare the optimal



solutions for the single and distributed edge caching scenar-
ios for equal request rates and equal cache spaces per edge
cache in order to reveal the benefits of the distributed caching
over common caching that emerges due to the dynamic
nature of the content.

III. OVERVIEW AND DISCUSSION OF MAIN FINDINGS

This section presents an overview of this paper’s main
findings and highlights the key insights on both single and
distributed edge caching. It also furnishes a review of the
impact of the popularity and refresh rate on the caching
decisions.

We explicitly characterize the performance and introduce
the following metrics for optimizing the single caching as a
function of the cache check and update rate µ (see Section
IV) and for the distributed caching as a function of the
number of replicas rn (see Section V) respectively as:

δLn (µ) =
βCf
α

pn −
βC0

αµ
pnλn −

µCca

λn − αµ
λn − µCch,

δDn (rn) =
βCf
α

pn −
C0

K − rn
λn.

In both metrics, the first term, βCf

α pn, is the popularity
related term, and the other terms are related to the refresh
rate. By investigating the proposed metrics, we can observe
the following facts:

• For the single caching, the proposed metric δLn (µ) reveals
the need for an update mechanism carried out with a
rate µ to keep the cached content fresh. On the contrary,
the distributed edge caching, benefiting from the wireless
multicast to update the cached content, relies solely on
the number of replicas of each item distributed over the
edge caches to keep the cached content fresh. Therefore,
as the number of distributed edge caches K increases,
popularity related term dominates the other term related
to the refresh rate.
• For the case of static data items with λn = 0,∀n ∈ N ,

both caching scenarios result in the cache the most popular
items strategy.
• For the case of highly dynamic data items with λn →
∞,∀n ∈ N , both metrics will be negative, preventing any
items from being cached. This is due to the high price that
should be paid to keep the cache fresh.
• For the general refresh rates, the proposed metrics ex-

plicitly indicate the effect of refresh rates together with
the popularity distribution on the caching decisions. Both
for the local and distributed edge caching, highly popular
items will yield in larger metric values and are more likely
to be cached. On the other hand, if such popular items are
also highly dynamic, the high refresh rates will reduce
the metric value, leading to such items less likely to be
cached. Furthermore, items with negative metric values
will never be cached even if there is available storage
capacity at the edge caches.
• An optimal caching strategy for the single edge caching

is achieved by jointly optimizing the cache check rate

µ together with the set of items to be cached. We
address this in our proposed algorithm, Algorithm 1. The
optimal caching strategy for the distributed edge caching
is achieved by finding the optimal number of replicas for
each item over the edge caches. We address this in our
proposed algorithm, Algorithm 2.

Comparing the cost per edge cache for the single and
distributed edge caching scenarios, we glean the following
insights:

• Less surprisingly, as the number of distributed edge
caches K or the cache update cost Cca increases, dis-
tributed edge caching outperforms the single edge caching
in the sense of the average cost per edge cache. This is
expected since single edge caching relies on the cache
update to keep its cache fresh, and this cost increases
linearly with Cca. On the other hand, distributed edge
caching, solely relying on multicast for cache update, can
reduce its cost per edge cache by providing more fresh
cached content. In particular, as the number of edge caches
increases, there would be more multicast diversity that can
be used to update the cached content with no additional
cost.
• More surprisingly, for small cache sizes M or highly

unreliable channels with α� 1, single caching is prefer-
able over distributed caching. In the single edge caching
scenario, for small cache sizes, we can keep the cached
content fresh without paying too much update cost that
linearly increases with the cache size. On the other hand,
distributed edge caching solely relying on the multicast to
keep its cache fresh will suffer more as the channel gets
unreliable.

IV. OPTIMAL CACHING AND UPDATING FOR DYNAMIC
CONTENT: SINGLE EDGE CACHING

In this scenario, edge caches are updated individually and
no other edge cache can benefit from content updated des-
tined to another cache. Therefore, we drop the dependence
on the edge cache index k, i.e., the users generate requests
with a rate of β to the edge cache. The cache size at the edge
cache is M data items. To avoid excessive freshness cost, the
edge cache employs a cache check and update mechanism
through which the edge cache generates random cache check
and update requests to check the items in the cache and
update them from the database if they have been already
refreshed in the database. We assume that the cache check
and update requests are generated according to a Poisson
process with rate µ ≥ 0. Each checking request costs an
amount Cch ≥ 0 which accounts for the communication
overhead with the database. If the content in the cache is
found to be not the most updated version, then the edge
cache will fetch the most fresh version from the database at
an additional caching cost of Cca ≥ 0 which accounts for
the resource consumption to deliver the fresh content to the
edge cache. As discussed earlier, if an older content with age
i is served from the cache, the user will incur a freshness



cost of i · C0, where C0 ≥ 0 is a constant. If the requested
data is not in the cache, the edge cache has to urgently fetch
the data from the back-end database at a higher fetching cost
of Cf ≥ 0. The checking, caching and urgent fetching costs
are constants and satisfy the relation Cch ≤ Cca ≤ Cf .

A. Problem Formulation

Let IM ⊆ N be the set of items that are stored in the
edge cache and let µ be the checking rate of cache content
for the freshness. Note that M is the caching capacity of the
edge cache and due to the high refresh rate, the user may
not necessarily fill the cache. As such |IM | ≤M .

Lemma 1: Let CLIM (µ) be the average system cost in the
single Edge Caching scenario as the edge cache stores the
set of items IM and checks the cache freshness with the
Poisson process of rate of µ. Then:

CLIM (µ) =
βCf
α

+ |IM |µCch + µCca
∑
n∈IM

λn
λn + αµ

+β
∑
n∈IM

pn

(
λnC0

αµ
− Cf

α

)
,

(1)

Proof. Let {Πn
µ(t), t ≥ 0},∀n ∈ IM be the Markov process

describing the freshness age of cached item n at time t under
a given checking rate µ. The evolution of this process is
shown in Fig. 2.
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Fig. 2: Markov chain diagram for freshness {Πn
µ(t), t ≥ 0}

under checking rate µ.

