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Identification and Asymptotic Localization of
Rumor Sources Using the Method of Types

Himaja Kesavareddigari1, Sam Spencer2, Atilla Eryilmaz1, and R. Srikant2

Abstract—We are interested in identifying a rumor source on a tree network. We begin with extended star networks under the SI
infection model with exponential waiting times. We present and analyze the types center, a highly tractable approximation of the ML
source estimate, obtained using the method of types. We empirically show that this approximate ML estimator is exact for some small
test cases. We prove that the approximation error is at most logarithmic in infection size on large networks, providing highly efficient
source identification (especially compared to the accuracy in similar problems, such as the O(

√
n) best possible accuracy estimate in a

line network). We also show that the qualitative properties of the types and rumor centers are different on extended star networks.
We further propose a heuristic-based generalization of this approach to trees: the relative-leaf counting algorithm. In simulations on
regular and non-regular trees, types center’s performance is competitive with rumor centrality (which is optimal for d-regular trees),
while requiring less computation time. In addition to providing a faster (and sometimes more accurate) alternative on its own, our
approach could potentially be used with rumor centrality to improve results with less than twice the total computation time.

Index Terms—Network problems, Probability and Statistics, Symbolic and algebraic manipulation, Performance evaluation of
algorithms and systems, Heuristic design, Graph and tree search strategies, Trees
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1 INTRODUCTION

The propagation of infections in contagion networks is
an important problem that arises in many different contexts.
Processes such as information dissemination via rumors,
creation of cultural fads, spread of computer viruses, and
similar phenomena can be studied by modeling one or more
infections on a graph of the underlying connections.One
longstanding class of problems (dating back at least as far
as epidemiological studies of the London cholera epidemic
of 1854) is the identification of infection sources and their
effect on subsequent propagation.

Due to the large number of nodes and connections that
are typically present in such networks, source identifica-
tion must be computationally efficient. In current literature,
the source identification problem has been studied under
varying assumptions about the infection process, the class
of graphs, the number of sources, and the information
available regarding the infection state.

Literature discussing centrality measures such as the
Jordan center and rumor center are relevant in the context
of this work. In particular, [1] proposes the rumor central-
ity measure which is proven to be optimal for d-regular
trees. Rumor centrality and its implementation through the
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message-passing algorithm proposed in [1] are, therefore,
a natural point of comparison for the approaches that we
propose in this paper.

The accuracy of rumor centrality as an ML estimator
for various graph classes is discussed in [1], [2], [3], [4] for
the SI (susceptible-infected) infection model. On the other
hand, the universality of the Jordan center for estimating
the location of a single source in a tree network for SI, SIS,
SIR and SIRI models is presented in [5]. In [6], [7], assuming
a single source and SI model on tree networks, when the set
of the infected nodes is only partially revealed, the Jordan
center is shown to be the source estimator that starts the
infection along its most probable infection path among the
revealed nodes.

The location of a single infection source, given the in-
fection snapshot, is studied for SIS, SIR and SIRI infection
models in [8], [9] and [10], respectively. However, the study
of infection sources is not restricted to the assumption of a
single source. Unlike the estimation of a single rumor source
on a line graph with an SI infection model, the localization
of two rumor sources for the same model is shown to be
impossible in [11]. In [12], the number of sources in a tree
network is estimated. The problem of identifying multiple
rumor sources with different start times is studied in [13].
This work proposes a two-source joint estimation algorithm
that utilizes any known single source estimation algorithm.
The joint source estimation algorithm is shown to converge
to a local optimum of the estimation function when the
network is a quasi-regular tree with respect to the choice
of single source estimator.

In [14], [15] and [16], the problem of identifying multiple
infection sources and their respective infection partitions is
studied under the assumption that the order in which the
nodes are infected is known. When the number of sources
is known to be two, the algorithm is shown to identify
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the infection sources with probability approaching 1 as the
network size increases. The problem of identifying multiple
infection sources and infection regions is studied for the SIR
infection model in [17], [18] and [19].

A time-varying network under the SIR infection model
is studied in [20]. At the macroscopic level, partial obser-
vations of a node’s geographic location, connectivity, and
its infection state are aggregated to create static but partial
estimates of the network in limited time windows. The
nodes that can facilitate complete rumor propagation paths
are called ‘suspects’. Lastly, the likelihood of each ‘suspect’
being the source is computed, and the most likely ‘suspect’
node is identified as the rumor source. The recent work [21],
also uses a macroscopic model to study the minimum num-
ber of messenger nodes needed for rumor source identifica-
tion on directed and undirected graphs. Identifying groups
of individuals as single nodes, with infection states defined
by the fraction of local population infected, the number of
messenger nodes required is calculated using observability
theory. An undirected, scale-free graph is shown to node
only one messenger node.

While [1], [2], [3] and [4] use a message passing al-
gorithm for rumor source detection on trees and extend
these results to general graphs by using their spanning
trees, [22] and [23] solve belief propagation equations and
dynamic message passing equations, respectively, on gen-
eral graphs to detect the source. The equations for belief
propagation and DMP algorithms are exact for trees.

The complementary problem of hiding the rumor source
to impede reliable detection has also been studied. If a sig-
nificant fraction of the nodes are equally likely to be sources,
then probability of source detection might not be very
high. Therefore, an intelligent source can design strategies
to spread information while diminishing the probability of
detection. The adaptive diffusion model in [24], [25] and [26]
hides the source perfectly in an infinite, regular tree and
for irregular trees limits the detection probability. In [27], a
strategic game between the rumor source and its adversary,
the rumor source locator, is designed.

Our work is based on the single source estimator for
a stylized model (extended star network) proposed in [28]
(where it is referred to as a “star network”). In [28], the ML
estimate of a single rumor source is analyzed based on an
infection snapshot of the extended star network under the
SI infection model. Using the method of types, a tractable
approximation to the ML source is identified as the “ML
center” (which we call the types center in this work, to avoid
confusion). The types center is argued to be asymptotically
accurate. In addition, numerical results indicate that the
types center might be accurate even for small infection sizes.