As it can be seen in Fig. 2, every arriving content update to
the item n in the database that occurs with rate λn increases
the age of that item in the cache by one. Checking and
updating the cache content will occur with rate µ and upon
occurrence, with probability α, it will move the system back
to state zero, the most fresh version, where 1 − α is the
probability of channel failure. We are interested in the limit
of Πn

µ(t)
d−−−→

t→∞
Π̄n
µ, i.e., the steady state distribution of

Πn
µ(t). Let πni (µ) = P (Π̄n

µ = i), i ∈ {0, 1, 2, . . .} be the
probability of item n ∈ IM having the age of i under the
checking rate µ, then:

πni (µ) = πn0 (µ)

(
λn

λn + αµ

)i
,∀i ∈ {0, 1, 2, . . .}. (2)

Setting
∑∞
i=0 π

n
i (µ) = 1, gives πn0 (µ) = αµ

λn+αµ . Hence, the
average age of any item n ∈ IM in the cache is given by:

E[Π̄n
µ] =

∞∑
i=0

iΠn
i (µ) =

λn
αµ

. (3)

The average system cost in the single Edge Caching
scenario as the edge cache stores the set of items IM and

checks the cache freshness with rate µ comprises four main
terms as follows:

CLIM (µ) = µ|IM |Cch +
βCf
α

(
1−

∑
n∈IM

pn

)
+µCca

∑
n∈IM

(1− πn0 (µ)) + βC0

∑
n∈IM

pnE[Π̄n
µ].

(4)

The first term in Equation (4) shows the average checking
cost for a cache capacity of M that caches the set of items
IM and updates the cache content with the rate of µ and
each checking process has a cost of Cch. The second term
in Equation (4) shows the average fetching cost for a cache
set of IM and the request arrival rate of β as a function
of miss rate β(1 −

∑
n∈IM pn). For any arrival request,

the miss probability 1 −
∑
n∈IM pn is the probability that

the requested content is not in the cache, so the content
should be fetched from the database which incurs the cost
of Cf . Due to the channel failure, fetching might not be
successful with probability 1−α. In that case, the user will
keep requesting the item, until that content is successfully
received by the user, resulting on the average number of 1

α
fetches for each miss event, each incurring the fetching cost
Cf .

The third term in Equation (4) shows the average caching
cost for a cache set of IM and checking rate of µ. For a
given µ, πn0 (µ),∀n ∈ IM is the probability that item n
in the cache is the most updated version, i.e., has age 0. So
staleness probability 1−πn0 (µ) is the probability that item n
existing in the cache is not fresh. For every checking process
that happens with rate µ, if the content in the cache is not
fresh, we cache the most updated version from the database
and put it in the edge cache which incurs the cost of Cca.

The fourth term in Equation (4) shows the average fresh-
ness cost for a cache set of IM and checking rate of µ. For
each item n ∈ IM existing in the cache, the arrival request
will be served from the cache. The arrival request of item n
is βpn and since the item with age i incurs the freshness cost
of i.C0, so the average cost of freshness will be C0E[Π̄n

µ]
which E[Π̄n

µ] is the average age of the cached item n given
in (3).

Replacing the results of Equations (2) and (3) in the cost
function given in Equation (4) completes the proof.

The cost minimization problem for the single edge
caching scenario would thus be:

min
µ≥0,IM⊆N

CLIM (µ). (5)

A traditional (suboptimal) approach to tackle the caching
problem (5) is to cache the first M most popular items.

Definition 1 (Cache the Most Popular): Define the IpK ⊆
N to be the set of M most popular items. That is,

IpM := {n ∈ N : |IpM | = M,pn ≥ pi∀n ∈ IpM , i ∈ N\I
p
M} .

Then the cache the most popular strategy will assign the
cached set of items as IM = IpM and optimizes the cache



Algorithm 1 Single Edge Caching Strategy

Input: P = (p1, ..., pN ), λ = (λ1, ..., λN ), µp, IpM
Initialization : ÎM = ∅, IOldM = IpM

1: Set µ̂ = µp

2: Compute δLn (µ̂) = βpn
α

[
Cf − C0

λn

µ̂

]
− µ̂Cch −

µ̂λn

λn+αµ̂Cca,∀n ∈ N
3: Update ÎM as follows:

ÎM = {n ∈ N : |ÎM | ≤M, δLn (µ̂) > 0,

δLn (µ̂) ≥ δLi (µ̂),∀n ∈ ÎM , i ∈ N\ÎM}.

4: while ÎM 6= IOldM do
5: IOldM = ÎM
6: µ̂ = arg min

µ≥0
CLÎM

(µ)

7: Update δLn (µ̂) from step 2.
8: Update ÎM from step 3.
9: end while

10: return µ̂, ÎM .

check and update rate as µ = µp, where

µp := arg min
µ≥0

CLIpM
(µ) .

Since the cost in (1) is convex over µ, such µp exists.
The cache most popular strategy does not consider the

content refresh rate, and the associated freshness costs.
Hence it is a suboptimal strategy. We then note that, the
optimization (5) is computationally formidable to solve as it
necessitates a discrete search process which involves finding
the jointly optimal subset of items to be cached from a large
database of N items and the best cache check and update
rate. We, therefore, investigate the design of suboptimal,
yet simpler caching strategies that account for the dynamic
content refreshing and lead to more performance merits than
the traditional cache most popular strategy.

B. Proposed Algorithm

We propose an algorithm, Algorithm 1, with a selected
set of cached items ÎM and a cached check and update
rate µ̂, based on the refreshing rate of λ and other system
parameters to minimize the expected system cost.

In particular, and as used in Algorithm 1, for item n, we
define the metric δL(λn, pn, µ) = δLn (µ) as follows:

δLn (µ) :=
βpn
α

[
Cf − C0

λn
µ

]
−µCch−

µλn
λn + αµ

Cca,∀n ∈ N
(6)

to capture the marginal cost of adding the item n to the
cache for a given µ.

Our proposed algorithm sorts the items based on δLn (µ)
and starts filling the cache with items that have the greatest
δLn (µ) and keeps adding until either all the items with
positive δLn (µ) are placed in the cache or the cache becomes
full, i.e., M items have been already cached. Then for

the new set of cached items, the algorithm computes the
corresponding optimal cache check and update rate µ̂ and
modifies the values of δLn (µ̂) based on new µ̂.

Notice that all data items with negative δLn (µ) can only
increase the average cost if cached. The metric δLn (µ) reveals
the effect of refresh rate alongside the popularity on gains
that can be achieved by caching an item. For example, if an
item has a high probability of being requested and a high
refresh rate, the high refresh rate will decrease the values
of δLn (µ) and therefore renders that item less likely to be
cached even if there is available cache storage.

C. Performance Analysis

In the following, we provide a proof of optimality for the
proposed algorithm under a given cache check and update
rate µ and show that it always outperforms the cache most
popular content strategy.

Proposition 1: For a given cache check and update rate
µ, Algorithm 1 optimally minimizes the average cost in (1).
Proof. For a given µ and the set of items IM in the cache,
if we add any item n to the cache such that n /∈ IM , then
we can write the resulting cost as:

CLIM∪{n}(µ) = CSIM (µ)− δLn (µ) ∀n /∈ IM

By induction, if we set IM = {∅} and add the item n to the
cache, the cost will decrease by −δLn (µ). If we keep adding
items n with δLn (µ) > 0, the average cost will continue to
decrease. Therefore:

CLIM (µ) = CL{∅}(µ)−
∑
n∈IM

δLn (µ)

Since the proposed algorithm at each step chooses the items
with greatest positive δLn (µ) for a given µ, it results in the
optimal solution.

Proposition 2: The proposed algorithm, Algorithm 1,
always outperforms the cache most popular strategy, i.e.,

CLÎM
(µ̂) ≤ CLIpM (µp)

Proof. We prove this by showing that in each iteration of
the proposed algorithm, the resulting average cost decreases.
Proposition 1, suggests that for a given µ, our algorithm
gives the optimal solution. At any given iteration t, we have:

CLÎM (t)
(µ̂(t)) ≥ CLÎM (t+1)

(µ̂(t)).

Since at each step we choose µ̂(t + 1) to minimize the
average cost for a given ÎM (t+1), in other words, µ(t+1) =
argmin

µ
CIM (t+1)(µ), we have:

CLÎM (t+1)
(µ̂(t)) ≥ CLÎM (t+1)

(µ̂(t+ 1)).

Combining the two equations gives:

CLÎM (t)
(µ̂(t)) ≥ CLÎM (t+1)

(µ̂(t+ 1)),

which shows at each iteration, the proposed algorithm re-
duces the cost. Since we start the algorithm with µ̂(1) = µp



 

Fig. 3: Average cost reduction by the proposed algorithm
over the cache the most popular for the single edge caching.

and ÎM (1) = IpM , so the proposed algorithm always
outperforms cache the most popular strategy.

We next investigate the efficiency of our algorithm com-
pared to cache the most popular strategy.

D. Numerical Investigation

We let the total number of data items be N = 103, data
items’ popularity be pn = c/nγ with γ = 1 and content
refresh rates be λn = λ/nz , for some z ≥ 0. We consider
the normalized costs of fetching, checking, caching and
freshness to be Cf = 1, Cca = 0.1, Cch = 0.05, C0 = 0.01.

Setting the cache size M to be 100, α = 0.9 and β = 5,
we compare the average cost achieved by the proposed
algorithm, Algorithm 1, and the average cost of cache the
most popular items strategy under the same system variables
declared above. We adopt the percentage cost reduction
of our proposed algorithm to the cache the most popular
strategy’s cost as our performance metric. Such a metric is
defined as:

Cost Reduction(%) = 100×
CLIpM

(µp)− CLÎM (µ̂)

CLIpM
(µp)

.

The percentage cost reduction is depicted in Fig. 3. The
figure shows substantial gains (between 50− 90% reduction
in the cost) compared to the predominant popularity-based
design, are achievable with our proposed preliminary design.
It also reveals that the gains become more substantial as the
refresh rate of different items becomes more non-uniform
and the more popular items become highly dynamic (as the
parameter z increases).

Note that adding storage capacity to edge caches is not
always an effective way to reduce the average system cost,
specially in presence of highly dynamic content.

E. Analytical Investigation For Uniform Popularity and Re-
fresh Rate

While uniform popularity and symmetric update rate are
not common, they facilitate closed-form analysis which
reveals performance insights. In such scenario, the local edge

cache serves the users requesting from a set of N data items
with uniform popularity, i.e., pn = 1

N ,∀n ∈ N and same
refresh rate over all the items, i.e., λn = λ,∀n ∈ N .

The following Proposition shows the optimality of our
proposed algorithm, Algorithm 1, when applied to the set
of data items with uniform popularity and constant refresh
rate.