In this work, we rigorously prove that for large extended
star networks, the distance between the ML source and the
types center is at most logarithmic in infection size. Since the
types center offers a computationally tractable, yet accurate
approximation, we use a heuristic to extend the types cen-
ter measure into a method for finding sources on general
trees (the heuristic types center), and design an algorithm
to carry out the method. The performance and accuracy of
the resulting relative-leaf counting algorithm are compared to
the message-passing algorithm for rumor centrality, on both
regular and non-regular trees (rumor centrality is proven to

be the optimal ML source estimator for infections on regular
trees).

In Section 2.1, we outline the characteristics of an ex-
tended star network and the assumptions of our model. In
Section 2.2, we formulate the “true” maximum likelihood
(ML) estimator of the rumor source. In Section 2.3, we
recount the derivation of the types center, a method of
types-based approximation to the ML source estimate. In
Section 2.4, we analyze the approximation error incurred
by the types center, proving that its deviation from the ML
source is at most logarithmic in the size of the infection. In
Section 2.5, we discuss the qualitative properties of the types
center, and show some contrasts with the properties of the
rumor center for extended star networks.

Furthermore, in Section 3 we extend the principle of
the types center to design the heuristic types center source
estimator for general trees. In Section 3.1, we lay out a
specific procedure for computing this center. The compu-
tational efficiency and the accuracy of the heuristic types
center are compared to those of the rumor center in Sec-
tions 3.2 and 3.3, respectively.

2 SOURCE ESTIMATION IN EXTENDED STAR NET-
WORKS

2.1 Model
In this work, we define an extended star network as a hub
node, O, with m “arms” of nodes proceeding outward from
O. The nodes of each arm will be numbered starting with 1
(for the node adjacent to O) and increasing from there.

We use the SI infection model with edge-based propa-
gation in continuous time to describe the spreading of the
rumor. That is, nodes are either “susceptible” (have not yet
heard the rumor) or “infected” (have already heard it). If a
susceptible node shares an edge with an infected neighbor,
then the infection will “traverse” that edge and infect the
susceptible node with a waiting time that is exponentially
distributed with mean T . Once infected, a node remains
that way indefinitely. An important consequence of this
model is that we can invoke the memoryless property of
the system to state that at any given time, the next infection
is equally likely to occur along any outgoing edge from the
current infected set. For a given observed infection pattern
(the subgraph of infected nodes at some point in time), we
wish to find the maximum likelihood estimate of the source
giving rise to that infection pattern.

Our infection pattern consists ofO, along with the closest
ki nodes along each arm i. If the infection were confined to
m = 1 or 2 arms, we could simply consider the problem
on a line graph, and the ML solution is well-known to be
the midpoint of the infection (in fact, for a uniform prior,
the likelihood function follows a binomial distribution on
the infected nodes [1], [11]). Since the infection arises from a
single source, it must be contiguous, so any infection which
spans multiple arms must also include O.

2.2 ML Source Estimation in Extended Star Networks
For a given infection pattern (as described in Section 2.1), we
compute the likelihood of the observed pattern occurring at
some point in time, given that the rumor originated at O.
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Fig. 1: Illustrating the calculation in (3). Note that r can
range from 0 up to k1 − l.

Each of the m arms is set to acquire an additional infected
node after its own IID waiting time. Since the waiting
time RVs are memoryless (because they are exponentially
distributed) and independent, with identical infection rates,
1
T , each of the m arms has an equal probability ( 1

m ) of
acquiring the next infected node in the sequence.

Let κ := (k1, k2, · · · , km) and K =
∑m
i=1 ki. Then the

probability of observing ki infections along arm i is given
by a multinomial distribution.

P (O;κ) =
K!

k1!k2! . . . km!mK
(1)

If instead, the rumor source is located along one of the
arms (let us assume, without loss of generality, that the
source is located on arm 1) at node l, then the propagation
of the rumor occurs in two phases: At first, the infection
spreads along arm 1 in either direction, until the inward
propagation reaches O. At that point, it can spread outward
along any of the m arms. Accordingly, we decompose the
set of possibilities according to the extent that the infection
proceeds outward along arm 1 before the inward propaga-
tion reachesO. Suppose the infection reaches an additional r
nodes beyond l before reaching O, as shown in Fig. 1. Then
the probability of r outward infections and l − 1 inward
infections (in any order) followed the last inward infection

reaching O is

(r+l−1
l−1

)
2r+l

. Afterwards, the probability of fulfill-
ing the remaining infections exactly can be computed using
(1), replacing k1 with k1 − (r + l). Multiplying these two
probabilities, we obtain

P (l, r;κ) =

(r+l−1
l−1

)
2r+l

(K − (r + l))!

(k1 − (r + l))!k2! . . . km!mK−(r+l)

=
(r + l − 1)!

r!(l − 1)!2r+l
(K − (r + l))!

(k1 − (r + l))!k2! . . . km!mK−(r+l)
. (2)

Summing over all possible values of r, we obtain

P (l;κ) =
k1−l∑
r=0

(r+l−1
l−1

)
2r+l

(K − (r + l))!

(k1 − (r + l))!k2! . . . km!mK−(r+l)

=
k1−l∑
r=0

(r + l − 1)!

r!(l − 1)!2r+l
(K − (r + l))!

(k1 − (r + l))!k2! . . . km!mK−(r+l)
.

(3)

2.3 Derivation of the Method of Types Approximation,
Types Center

In order to further analyze the situation, we will use the
method of types. For a source with a uniform distribution
on X , the probability of observing a type T of ns samples
with empirical distribution Q satisfies

1

(ns + 1)|χ|
2−nsD(Q||UX) ≤ P (Tns(Q)) ≤ 2−nsD(Q||UX),

(4)

where |χ| is the size of the set of choices [29]. Note that the
lower and upper bounds are the same except for the leading
term in the lower bound. Therefore, we will work with the
upper bound for now, and consider the effect of the leading
term in the lower bound afterwards.

P (Tns(Q)) ≤2−nsD(Q||UX) = 2−ns(log |X|−H(Q))

=2−ns(log |X|+
∑

X Q(x) logQ(x)). (5)

Applying this to each of the phases of the infection yields

P (l;κ) =
k1−l∑
r=0

2−h(l,r;κ) (6)

where, h(l, r;κ) = h1(l, r;κ) + h2(l, r;κ) with, (7)

h1(l, r;κ) = (r + l)

(
1−H

(
r

r + l
,

l

r + l

))
(8)

h2(l, r;κ) = (K − (r + l))

[
logm

−H
(
k1 − (r + l)

K − (r + l)
,

k2

K − (r + l)
, . . . ,

km
K − (r + l)

)]
.