Proposition 3: For the case of uniform popularity and
refresh rate, Algorithm 1 converges to the optimal solution in
just one step, where the local edge cache stores the optimal
set of items I∗M and checks their freshness with the optimal
rate µ∗ such that:

µ∗ = − λ

2α
+ S +

1

2

√
−4S2 − 2p+

q

S
, (7)

|I∗M | =
{
M, δL(µ∗) > 0,
0, δL(µ∗) ≤ 0,

(8)

where p = λ2

α2

(
Cca

Cch
− 1

2

)
, q = λ3

α3
Cca

Cch
− λ2

α2
βC0

4NCch
and S =

1
2

√
− 2

3p+ 1
3

(
Q+ ∆0

Q

)
such that Q =

3

√
∆1+
√

∆2
1−4∆3

0

2 ,

∆0 = λ4

α4

(
Cca

Cch
+ 1
)

and ∆1 = 2 λ
6

α6

(
Cca

Cch
+ 1
)3

+

λ5

α5

(
108βC0Cca

NCch

)2

, and δL(µ) is given by:

δL(µ) =
βCf
αN

− µCch −
µλ

λ+ αµ
Cca −

βC0λ

Nαµ
.

Proof. According to Lemma 1, for the case of uniform
popularity and λ constant, the average system cost as the
edge cache stores the set of items IM and checks the cache
freshness with rate µ is given by:

CLIM (µ) =
βCf
α

(1− |IM |
N

) + |IM |µCch +
|IM |βC0λ

Nαµ

+|IM |µCca
λ

λ+ αµ
,

Solving the cost minimization in Equation (5) for the case
of uniform popularity and λ constant will give the optimal
µ∗ as (7). Under such µ∗ the marginal cost reduction by
adding each item to the cache is −δL(µ∗) where δL(µ) is
given in Equation (6) for the general case. Our proposed
algorithm, Algorithm 1, starts filling the cache until either
all the items with positive δLn (µ) are placed in the cache
or the cache becomes full, i.e., M items have been already
cached. Since for the case of uniform popularity distribution
and λ constant, we have δLn (µ) = δL(µ),∀n ∈ N , so for
the optimal checking rate µ∗, either δL(µ∗) > 0 where the
proposed algorithm has decided to fill the cache by choosing
M of the data items to be placed in the cache, or δL(µ∗) ≤
0 where the proposed algorithm has decided to not cache
any items, since it can only increase the average system
cost. This gives the optimal set of cached items given in
the Equation (8). As can be seen from Equation (7), for the
case of uniform popularity with λ constant, optimal cache
checking rate µ∗ is independent of the set of cached data



items IM and therefore Algorithm 1 converges to µ∗ in just
one step. This completes the proof.

To further elaborate on the results of the Proposition 3, we
consider a special case when λ

α is considerably large. This
can happen when the set of data items is highly dynamic,
i.e., λ → ∞ or the communication channel becomes very
unreliable, i.e., α→ 0, or a combination of the two. Under
any of these scenarios, the optimal checking rate µ∗ given
in (7) can be approximated as:

µ∗ ≈

√
βC0λ

Nα (Cca + Cch)
.

This approximation clearly shows the effect of system
parameters on the optimal checking rate. Assuming that
for the given parameters, δL(µ∗) is positive (i.e., λ <

βC2
f

4C0(Cca+Cch)αN ), the average cost of a single user with
M ≤ N cache capacity requesting of a set of items with
uniform popularity and refresh rate is given by:

C∗ (µ∗) =
βCf
α

(
1− M

N

)
+ 2M

√
βC0λ (Cca + Cch)

Nα
,

where C∗ (µ∗) shows a linear cost reduction as the cache
capacity M increases. Thus, the minimum achievable cost
by the single user caching system is reached when M = N
and is given by 2√

α

√
βC0λN(Cch + Cca).

V. OPTIMAL CACHING AND UPDATING FOR DYNAMIC
CONTENT:DISTRIBUTED EDGE CACHING SCENARIO

Consider the scenario shown in Fig. 1, with K edge
caches. To gain a clear insight of the potential wireless
multicasting gain and how distributed caching can relate to
the single edge caching scenario with a cache of size M , we
assume that each edge cache in the distributed edge caching
scenario has also the capacity to cache M of the date items.

In this section, we investigate what items to be cached
and how should the cached items be replicated over the set
of edge caches. In the distributed edge caching scenario,
due to the broadcast capability of wireless service, it is not
necessary to employ a cache check and update mechanism as
is the case in the single edge caching scenario. Instead, edge
caches that have a certain item in their cache can update it
for free if another edge cache that does not have it, requests
its most fresh version from the database.

Let r = (r1, ..., rN ) be the vector of the number of
times each item has been cached among the K edge caches.
In other words, rn is the number of replicas of item n
that exist in the edge caches. Also recall that C0 is the
freshness cost per an age unit. As the age of a cached content
increases, the freshness cost grows linearly. The average cost
of urgently fetching a data item from the database is Cf and
the freshness cost of consuming an item from the cache is
i.C0 where i is the age of the cached content.

A. Problem Formulation

For K edge caches, each equipped with M cache, let r =
(r1, ..., rN ) be the vector of replication. Define the feasible
set of solutions as:

FMK =

{
r = (r1, . . . , rN ) |

N∑
n=1

rn ≤ KM, rn ∈ {0, 1, . . .}

}
,

where KM is the total cache available in the system.
Lemma 2: Let CD(β, r) be the average expected system

cost in the Distributed edge caching scenario with K edge
caches and request arrival rate of β under vector of replica-
tion r ∈ FMK . Then:

CD(r) =
KβCf
α

+

N∑
n=1

rn

(
C0λn
K − rn

− βpnCf
α

)
. (9)

Proof. Let {Πn
rn(t), t ≥ 0}, ∀n ∈ N be the Markov

process describing the freshness age of cached item n at
time t under the number of replicas rn. The evolution of
this process is shown in Fig. 4. As discussed earlier, in the
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Fig. 4: Markov chain diagram for freshness {Πn
rn(t), t ≥ 0}

under the number of replicas rn.

distributed edge caching scenario, the broadcast capability
of wireless service acts as a natural update mechanism. In
other words, edge caches update their cached content for
free by overhearing that content while being served to other
edge caches who do not have it in their cache. For any item
n in the cache, since there are K edge caches and rn of
them have item n in their cache, so the remaining K − rn
edge caches don’t have the item n stored in their cache. Each
request for item n from these edge caches will result in a
miss event and trigger fetching which can be overheated by
the other edge caches to update their cached content of item
n. Therefore, the service rate of item n for any of the edge
caches that have it in their cache is equal to βpn(K−rn)

α .
Notice that because of the channel failure, each fetching is
successful with probability α and the edge cache will keep
fetching the requested item until it is successfully received,
resulting in the average number of 1

α fetches for each miss
event. As it can be seen in Fig. 4, every service of item n
acts as an update mechanism for the edge caches that hold
item n in their cache and upon occurrence, the service of
item n from the database, with probability α of successful
communication, will move the system back to state zero, the
most fresh version. Giving the rate αβpn(K−rn)

α = βpn(K−
rn) to state zero. Every arriving content update to the item
n in the database that occurs with rate λn increases the age
of that item in the cache by one.



Letting Πn
rn(t)

d−−−→
t→∞

Π̄n
rn and using the steady state

distribution of Πn
rn(t), define πni (rn) = P (Π̄n

rn = i), i ∈
{0, 1, 2, . . .} be the probability of item n having the age of
i under the number of replicas rn. Then the average age of
item n is given by:

E[Π̄n
rn ] =

λn
βpn(K − rn)

. (10)

The average system cost in the Distributed edge scenario as
K edge caches store according to the vector of replication
r = (r1, ..., rN ) ∈ FMK , comprises two main terms and is
given by:

CD(r) =
βCf
α

(
K −

N∑
n=1

rnpn

)
+ βC0

N∑
n=1

pnrnE[Π̄n
rn ].

(11)

The first term in Equation (11), shows the average fetching
cost for any r ∈ FMK and request arrival rate β as a
function of miss rate β

(
K −

∑N
n=1 rnpn

)
. For any of the

K edge caches, if a requested item is in the edge cache of
the user requesting that item, it will be immediately served
from the cache with the freshness cost, otherwise it will be
fetched from the database and the urgent fetching cost Cf
is incurred. Fetching will be successful with probability α
and we will keep fetching until the data item is successfully
received by the user requesting that content, resulting on the
average number of 1

α fetches for each miss event. Since there
are rn edge caches that have item n in their cache, K − rn
edge caches will not have item n in their cache. Therefore,
the miss rate for item n is βpn(K − rn). Summing over all
the N items and remembering that r ∈ FMK , gives the total
miss rate as β

(
K −

∑N
n=1 rnpn

)
.

The second term in Equation (11), shows the average
freshness cost for any r ∈ FMK and request arrival rate of
β. For each item n in the cache, the arrival request rate
is βpn and since the item with age i incurs the cost of
i · C0, so the average cost of freshness for item n will be
C0E[Π̄n

rn ]. Since rn is the number of users having item n
in their cache, the total freshness cost incurred by item n is
given by βpnrnC0E[Π̄n

rn ]. Summing over all the items gives
the total freshness cost of the system. Substituting Equation
(10) in Equation (11) gives the average cost of the system.

Our objective is thus to choose the content to be stored
at the edge caches in order to minimize the average cost of
system, that is:

arg min
r∈FM

K

CD(r). (12)

The traditional cache the most popular strategy in this
context reduces to caching the KM most popular items1 to
the users’ caches, M items per edge cache.

1Note that caching the same item at all users (i.e., setting rn = K for
some n ∈ N , rj = 0 , ∀j 6= n) can only result in an infinite cost due
to the fact that the item cached will never be requested from the database
yielding a freshness cost that grows indefinitely.

Algorithm 2 Distributed Edge Caching Strategy

Input: p = (p1, ..., pN ), λ = (λ1, ..., λN ),K
Initialization : r∗n = 0 ∀n ∈ N

1: Calculate δDn (r∗n) =
βpnCf

α − KC0λn

(K−r∗n)(K−r∗n−1) ∀n ∈
N .

2: j = arg max
n∈N

δDn (r∗n)

3: while δDj (r∗j ) > 0 and
∑N
n=1 r

∗
n < KM do

4: r∗j = r∗j + 1
5: update δDj (r∗j ) from Step 1.
6: update j = arg max

n∈N
δDn (r∗n)

7: end while
8: return r∗ = (r∗1 , . . . , r

∗
N )

Definition 2 (Cache the Most Popular): Define the
IpK,M ⊆ N to be the set of KM ≤ N most popular items.
Then cache the most popular strategy for the K edge caches,
each with M caching capacity, is given by:

rpn :=

{
1, n ∈ IpK,M ,
0, n ∈ N \ IpK,M ,

with rp := (rp1 , ..., r
p
N ).

Such strategy does not consider the freshness of items, yet
we address the question of whether the system can achieve
better performance through lower cost.

B. Proposed Algorithm

We propose Algorithm 2 based on the data items refresh
rate λ to solve (12).

In particular, as it can be seen in Algorithm 2, for item
n, we define the metric δD(λn, pn, l) = δDn (l) as follows:

δDn (l) :=
βpnCf
α

− KC0λn
(K − l)(K − l − 1)

∀n ∈ N . (13)

The metric −δDn (l) captures the marginal cost of adding
item n to the caches given that l of the edge caches have
already cached item n. Our proposed algorithm, at each
step, sorts the items based on δDn (l), caches the item with
the maximum δDn (l) and iterates until either all the items
with positive δDn (l) are cached or no more edge caches
are available to cache more items (i.e., no available cache
storage). Complexity of proposed algorithm is similar to the
sort algorithm.

Notice that items with negative δDn (l) can only increase
the average cost if cached. Similar to single edge caching
scenario, δDn (l) reveals the effect of refresh rate alongside
the popularity on gains that can be achieved by caching an
item.

C. Performance Analysis

In the following, we provide a proof of optimality for the
proposed caching algorithm by showing that r∗ satisfies all
the necessary conditions for optimality.