(9)

Remember that we are interested in finding the value of
l that maximizes this expression, and observe that the value
of the sum is asymptotically dominated by the term with
the largest (or least negative) exponent. Furthermore, notice
that the terms of the sum depend only on r + l rather than
r or l individually, with the exception of the H( r

r+l ,
l
r+l )

in the first exponent. This value is maximized when r = l.
Therefore, we can conclude that the dominant term of the
sum for the maximizing value of l occurs when r = l. If this
were not the case, we could replace r with r′ and l with l′,
where r′ = l′ = r+l

2 and obtain a more dominant term with
a different value of l. Accordingly, we will replace r with
l going forward, and in the process, we eliminate the first
part of the dominant term.

P (l;κ) ≤ 2−(K−2l)(logm−H(
k1−2l
K−2l ,

k2
K−2l ,...,

km
K−2l )) (10)

≤ 2−(K−2l) logm+(K−2l)H(
k1−2l
K−2l ,

k2
K−2l ,...,

km
K−2l )

≤ 2−(K−2l) logm−(K−2l)(
k1−2l
K−2l log

k1−2l
K−2l +

∑m
i=2

ki
K−2l log

ki
K−2l )

= 2−(K−2l) logm−(k1−2l) log
k1−2l
K−2l −

∑m
i=2 ki log

ki
K−2l (11)

Taking the exponent, and setting the derivative with respect
to l to zero, we obtain

0 = 2 logm+ 2 log (k1 − 2l)+2− 2 log (K − 2l)−2,

which leads to,
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l =
k1 − µ−1

2
, where K−1 = K − k1, µ−1 =

K−1

m− 1
. (12)

In other words, l is chosen so that the remaining length
of arm 1 once O is reached is equal to the arithmetic mean
of the other arms. Since we can apply this reasoning to any
arm, we have a local maximum for any arm whose length
is above average. However, the form of the exact solution in
(3) makes it clear that the global maximum is attained when
the longest arm is chosen to be arm 1. Let us denote this
choice of l as the types center, l̂.

Having chosen l̂ to optimize the upper bound, let us
consider the effect of the leading coefficient in the lower
bound. While it is different for each term of the sum in (6),

it can be bounded from below by
1

(K + 1)m
. We can then

use our earlier reasoning with (10) to show that

P (l;κ)

≥ 1

(K + 1)m
2−(K−2l)(logm−H(

k1−2l
K−2l ,

k2
K−2l ,...,

km
K−2l )). (13)

Consider what happens if we allow the pattern to grow
larger, but maintain the relative sizes of the k’s (in other
words, replace each k by nk, and let n go to infinity). Then

P (l;nκ) ≤ 2−(nK−2l)(logm−H(
nk1−2l
nK−2l ,

nk2
nK−2l ,...,

nkm
nK−2l )), (14)

and

P (l;nκ) ≥ 2−(nK−2l)(logm−H(
nk1−2l
nK−2l ,

nk2
nK−2l ,...,

nkm
nK−2l ))

(nK + 1)m
.

(15)

Remember that the types center, l̂, was chosen (propor-
tional to the ki’s) in such a way as to minimize the (negated)
exponent in (11). Therefore, letting l = nl̂ will yield the
minimum exponent in (14) and (15) (n times the old optimal
exponent). If, instead, we were to choose l = l′ 6= nl̂
(relative to the k’s), then the higher (negated) exponent
will eventually cause the upper bound in (14) evaluated at
l′ to drop below the lower bound in (15) evaluated at l̂.
Therefore, for sufficiently large instances, our choice of l = l̂
must be optimal. In fact, our empirical results suggest that
this is the case even for smaller instances.

2.4 Error Analysis for the Types Center Approximation
to the ML Source Estimate
Continuing from the previous section, we are now interested
in the asymptotic performance of our source estimator. For
some n ∈ N, we define a new system with κ 7→ κn := nκ,
l ∈ {0, 1, · · · , nk1}, and r ∈ {0, 1, · · · , nk1 − l}, for a fixed
l. In this system, the ML source (l∗) and the types center (l̂)
are as follows.

l∗n := arg max
l∈{0,1,··· ,nk1}

P (l;κn).

l̂n := arg max
l∈{0,1,··· ,nk1}

2−h(l,l;κn) = nl̂.

We want to find an upper bound on the deviation of
the types center from the ML source, ε(κn) := |l∗n − l̂n|,
especially for large n, when arm 1 is the longest arm.

Theorem 1. Given n and κ for an extended star network, ∃N0 ∈
N such that loge(N0K+1)

N0
≤ 1

m2

(
µ−1 − 1

m

)
, 1

Pr{ε(κn) ≤ m4µ−1 loge(nK + 1)} = 1, ∀n ≥ N0. (16)

That is, |l∗n − l̂n| ≤ m4µ−1 loge(nK + 1) (the distance between
the types center and the ML source grows only logarithmically in
network size).

Proof of Theorem 1. We extend the bounds on P (l;κn) to
the functions U(l;κn) and L(l;κn) that have a similar form.

Lemma 1. ∀ κ, n and l ∈ {0, 1, · · · , nk1},

P (l;κn) ≤ (nK + 1)m2−h(r∗l ,l;κn)

≤ (nK + 1)m2−h2(r∗l ,l;κn) =: U(l;κn),

P (l;κn) ≥ (nK + 1)−m2−h(l,l;κn)

= (nK + 1)−m2−h2(l,l;κn) =: L(l;κn),

where r∗l := arg min
r

h(r, l;κn).

The remainder of the proof builds on these relaxed
bounds on the probability P (l;κn). Each of the Lemmas 2
and 3, and Results 1 – 8 presents either a behavioral prop-
erty, or an alternate representation of the quantities related
to P (l;κn). (The proofs of Lemmas 1, 3 and the derivations
of Results 1, 3 – 8 can be found in the Appendix.)

The properties of l∗n, l̂n and the bounds from Lemma 1
impose the constraint in Lemma 2 and Figure 2.

Lemma 2. For fixed n, κ and lc ∈ {0, 1, · · · , nk1}:

U(lc;κn) < L(l̂n;κn) ⇒ l∗n 6= lc w.p. 1.