Theorem 1: Algorithm 2 solves the problem (12) opti-
mally.
Proof. We start the proof by first discussing the necessary
conditions for the optimal solution.

Lemma 3 (Necessary conditions for optimality): Any
optimal solution r̄ = (r̄1, . . . , r̄N ) to the problem defined
in Equation (12) must satisfy all the following conditions.

δDn (r̄n − 1) ≥ 0 ∀n ∈ N , with r̄n > 0, (14)

δDn (r̄n − 1) ≥ δDj (r̄j) ∀j 6= n, with r̄n > 0, (15)

N∑
n=1

r̄n = KM or δDn (r̄n) < 0 ∀n ∈ N . (16)

Proof. We use contradictions to prove that all the three
conditions are necessary for the optimal solution.

To prove that Equation (14) is necessary for optimality, we
use contradiction. Assume that Equation (14) does not hold,
so there exists j ∈ N with r̄j > 0 such that δDj (r̄j−1) < 0.
Then construct r = r̄− ej , where r ∈ FK and we have that
CD(r) = CD(r̄) + δDj (r̄j − 1). Since δDj (r̄j − 1) < 0, so
CD(r) < CD(r̄) which contradicts the fact that r̄ was the
optimal solution.

To prove that Equation (15) is necessary for optimality,
assume that there exist n, j ∈ N such that δDn (r̄n − 1) <
δDj (r̄j). Then construct r = r̄− en + ej , where r ∈ FK and
we have that CD(r) = CD(r̄) + δDn (r̄n − 1) − δDj (r̄j). So
there exists r ∈ FK with CD(r) < CD(r̄) which contradicts
the fact that r̄ was the optimal solution.

To prove that Equation (15) is necessary for optimality,
assume that

∑N
n=1 r̄n < KM and j ∈ N such that

δDj (r̄j) > 0. Construct r = r̄ + ej , where r ∈ FK and we
have that CD(r) = CD(r̄)− δDj (r̄j). Since δDj (r̄j) > 0, so
there exists r ∈ FK with CD(r) < CD(r̄) which contradicts
the fact that r̄ was the optimal solution.

Now we prove that any solution r ∈ FK to the opti-
mization problem defined in Equation (12) that satisfies all
the necessary conditions for optimality given in Lemma 3,
results in the same average cost.

Lemma 4: Any solution r ∈ FK satisfying the Equations
(14), (15) and (16) will result in the same average cost.
Proof. To prove the lemma, we show that for any r̄ ∈ FK
and arbitrary a = (a1, . . . , aN ) such that r = r̄+a if both r
and r̄ satisfy the conditions of Lemma 3, then either a = 0
or CD(r) = CD(r̄). Assume a 6= 0, we consider two cases
separately.

Case 1: if δDn (r̄n) < 0 ∀n ∈ N , then if there exists j such
that aj > 0, we have that:

δDj (rj − 1) = δDj (r̄j + aj − 1) < δDj (r̄j)

So Equation (14) does not hold for r, which is a contra-
diction. Hence an ≤ 0 ∀n ∈ N . If an = 0 ∀n then the
problem is solved, but if there exists j such that aj < 0,
then we have:

δDj (rj) = δDj (r̄j + aj) ≥ δDj (r̄j − 1) ≥ 0. (17)

According to Equation (16),
∑N
n=1 rn = KM should hold

for r, but
∑N
n=1 rn =

∑N
n=1 r̄n +

∑N
n=1 an < KM , since∑N

n=1 r̄n ≤ K and
∑N
n=1 an < 0, which is a contradiction.

Case 2: If δDn (r̄n) < 0 does not hold for all n ∈ N ,
then according to Equation (16),

∑N
n=1 r̄n = KM should

hold. Since
∑N
n=1 rn =

∑N
n=1 r̄n +

∑N
n=1 an ≤ KM , then∑N

n=1 an ≤ 0. If an ≤ 0 for all n, then in order to have a 6=
0, there exists j ∈ N with aj < 0 such that Equation (17)
holds. Now, from Equation (16),

∑N
n=1 rn = KM should

hold for r, but since
∑N
n=1 an < 0, it is not possible. So

if there exists j ∈ N with aj < 0, there must exist v ∈ N
with av > 0 such that

∑N
n=1 an = 0 since we should have∑N

n=1 rn = KM as shown before. Since r satisfies all the
necessary conditions of Lemma 3, Equation (15) holds for
r over v and j.

δDv (r̄v) ≥ δDv (r̄v + av − 1) ≥ δDj (r̄j + aj) ≥ δDj (r̄j − 1).

Now if δDv (r̄v) > δDj (r̄j − 1), the condition of Equation
(15) does not hold for r̄ which is a contradiction and if
δDv (r̄v) = δj(r̄j − 1), construct the r = r̄ + ev − ej . Then
CD(r) = CD(r̄) − δDv (r̄v) + δDj (r̄j − 1) = CD(r̄). which
completes the proof.

The solution reached by Algorithm 2 satisfies all the
necessary conditions in Lemma 3 and according to Lemma
4, such a solution is optimal.

It is worth noting that the cache allocation strategy for the
distributed edge caching scenario supported with wireless
multicasting can lead to some edge caches storing less
popular items than those cached at other edge caches. Such
a diversity in cached iterms’ popularities empowers the need
for requests from the database which in turn brings the most
recent version of content to the edge caches for free, thanks
to wireless multicasting.

Knowing that the proposed algorithm, Algorithm 2, gives
the optimal solution, we investigate its performance merits
compared to other basic caching strategies like cache the
most popular strategy.

D. Numerical Investigations

Using the same parameter values defined in Section III.D
with z = 1, α = 0.9 and changing the number of users
K, we set the performance metric to be the percentage cost
reduction of our proposed algorithm, Algorithm 2, to cache
the most popular strategy’s cost. Define:

Cost Reduction(%) = 100× CD(rp)− CD(r∗)

CD(rp)
,

The percentage cost reduction is depicted in Fig. 5. The fig-
ure shows considerable gains compared to the predominant
popularity-based design are achievable with our proposed
preliminary design. It also reveals that the gains become
more substantial as the number of edge caches increases,
reveling that the proposed algorithm, Algorithm 2, can more
effectively incorporate the broadcasting gain to reduce the
cost. It also reveals that the gain increases as the cache



 

Fig. 5: Average cost reduction by the proposed algorithm
over the cache the most popular for distributed edge caching.

capacity per edge cache increases. Also as the refresh rate
of different items decreases, with less edge caches we can
achieve higher gains, benefiting more from the multicasting
gain.

E. Analytical Investigation For Uniform Popularity and Re-
fresh Rate

While uniform popularity and symmetric update rate are
not common, they facilitate closed-form analysis which
reveals performance insights. In this scenario, the local edge
cache serves the users requesting from a set of N data items
with uniform popularity, i.e., pn = 1

N ,∀i ∈ N and same
refresh rate over all the items, i.e., λn = λ,∀n ∈ N .

Proposition 4: The average cost per edge cache of a
system shown in Fig. 1 comprising of K edge caches each
equipped with M ≤ M∗ cache requesting of a data set of
N items with uniform popularity and constant refresh rate,
is given by:

CD (r∗) /K = C0λ
NM

K(N −M)
+
βCf
α

(
1− M

N

)
, (18)

where we have assumed that KM
N ∈ {0, 1, 2, . . .} and the

optimal storage capacity per edge cache M∗ is given by:

M∗ = max{M ∈ Z+|M ≤ N(1−

√
C0λNα

KβCf
)}.

Notice that M∗ is the maximum storage capacity per edge
cache that can be used by the distributed edge caching
system to reduce the average cost and if storage per edge
cache M > M∗, the proposed Algorithm 2 that optimally
minimizes the cost will not use the extra cache, since doing
so can only increase the average system cost.

Proof. Total average cost of the system shown in Fig.
1 with K edge caches each with M storage is given in
Equation (9). Assuming that KM

N ∈ {0, 1, 2, . . .}, then
applying Algorithm 2 will give r∗n = KM

N ,∀n ∈ N .
Finally, dividing the total average cost by the number of
distributed caches K gives the average cost per edge cache.
The average cost per edge cache given in the Equation (18)
is a convex function of the cache capacity per edge cache M .

Minimizing over M and considering that cache capacity can
only be an integer will give us the optimal storage capacity
per edge cache M∗ under the above assumptions.

According to Proposition 4, the average cost per edge
cache for the distributed edge caching scenario is minimized
when each edge cache has at least M∗ storage capacity.
Assuming that N(1 −

√
C0λNα
KβCf

) ∈ Z+, the minimum
achievable cost per edge cache by the distributed edge

caching system is given by 2
√

βCfC0λN
αK − C0λN

K .

VI. NUMERICAL RESULTS

We also compare the average cost of the single edge
caching with the distributed edge caching scenario. Run-
ning Algorithm 1 for the single edge caching scenario
and Algorithm 2 for the distributed edge caching scenario,
with CLÎK (µ̂) and CD(r∗)/K representing the average cost
per edge cache for single and distributed edge caching
scenarios, respectively. Setting the performance metric to be
the percentage cost reduction per edge cache for distributed
edge caching scenario compared to the single edge caching
scenario’s cost, we define:

Cost Reduction(%) = 100×
CLÎK

(µ̂)− CD(r∗)/K

CL
ÎK

(µ̂)
.

Note that the positive percentages of cost reduction means
that cost per edge cache for the distributed edge caching is
smaller than the single edge caching.

We let the total number of data items be N = 1000,
data items’ popularity be pn = c/nγ with γ = 1 and
content refresh rates be λn = λ/nz with z = 1. We
consider the normalized costs of fetching, checking, and
freshness to be Cf = 1, Cch = 0.1, C0 = 0.01. Varying
the following parameters: cache storage per edge cache M ,
normalized caching cost Cca and the number of edge caches
K, we compare the average cost per edge cache achieved by
Algorithm 2 for the distributed edge caching, and the average
cost of a single edge cache performing under the Algorithm
1. We assume all the edge caches have the same cache space
to store M items in their cache. In the following we show the
effect of these parameters on the performance of distributed
edge caching compared to the single edge caching.

Fig. 6 shows the percentage cost reduction for different
caching capacity M as a function of the cache update cost
Cca for the single edge caching. According to the figure,
for small cache sizes, single cache outperforms distributed
caching in the sense of average cost per edge cache, but as
the cache update cost Cca grows, distributed edge caching,
benefiting more through the multicasting property, will out-
perform the single edge caching. This is due to the fact that
the single edge cache depends on the Cca to keep its cached
contents fresh. Therefore, as Cca increases, the single edge
cache needs to pay more cost to maintain a fresh cache. Also,
as the number of cache capacity M increases, there are more
cached items that need to be checked and updated, and as
any such update will incur a cost Cca, the single edge cache



 

Fig. 6: Average cost reduction per edge cache by K = 3
distributed caching with α = 1.

 

Fig. 7: Average cost reduction per edge cache by distributed
edge caching with α = 1 and Cca = 0.1.

performance will fall behind the distributed edge caching
performance that can benefit free updates by utilizing the
multicast nature of the wireless communication.