Proof of Lemma 2. By definition, P (l∗n;κn) ≥ P (l;κn),
∀l, n, κ.

=⇒ U(l∗n;κn) ≥ P (l∗n;κn) ≥ P (l;κn) ≥ L(l;κn) ∀ l, κn.
=⇒ U(l∗n;κn) ≥ L(l;κn) ∀ l, κn.
=⇒ U(l∗n;κn) ≥ L(l̂n;κn) ∀ κn.

So, for any valid in lc in κn,

U(lc;κn) < L(l̂n;κn)⇒ P{l∗n 6= lc;κn} = 1.

{lc : U(lc;κn) < L(l̂n;κn)} contains some values of lc 6=
l∗n. Therefore, its complement contains l∗n, which guides our
derivation of an upper bound on |l∗n − l̂n|.

Fix lc ∈ {0, 1, · · · , nk1}. Let r∗lc = arg min
r

h(r, lc;κn).

From Lemma 1,

U(lc;κn) = (nK + 1)m2−h2(r∗lc ,l
c;κn)

L(l;κn) = (nK + 1)−m2−h2(l,l;κn).

If U(lc;κn) < L(l̂n;κn), then

(nK + 1)m2−h2(r∗lc ,l
c;κn) < (nK + 1)−m2−h2(l̂n,l̂n;κn)

=⇒ h2(r∗lc , l
c;κn)− h2(l̂n, l̂n;κn) > 2m log (nK + 1) .

(17)

1. In this paper, log(n) is used to denote log2(n) and loge(n) is used
to denote the natural logarithm.
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Fig. 2: U(l∗n;κn) ≥ L(l̂n;κn), ∀ n, κ, for the ML source l∗n.

Let lc 7→ ρl
c

n := 1
n (r∗lc + lc − 2l̂n) ∈ [−(k1 − µ−1), µ−1]. We

can define the following:

nK − r∗lc − lc = n(K − 2l̂ − ρl
c

n )

= n(mµ−1 − ρl
c

n ) =: nK(ρl
c

n ) and (18)

nk1 − r∗lc − lc = n(k1 − 2l̂ − ρl
c

n )

= n(µ−1 − ρl
c

n ) =: nk1(ρl
c

n ). (19)

With the definitions of K(ρl
c

n ) and k1(ρl
c

n ), we can rewrite:

nk1 − r∗lc − lc

nK − r∗lc − lc
=

k1(ρl
c

n )

K(ρlcn )
and

nki
nK − r∗lc − lc

=
ki

K(ρlcn )
.

Since K−1 > 0 and r∗lc + lc ≤ nk1, we have

K(ρl
c

n ) > k1(ρl
c

n ) > 0 =⇒ 0 <
K−1

K(ρlcn )
< 1. (20)

We derive Results 1 and 2 to compare algebraically
h2(r∗lc , l

c;κn)− h2(l̂n, l̂n;κn).

Result 1. Rewrite G(ρl
c

n ) :=
h2(r∗lc ,l

c;κn)
n as:

G(ρl
c

n ) =K(ρl
c

n ) logm+ k1(ρl
c

n ) logk1(ρl
c

n )

−K(ρl
c

n ) logK(ρl
c

n ) +
m∑
i=2

ki log ki. (21)

Result 2. Rewrite h2(l̂n,l̂n;κn)
n = G(0) with ρl

c

n = 0 as:

G(0) = K(0) logm+ k1(0) logk1(0)

+
m∑
i=2

ki log ki −K(0) logK(0). (22)

Using Results 1 and 2, we obtain a constraint on ρl
c

n .

Result 3. Define γn with γn
loge(2) = 2m

n log(nK + 1). Then

γn
loge(2)

< −ρl
c

n logm+ µ−1 log

(
1− ρl

c

n

µ−1

)

−mµ−1 log

(
1− ρl

c

n

mµ−1

)
− ρl

c

n log

(
1− K−1

K(ρlcn )

)
. (23)

We have a constraint on ρl
c

n , but we are interested in the
range of lc− l̂n. Since ρl

c

n = 1
n (r∗lc + lc− 2l̂n), we obtain and

utilize suitable bounds on ρl
c

n in terms of lc − l̂n.

Lemma 3.

a) If ρl
c

n ≥ 0, lc ≥ l̂n, then 2(lc−l̂n)
n ≥ ρlcn ≥ 0.

b) If ρl
c

n ≤ 0, lc ≤ l̂n, then 2(lc−l̂n)
n ≤ ρlcn ≤ 0.

Combining the constraint on ρl
c

n from Result 3 and
Lemma 3a), we obtain a bound when lc − l̂n ≥ 0. (Claim 1)

Claim 1. 0 ≤ l∗n − l̂n ≤ m4µ−1 loge(nK + 1).

Proof of Claim 1.
Examine U(lc;κn) < L(l̂n;κn) for lc − l̂n ≥ 0 and

ρl
c

n ≥ 0. Choose 0 ≤ ρlcn < µ−1.

Result 4. Applying (20), −x1−x ≤ loge(1 − x) ≤ −x for 0 ≤
x < 1 on γn

loge(2) < G(ρl
c

n )−G(0), we get:

ρl
c

n

2
[(m− 1) logem− 1] + ρl

c

n f(κ)−K−1γn > 0. (24)

where f(κ) := K−1(m−1− logem) +µ−1 + (m−1)γn ≥ 0.

Result 5. Using ρl
c

n ≥ 0, lc ≥ l̂n on the range of (24):

l∗n − l̂n
n

≤ γn
(m− 1− logem)

. (25)

Note: (m − 1) logem − 1 ≥ 0 and m − 1 − logem ≥ 2 −
loge 3 ≥ 1

2 ≥ 0 for m ≥ 3.
Therefore, l∗n − l̂n ≤ nγn

m−1−logem
≤ 4m loge(nK + 1).

Since µ−1 ≥ 1
m−1 and m ≥ 3, we get m4µ−1 ≥ 9m.

∴ 0 ≤ l∗n − l̂n ≤ m4µ−1 loge(nK + 1). (26)

Claim 2. For N0 ∈ N : loge(N0K+1)
N0

≤ 1
m2

(
µ−1 − 1

m

)
,

0 ≤ −(l∗n − l̂n) ≤ m4µ−1 loge(nK + 1), ∀ n ≥ N0.

Proof of Claim 2.
Examine U(lc;κn) < L(l̂n;κn) for lc − l̂n ≤ 0 and ρl

c

n ≤
0. Let τ := −ρlcn ≥ 0.

Result 6. Applying (20), x
1+x ≤ log(1 + x) ≤ x for x ≥ 0 and

log(1 − x) ≤ −x for 0 ≤ x < 1 on γn
loge(2) < G(ρl

c

n ) − G(0),
we get:

τ2 loge 2m+ f−(κ)τ −mµ−1γn > 0, (27)

where f−(κ) := mµ−1 logem−K−1 − γn.

Result 7. Using ρl
c

n = −τ ≤ 0, lc ≤ l̂n on the range of (27) for
f−(κ) ≥ 0:

l∗n − l̂n ≥ −
2m2µ−1 loge(nK + 1)

f−(κ)
. (28)

Result 8. f−(κ)+γn = mµ−1 logem−K−1 ≥ 0 and γn ↘ 0
as n→∞. So f−(κ) ≥ 0 for sufficiently large n.

In fact, for N0 ∈ N : loge(N0K+1)
N0

≤ 1
m2

(
µ−1 − 1

m

)
,

f−(κ) ≥ 2

m2
, ∀n ≥ N0.
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Fig. 3: A neuron with two axons and five dendrites.

From (27) and Result 8,

0 ≤ −(l∗n − l̂n) ≤ m4µ−1 loge(nK + 1), ∀n ≥ N0. (29)

Combining Equations (26) and (29), we obtain the state-
ment of the theorem given in Equation (16).

2.5 Qualitative Properties of the Types and Rumor Cen-
ters in Extended Star Networks
In this section, we consider some qualitative properties
of the types center, and contrast them with those of the
rumor center [1]. We consider a special case of the extended
star network. Based on the visual similarity to a biological
structure, let us define a neuron as a region of an extended
star network that includes O, and whose arms only take on
two distinct lengths. The shorter arms, called dendrites, have
length L0, while the longer arms, called axons, have length
L0 + L1, and we stipulate that both L0 and L1 are strictly
greater than 0. This is illustrated in Fig. 3.

Suppose our infection pattern is a neuron with a single
axon. If there is only a single dendrite as well (meaning
m = 2), then effectively this is the same as a line graph of
length 2L0 + L1. In this case, the distance center and the
types center would both be on the axon at node L1/2.

Firstly, consider an increase in the number of dendrites
(and the corresponding m). (Note that this is different from
choosing a larger m to begin with and allowing the “extra”
arms to have length 0 at the outset.) The types center
remains at 2L0 +L1, because the second term in the numer-
ator of (12) remains constant. However, the distance center
would begin to move towards O, and eventually reach it
and stay there. Thus, the types center and the distance center
will no longer be the same. In contrast, [1] tells us that the
distance center and rumor center are the same if the latter is
unique, so we know that the types center (which is unique in
this case) and the rumor center cannot be equivalent. (This
is not inconsistent with the findings in [1], since they do not
claim the rumor center to be optimal in the ML sense for
non-regular trees, but we have identified a fairly simple yet
clear example where these two may differ significantly.)

To illustrate a second significant difference between
these two centrality measures, consider a neuron with n
dendrites and n + 1 axons, where n > 2. It can be easily
shown that the (unique) rumor center in this case is at
O (otherwise there would be at least n equivalent rumor
centers by symmetry, while [1] guarantees us that a tree can
have at most 2 rumor centers). However, (12) tells us that

TABLE 1: ML source estimate coincides with types center.

m Arm Lengths ML source (Assume Arm 1)

3 4, 2, 2 1
3 20, 10, 10 5
3 200, 100, 100 50

3 40, 40, 20 5 (Arms 1 & 2)
3 200, 200,100 25 (Arms 1 & 2)

3 20, 20, 0 5 (Arms 1 & 2)
3 100, 100, 0 25 (Arms 1 & 2)

3 300, 200, 100 75

3 5, 1, 1 2
3 50, 10, 10 20
3 500, 100, 100 200
4 500, 100, 100, 100 200
5 500, 100, 100, 100, 100 200

5 500, 500, 100, 100, 100 150 (Arms 1 & 2)
5 160, 120, 80, 0, 0 55
5 1000, 800, 600, 400, 200 250

there are n + 1 equiprobable types centers, located at node
L1/4 on each of the axons.

2.5.1 Computational Results

Since the types center derivation in Section 2.3 relies on large
deviation theory, we include some computational results in
Table 1. These results were derived using the exact combina-
torial expression in (3), not the subsequent approximations.
Note that in each case, the types center coincides exactly
with the ML source estimate.

The early examples show how the results scale for dif-
ferent sized regions with the same proportions, and suggest
that the types center in (12) often works exactly, even for
very small cases (despite the fact that we used large devia-
tion methods to derive it). The later ones show the results to
hold for larger m and more diverse arm lengths. (Of course,
this table only represents a tiny fraction of possible arm
length combinations, which are all reasonably small, and
were chosen to have results that are easy to interpret, so it
is entirely possible that not every case will work this well,
especially at larger scales.)

3 HEURISTICS FOR EXTENSION OF THE TYPES
CENTER METRIC TO GENERAL TREES

In this section, we extend the definition of the types center
to cases with a single infection source and a general tree
as the underlying network. We propose an algorithm to
compute this heuristic types center for an infection on a tree
network. We prove that, for an extended star network, the
algorithm converges to the types center defined previously.
We provide an analysis of the computational complexity
involved, and compare the accuracy of the heuristic types
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Fig. 4: Modifications to the Extended Star Network.

center to that of the rumor center, on regular trees as well as
non-regular trees.

3.1 The Relative-leaf Counting Algorithm
The expression found in (12) is satisfying in multiple ways.
On one hand, it provides very strong performance (its
deviation from the ML source grows only as the logarithm
of the network size, and it is anecdotally even better in
many cases, as shown in Table 1). On the other hand, the
computational work required is negligible – for a fixed
κ, it is a simple expression involving only non-iterative
computation. Therefore, it is natural to ask whether this
approach, which works so well on extended star networks,
can be generalized to address rumor source identification
problems on more general graphical structures. Here, we
will consider the case of trees, as is commonly done in rumor
source identification literature (such as [1], [5] and [7]).