Fig. 7 shows the percentage cost reduction for different
caching capacity M as a function of the number of dis-
tributed edge caches K. According to the figure, for small
number of available edge caches, single cache outperforms
distributed caching in the sense of average cost per edge
cache. This is due to the fact that the distributed edge caches
solely rely on multicast to keep their cache fresh, and if the
number of edge caches is small, there would not be enough
multicast diversity to update the cached content, this will
result to increase in the freshness cost and edge caches may
decide not to cache items to keep the average cost low,
resulting in unutilized cache space. But as the number of
edge caches K increases, due to the increased diversity, there
will be enough multicast to keep the cached content fresh.
Therefore, distributed edge caching will always outperform
the single edge caching as the number of edge caches K
increases. The performance gap will further grow larger as
the number of cache capacity per edge cache M increases.
Because the single edge cache, solely depending on the
cache update cost Cca to keep the cached content fresh, will
struggle to keep its cache fresh as the number of cached
items increases.

Fig. 8 shows the percentage cost reduction for different
numbers of edge caches K as a function of cache space
per edge cache M . According to the figure, if the cache

 

Fig. 8: Average cost reduction per edge cache by distributed
edge caching with α = 1 and Cca = 0.1.

 

Fig. 9: Average cost reduction per edge cache by K = 5
distributed edge caching with Cca = 0.1.

per edge cache M and the number of edge caches K,
both are small, the single cache outperforms distributed
caching in the sense of average cost per edge cache. But as
any of these parameters increases, distributed edge caching,
benefiting more from the multicast, becomes more cost
effective. Increasing K, introduces more diversity to the
distributed edge caching scenario and therefore lowers the
average cost per edge cache, while the single edge caching
performance does not depend on K. On the other hand, as
the cache capacity per edge cache M increases, there would
be more cached items that need to be updated frequently.
While distributed edge caching scenario can use multicast
to update their cache, the single edge cache will have to
spend the average updating cost Cca for each cache update.
Therefore, updating cost for the single edge cache can add
up as the cache capacity per edge cache increases, since
there would be more items that need to be kept fresh.

Fig. 9 shows the percentage cost reduction for different
caching capacity M as a function of the probability of
successful communication α. According to the figure, for
small values of α when the channel is unreliable, the single
edge caching outperforms the distributed edge caching.
Moreover, for extremely unreliable channels, as the cache
capacity per edge cache M increases, the performance gap
grows. But as the α increases and channel becomes more
reliable, distributed edge caching outperforms the single
edge caching. This is due to the fact that distributed edge
caching depends on the successful multicast communication



 

Fig. 10: Average cost of distributed edge caching per edge
cache.

to update the cache and as the channel becomes less reliable,
its performance will suffer more compared to the single edge
caching.

To show the practicality of our proposed algorithms, we
use an extensive set of real-world data, namely the data
set of the BBC iPlayer [32], [33], [34], to obtain realistic
video demand distributions. The BBC iPlayer is a video
streaming service from BBC that provides video content
for several BBC channels without charge. Content on the
BBC iPlayer is available for up to 30 days depending
on the policies. We consider the dataset covering June
2014, which includes 192,120,311 recorded access sessions,
resulting in request rates βt = 74.1205 requests per second.
The number of files according to the iPlayer database is
larger than n = 10000. According to [35], the popularity
distribution of video files of the BBC iPlayer requested by
the users in June 2014 can be approximated by the Zipf
distribution with parameter z = 0.86. We also assume that
the content of the dataset have refresh rates according to
λn = λ/nz [22] with parameter z = 0.86. We consider
the normalized costs of fetching, checking, and freshness to
be Cf = 1, Cch = 0.1, C0 = 0.01. Finally, we consider
K = 20 edge caches deployed over the system where each
serves the fraction β = βt

K = 3.7 requests per seconds,
and each edge cache is equipped with M = 20 storage
capacity. We aim to conduct a simulation using the data
set of the BBC iPlayer to compare our proposed Algorithm
with the dynamic caching schemes proposed in [23] and
[22]. We modify the AoI-based caching scheme proposed
in [23] which does not consider the λ and the freshness
maximization scheme proposed in [22] which considers the
λ, to fit into our system model and use similar parameters
to do the comparison.

Fig. 10 shows the average cost of distributed edge caching
per edge cache as a function of refresh rate λ for channel
success probability α = 0.9. According to the figure, if
the items are almost static, all caching strategies have the
same performance, but as the items become more dynamic,
our proposed algorithm outperforms both the AoI-based
scheme and freshness maximization scheme. The reason is
that the AoI-based scheme uses AoI as a freshness metric
where items lose their freshness with the same rates simply

because of the elapsed times since they last receive any
updates. It also fails to consider that different item lose
their freshness at different rates. On the other hand, the
freshness maximization scheme only focuses to maximize
the freshness of cached items, failing to consider the fetching
costs associated with miss events. Whereas, our proposed
algorithm uses AoV as a freshness metric where items
do not lose their freshness simply by elapsed times, and
different items can have different refresh rates. It also takes
into account the fetching cost and attempts to maximize
the freshness while also minimizing the fetching cost by
considering the trade-off between freshness and fetching
costs. As the refresh rate increases, the performance gap
between our proposed algorithm and the previously men-
tioned dynamic caching schemes increases. Our simulation
results also confirm that as the wireless channel becomes
more reliable, the performance gap increases.

VII. CONCLUSION

In this work, we have proposed caching algorithms for
wireless content distribution networks serving dynamically
changing data content such as news updates, social network
stories, and any other system with time-varying states.
We have developed a design framework together with the
performance analysis for efficient freshness-driven caching
strategies. We have characterized the average operational
cost both for the single and distributed edge caching sce-
narios. Our results have revealed that, in the presence of
dynamic content, adding more cache space to edge caches
may solve the system congestion problem at the expense of a
high freshness cost. In the distributed edge caching scenario,
as the number of edge caches increases, our proposed
algorithm benefits more from the multicasting property as
a mechanism to update the cache content and outperforms
single edge caching. Our results have also demonstrated that
freshness-driven design considerably reduces the average
cost and optimizes the cache space more effectively than
the predominant existing strategies such as cache the most
popular content.
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