In considering how such an extension might be done,
we will make two observations about how the method in
Section 2.3 works.

For our first observation, we note that in (12), replacing
the shorter arms with arms of their average length µ−1 does
not change the types center, because l̂ is only a function of k1

and µ−1. Looking further back at (3), we see that modifying
k2, · · · , km in this way only affects the second multiplicand
within the summation, and only by a constant scaling factor
which is independent of k1, r and l.

P (l;κ′) =
k2! ∗ · · · ∗ km!

(µ−1!)m−1
· P (l;κ) (30)

where κ = (k1, k2, · · · , km), κ′ = (k1, µ−1, · · · , µ−1).

Therefore, for every l, the probability of observing the
new infection pattern is a constant scaling of the proba-
bility of observing the original infection pattern. This not
only preserves the location of the maximum, but also the
relative probabilities for all values of l on arm 1. Thus,
we can replace an extended star network with a “neuron”
(Section 2.5) without changing the source estimation along
arm 1 in any way, as shown in Figure 4(a).

For our second observation, we revisit our first obser-
vation from Section 2.5. There, we noted that increasing

the number of “dendrites” (shorter arms of equal length)
does not change the types center along arm 1. This is also
consistent with (12), which only depends on the average
length of the shorter arms, not on their number.

The opposite argument is also true. Decreasing the num-
ber of dendrites does not change the location of the types
center along arm 1. If we reduce the number of dendrites
to 1, we essentially replace a “neuron” with a “line,” as
shown in Figure 4(b). Unfortunately, this reduction lacks
the precision of the previous one – while the location of the
maximum is preserved, the relative values of the likelihood
of the other candidate nodes do not scale uniformly as
before. Nevertheless, we consider this a useful heuristic for
simplifying trees.

Using these two simplifications and the observation
from (12) that the distance to the types center along the
longest arm depends only on the average length of the
shorter arms, we propose applying a sequence of such
simplifications to any tree-shaped infection pattern, succes-
sively reducing it to a simpler structure (while maintaining
and updating the average arm length information accord-
ingly), until we are left with an extended star network.

We can then use the aggregated average length data to
define the heuristic types center, just as we did before. From
here on, we will also refer to the heuristic types center as
the types center. To calculate the types center, consider the
undirected graph that describes the underlying tree, given
by G = (V, E). Let the infection graph be Gi = (Vi, Ei),
where Vi ⊆ V are the infected nodes and (u, v) ∈ Ei ⊆ E iff
u, v ∈ Vi and (u, v) ∈ E .

Practically speaking, we will proceed by starting at the
leaves of the tree Gi and working our way “in,” keeping
track of the distance to the first generation of uninfected
descendants. We call this distance “arm length.”

Whenever we reach a branching point, we wait until
we have the arm lengths for all neighbors but one (i.e. the
“children”), and posit that the remaining neighbor must
therefore be the “parent.”2 We then implement both of the
aforementioned simplifications in principle. We consider
the branching point as the beginning of an infected arm
with length (distance to the first generation of uninfected
descendants) equal to the average of its children’s arm
lengths plus one. We call such a branching point a “relative-
leaf.” This relative-leaf is then appended to the list of leaves.

In mathematical terms, for every undirected edge
(u, v) ∈ E with u ∈ Vi and v ∈ V , l̄u(v) is the average
“arm length” of v as seen from u, as described above.

l̄u(v) =
1 +

∑
w∈NG(v)\{u}

l̄v(w)
|NG(v)\{u}| , if v ∈ Vi, |N Gi(v)| 6= 1.

1, if v ∈ Vi, |N Gi(v)| = 1.
0, if v /∈ Vi, u ∈ Vi.

(31)

l̄u(v) measures a weighted average distance of v from the
first generation of uninfected descendants, which belong to
the largest subtree on G, that contains v but excludes u.

2. We assume that the algorithm is implemented in such a way that
there is no ambiguity about “parenthood” due to length values arriving
simultaneously from multiple neighboring nodes.
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We continue processing leaves and relative-leaves until
we reach a putative “root,” all of whose neighbors have
been accounted for as children. At this juncture, we examine
the accumulated average arm lengths of root’s children,
l̄root(u), ∀u ∈ N G(root). Then, if the longest arm is more
than one hop longer than the average of the shorter arms,
we revise our estimate of the root (moving one hop along
the longest arm), then recompute.

To illustrate this point, we look back to extended star
networks and (12). We know that the types center for an
extended star network is x := 1

2 (k1 − µ−1) hops away from
the hub node O on the longest arm (arm 1). The types center
has

{
m neighbors, if l̂=O.
2 neighbors, if l̂ 6=O.

In both cases, l̂ is such that l̄l̂(u) is

(nearly) the same for all u ∈ N G(l̂). That is, for u : (l̂, u) ∈ E ,

{l̄l̂(u)}u =

{
{k1 − x, x+ µ−1}, if l̂ 6= O.

{k1, k2, · · · , km}, if l̂ = O ⇐ constant ki.

More precisely, the estimate of the root node is modified
until l̄root(u), ∀u ∈ N G(root) satisfy (32) from Theorem 2.

The algorithm for implementing this process is described
below.

Algorithm 1. The relative-leaf counting algorithm for
source detection in tree networks.

Inputs: G (network graph), Vi (infected nodes)
Output: center (l̂-equivalent for the tree)

/* Initialization */
root← {}
leaves← {}
for all v ∈ Vi do

v.children← {}
v.armLens← {}
v.avgLen← {}

end for

/* Discover Leaves */
for all v ∈ Vi do
N G0 (v)← uninfectedNeighbors(v) 3

v.children← N G0 (v)

v.armLens←
|NG0 (v)|⋃
i=1

{0}
if numNeighbors(v)− |v.children| == 0 then

root← v
end if
if numNeighbors(v)− |v.children| == 1 then

leaves← leaves ∪ {v}
v.avgLen← 1

end if
end for

/*Discover Parent, Average Arm Lengths, Update Leaves List*/
while leaves 6= {} do

v ← leaves(1) /*Random leaf for asynchronous version.*/

par ← Neighbors(v) \ v.children /* par = parent */

3. Assume that each infected node has a table of the nodes it has not
infected with the rumor.

par.children← par.children ∪ {v}
par.armLens← par.armLens ∪ {v.avgLen}

leaves← leaves \ {v}

if numNeighbors(par)− |par.children| == 1 then
par.avgLen← 1 + avg(par.armLens)
leaves← leaves ∪ {par}

end if
if numNeighbors(par)− |par.children| == 0 then

root← par
leaves← leaves \ {par}

end if
end while

/*Move root along longest arm until arm lengths are balanced.*/
while max(root.armLens) − 1 > avg(root.armLens \
{max(root.armLens)}) do

/* If multiple maxima exist, run each individually. */
maxIdx← index(max(root.armLens))
ṽ ← root.children(maxIdx)
root.children← root.children \ {ṽ}
root.armLens ← root. armLens\ {root. armLens

(maxIdx)}
root.avgLen← 1 + avg(root.armLens)
ṽ.children← ṽ.children ∪ {root}
ṽ.armLens← ṽ.armLens ∪ {root.avgLen}
ṽ.avgLen← 1 + avg(ṽ.armLens)
root← ṽ

end while
center ← root

Theorem 2. On a tree graph, the relative-leaf counting algorithm
converges to a solution, v∗ ∈ Vi, such that

l̄v∗(u
∗)− l̄u∗(v∗) ≤ 0, (32)

where u∗ = arg max
u∈NG(v∗)

l̄v∗(u).

The rationale behind (32) is as follows:

On the extended star network, l̂ on (longest) arm 1 is
locates the midpoint between two arms of length k1 and
µ−1 = k2+···+km

m−1 . (Refer to Equation 12)

On the general tree G, u∗ is the child of v∗ with the
longest arm of length l̄v∗(u∗). We would want

l̄v∗(u
∗)−

∑
u∈NG(v∗)\{u∗}

l̄v∗(u)

|N G(v∗) \ {u∗}|
≤ 1.

But, l̄u∗(v∗) = 1 +

∑
u∈NG(v∗)\{u∗}

l̄v∗(u)

|N G(v∗) \ {u∗}|
.

Corollary 1. For the extended star network, the relative-leaf
counting algorithm converges to the types center, as given
by (12).

The proofs of Theorem 2 and Corollary 1 can be found
in the Appendix.
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3.2 Analysis of Computational Complexity
In this section, we present the run times of the types
and rumor centers. Furthermore, we study the worst-case
complexity of calculating the types and rumor centers. We
find that the relative-leaf counting algorithm for calculating
the heuristic types center on trees offers an improvement
in computational efficiency when compared to the message-
passing algorithm for finding the rumor center [2].

We begin by considering average case running time,
based on empirical testing in simulation. We choose 5 dif-
ferent non-regular trees at random. (For testing purposes,
we generate trees with random uniform degree distribution,
the degrees 2, 3, 4, 5 and 6 being assigned equiprobably
and independently.) For each random tree, we create 100
different infection patterns of various sizes (for each set, we
define a hard minimum size, and compute an average size
as well), and measure the running time needed to compute
each of the metrics. As shown in Table 2, the run times

Nmin Navg Types Center Rumor Center
100 111.82 0.4372 s 0.5026 s
70 82.92 0.3545 s 0.3991 s
50 62.60 0.2779 s 0.3181 s
40 53.33 0.2453 s 0.2796 s
25 36.15 0.1945 s 0.2069 s

TABLE 2: Run time (averaged over 100 infections of varying
sizes N on each of 5 different random non-regular trees.)

increase fairly linearly with Navg for both the types and
rumor centers. Except for the smallest infection set, the types
center consistently requires about 12-13% less computation
time than the rumor center. As expected, we notice that the
gap between the run times for the types and rumor centers
increases with increasing Navg on an absolute basis.

Now we turn our attention to worst case running time,
which we examine through asymptotic analysis. Calculation
of the types and rumor centers occurs in O(N) computa-
tions4, where N = |Vi|. All the quantities in the message-
passing algorithm for the rumor center are integers in the
range of [1, N !]. However, the relative-leaf counting algo-
rithm for the types center utilizes real (rational) numbers in
the range [1, N ]. Assume that for the relative-leaf counting
algorithm we utilize ρN ≤ log(N) decimal places.

a1) At a node of degree d, the rumor center needs:

a) d summations of worst-case complexity:
O(log(N)).

b) 2dmultiplications of worst-case complexity5:
O(log p log log p log log log p), where p = O(N !) 6.

a2) At a node of degree d, the heuristic types center
needs:

• at least d and at most 2d summations of
worst-case complexity:
O(log(N) + ρN ).

4. We will disregard the computation time for the finding the node(s)
with the highest (arm length, rumor centrality) attributes.

5. as per Schönhage-Strassen’s algorithm.
6. Since the multiplicands are product of the number of nodes in each

subtree.

• at least 1 and at most 2 divisions of worst-case
complexity:
O(q log q log log q), where q = logN + ρN .

b) For the rumor center, the node selected as root in the
message-passing algorithm of [2] needs to compute
the factorial of N − 1 and its product with N − 1
numbers.

• Worst-case complexity for the factorial is:
O(log p log log p log log log p), p = O(N logN).
• N − 1 divisions of worst-case complexity:
O(log p log log p log log log p), where p = O(N !).

Therefore, the worst-case complexity of the relative-
leaf counting algorithm at any node is O(q log q log log q),
where q = logN + ρN and the worst-case complex-
ity of the message-passing algorithm at any node is
O(log p log log p log log log p), where p = O(N !).

3.3 Performance of the Types and Rumor Centers in
General Trees
In this section, we simulate infections on d-regular (Sec-
tion 3.3.1) as well as non-regular (Section 3.3.2) infinite trees
in order to compare the performance of rumor center and
types center approaches. Then, we provide some overall
remarks on how these two different rumor source estimators
compare. Throughout the section, we examine performance
by generating infections over different types of graphs, and
then comparing the proximity of the actual infection source
to both the types center and the rumor center estimates.

3.3.1 Regular Trees
In our first round of performance testing, we simulate
infections on regular infinite trees of degrees 2, 3 and 4.
Note that in such regular trees, the rumor center is proven
to be the optimal ML source estimator [2]. Therefore, the
question of interest in these cases is whether types center
achieves similar performance as rumor center. To that end,
we generated exponentially distributed infection times to
create infected subtrees with at least 100 nodes. In practical
implementation, the types center can be computed in a
synchronous (as described above) or asynchronous fashion
(in which case each node might experience a random delay
before it relays information to its parent). Allowing for this
delay may affect the order in which nodes get processed, but
allows more flexibility to execute a parallel implementation
of the algorithm. Therefore, in our simulations we examine
the performance of both synchronous and asynchronous
approaches.

The types and rumor centers are computed for 500
infection instances for each value of d, and the statistics
of their distances from the actual source are plotted in
Figures 5a (degrees 2, 3, and 4) and 5b (degrees 3 and 4 only,
thus focusing on shorter-tailed cases). These results show
that the types center distances are indeed very similar to the
ML-optimal rumor center distances. Moreover, in Figures 6a
and 6b we compare the difference between the distance of
the rumor and the types centers from the actual source for
the same infection instances. These figures reveal that the
two centers achieve very close proximity to the source as
desired, with types center being no more than 3 hops farther
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(a) (2,3,4)-regular trees.

(b) (3,4)-regular trees.

(c) Non-regular trees.

Fig. 5: Accuracy of source estimators on trees of size ≥ 100.

than the rumor center in all cases, and being at most 1 hop
farther than the rumor center in ∼ 95% of the cases.

3.3.2 Non-regular Trees
Having observed the proximity of types and rumor centers
in regular trees, we next simulate infections on non-regular
infinite trees. To that end, we generate trees with random
uniform degree distribution, the degrees 2, 3, 4, 5 and 6

being assigned equiprobably and independently at every
node. Note that for such non-regular trees, neither rumor
nor types center has any optimality guarantees. Applying
an exponential distribution on infection times as before, we
create infected subtrees with at least 100 nodes over the non-
regular trees. The types and rumor centers are computed
for 20 infection instances on each of 250 different non-
regular trees, and the statistics of their distances from the
actual source are plotted in Figure 5c. When compared
to the regular-tree cases, we observe that the performance
difference between the types and rumor center appears
to reduce. In fact, this observation is further reinforced
in Figure 6c, which shows that the types center actually
had a lower distance from the true source about 25% of
the time, the same distance about 37% of the time, and a
higher distance about 38% of the time when compared to
the rumor center. As such, we observe that the estimation
provided by the types center becomes more competitive
against the estimation provided by the rumor center for non-
regular trees. Moreover, as seen in Figure 5 for both regular
and non-regular trees, the asynchronous implementation of
the relative-leaf counting algorithm reduces accuracy mini-
mally, while utilizing the same amount of computation time
as the synchronous operation of the relative-leaf counting
algorithm.

N Types Center Rumor Cen-
ter

Asynchronous
Types Center

µ σ2 µ σ2 µ σ2

100 0.8838 0.8374 0.6806 0.7110 1.0696 1.0610
70 0.9940 0.9242 0.8758 0.7465 1.1836 1.1307
50 1.1790 0.9879 0.9794 0.8248 1.3928 1.2314
40 1.3128 1.0755 1.0246 0.8663 1.4860 1.2580
25 1.3932 1.0940 1.0956 0.9155 1.5612 1.2688

TABLE 3: Mean and variance of distance from true source to
estimates for 5000 infections of size N on non-regular trees.

Table 3 investigates the performance of rumor center as
well as synchronous and asynchronous types centers as the
size of infections grow. They show the reassuring property
that the estimation errors of each center decrease in mean
and in variance as the infection size grows. However, the
growth of the infection size also increases the computational
complexity, and thus the run time of the estimators (as
discussed in Section 3.2 and in Table 2).

One interpretation of these results is that, in applications
where computation time is at a premium, the types center
might be an acceptable alternative to the rumor center for
non-regular trees, since it provides very similar performance
at a lower computational cost. This may be especially true
for larger cases, where the savings in absolute terms may
be substantial. In such cases, the relatively marginal per-
formance difference may not be of tremendous concern,
especially since the error magnitude actually gets smaller
with increasing network size (for either metric).

Another possibility is that, in cases where computation
time is somewhat less of a concern, but we wish to put a pre-
mium on accuracy, we could actually run both algorithms,
and use the results together in some fashion – either as cross-
validation, or using a synthesis strategy that utilizes both
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(a) (2,3,4)-regular trees.

(b) (3,4)-regular trees.

(c) Non-regular trees.

Fig. 6: Case by case comparison of the types and rumor
centers on trees of size ≥ 100.

centers. For example, in an application where the estimated
center is to be used as a starting point for in-depth forensic
analysis (perhaps involving closer investigation of a partic-
ular person, computer on a network, etc., all of which can
be far more costly or disruptive than running an algorithm),
then the search space could be modified to prioritize nodes
that are near one or both centers, or on/near the path
between them, etc. Especially in applications where nodes
might have high degree, and even a small distance can lead
to a large search space, any refinement of such a space could
provide significant benefits on the back end, which could
more than justify the higher computational costs in such
cases (less than double, according to our results).

4 CONCLUSION

In this work, we aim to efficiently locate the source of an
infection in tree-structured networks under the SI infection
model. Starting with the case of extended star networks, we
derive the types center, a method of types-based approxima-
tion to the ML source estimator on the infection graph. We
show empirically that this estimator is exact for a selection
of relatively small test cases, and prove that it is asymptoti-
cally accurate to within an O(log(n)) neighborhood within
the network, providing highly efficient source identification
even in large networks (especially compared to the error
margins seen in other, similar problems, such as the O(

√
n)

best possible accuracy for single source identification in a
line network [1]). We also show that this estimator has
different qualitative properties than the rumor centrality
measure for infections on extended star networks.

Next, we extend this estimation approach from extended
star networks to general trees, using the same principles
to design the relative-leaf counting algorithm. Preliminary
simulation testing shows that as network size increases,
the required computation time goes up, but the estimation
error goes down. When compared to the rumor centrality
measure, the heuristic types center offers a tradeoff – com-
petitive error performance (sometimes higher, sometimes
lower, though slightly higher on average), but lower compu-
tation time. Therefore, our algorithm makes sense either as
an alternative method in applications where computation
cost is at a premium, or as a supplemental tool to be
used in combination with rumor centrality in a diversity-
based approach, in cases where improved performance (or a
reduced search space) would justify the (less than 2x) higher
computational expense.
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