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Abstract—In this work, we consider a network, where n
distributed information sources whose states evolve according
to a random process transmit their time-varying states to a
remote estimator over a shared wireless channel. Each source
generates packets in a decentralized manner and employs a
slotted random access mechanism to transmit the packets. In
particular, we are interested in networks with a large number
of low-complexity devices that share low-capacity random access
channels. Accordingly, we investigate update strategies for remote
tracking of source states that require each update to constitute
as few bits as possible. To that end, we develop update strategies
requiring only one-bit of information per update. We first
consider a natural benchmark update policy and reveal that the
benchmark policy cannot guarantee stability under all conditions.
We then introduce an improvement of the benchmark policy that
employs a local cancellation strategy, which makes the system
always stable. We further analyze and optimize the performance
of the cancellation-enabled update policy to bound the estimation
error at the receiver. Through simulations, we compare the
proposed cancellation-enabled one-bit update policy with zero-
wait sampling and threshold-based sampling policies that require
more than one-bit of information per update. The comparisons
show that the cancellation-enabled update policy at its optimal
threshold level outperforms the multi-bit update policies. This
suggests that the cancellation-enabled one-bit update policy could
be greatly beneficial for applications where transmission power
or shared channel capacity are limited.

I. INTRODUCTION

The Internet of Things (IoT) has attracted significant atten-
tion resulting in an ever growing number of applications such
as traffic monitoring and healthcare monitoring systems [1].
In such systems, where distributed IoT devices/sensors are
connected to a remote monitor/controller, the sensors send
update packets with time-varying (sensing) information to the
monitor so that the monitor can track the state of the monitor-
ing objects. To this end, it is crucial to send timely updates to
keep the monitor maintaining fresh information. The timely
updates can be challenging in an IoT network where many
IoT devices are communicating over a shared channel. This
paper tackles this problem by developing strategies that require
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each update to constitute as few bits as possible so that a large
device population can be served.

Age of Information (AoI) has been introduced and studied to
measure the freshness of information [2]–[6], which is defined
as the time that has elapsed since the latest packet received
at a remote monitor (or a receiver) was generated at a source.
In [3], the authors investigate the cases when the zero-wait
sampling is not age-optimal with a single source-receiver pair.
Networks with multiple sources updating a common receiver
over a shared wireless channel are considered in [4]–[6].
Centralized update policies with throughput constraints are
studied in [4], and decentralized update policies employing
a slotted random access with channel collision feedback are
studied in [5]. In [6], a sleep-wake update policy when each
source has a limited battery capacity is developed. None of
these designs apply to our setting since they measure freshness
only via age, whereas in our setting the freshness must be
measured via the estimation error.

Remote estimation, where the freshness of information is
measured with estimation error (i.e., error between the actual
state at a source and the estimate at a receiver), has been
studied for networks with a single source-receiver pair [7]–
[13] and for networks with multiple sources [14]–[19]. In [7],
optimal sampling policies for a Wiener process are devel-
oped to minimize the Mean Squared Error (MSE) with the
frequency sampling constraints. This problem is also studied
when a communication channel has random delay in [8] and
it is shown that an optimal policy is a threshold-type. Optimal
sampling policies for an Ornstein-Uhlenbeck (OU) process
are investigated with a channel having random delay [9] and
with average power constraint [10]. In [11]–[13], a source
whose state xt evolves as xt+1 = axt + wt, where a ∈ R
and wt is an independent and identically distributed (i.i.d.)
random variable, are considered. In [11], update policies to
minimize the MSE subject to a sampling frequency constraint
are investigated. In [12], [13], it is assumed that each update
pays a communication cost and update policies to minimize
estimation error plus communication costs.

In [14]–[17], a network where n sources updating a common
receiver is considered and state of each source is modeled as a
Linear Time Invariant (LTI) system with an independent zero-
mean Gaussian noise. In [14], [15], time-based (centralized)
scheduling policies at the receiver are investigated to minimize



the average estimation error covariance when at most one
source can update the receiver at a time [14] or when at
most m out of n sources can update the receiver at a time
and the communication channel has a packet drop probabil-
ity [15]. In [16], [17], decentralized scheduling policies are
investigated, where each source’s objective is to minimize its
estimation error covariance at the receiver subject to transmis-
sion power constraint. This problem is modeled as a multi-
player game, and a Nash equilibrium (NE) is found in [16].
In [15], a concept of correlated equilibrium (CE) where the
estimation performance can be improved compared with NEs
is introduced, and a strategy that achieves the performance
at the CE is proposed. In [18], [19], a network with n in-
dependent source-receiver pairs communicating over a shared
channel is considered. In [18], a centralized scheduling policy
is proposed when each transmission incurs a communication
cost to minimize the average MSE plus communication costs.
In [19], a decentralized scheduling policy is investigated to
minimize the transmission power subject to a lower bound
constraint on the successful transmission probability.

In this work, we consider a network with n distributed
sources updating a common receiver over a shared wireless
channel and investigate decentralized update policies to min-
imize the estimation error. Update policies proposed in this
work are different from those proposed in [14], [15], [18] in
that our policies are decentralized and different from those
proposed in [16], [17], [19] in terms of the objectives. Further,
we are interested in networks with a large number of low-
complexity devices that share low-capacity random access
channels. Such a setting is becoming increasingly more impor-
tant in massive IoT networks with increasing number of low-
complexity devices being connected to the networks such as
remote health monitoring or smart architecture. Accordingly,
we investigate update policies (i.e., sampling and scheduling
policies) that require each update to constitute as few bits
as possible. Thus, it is unsuitable for the sampling policies
proposed in [7]–[13] to be directly applied in this setting
since those sampling policies do not carefully deal with the
number of bits per sampling/transmission in the existence of
transmission failures.

Our contributions can be summarized as follows.
• We formulate the remote tracking problem to mini-

mize the estimation error with a large number of low-
complexity devices updating a common receiver over a
low-capacity random access channel when the state of
each information source evolves according to a symmetric
random walk.

• We develop update strategies that require one-bit of
information per update as a case of particular interest.
We first consider a natural benchmark update policy and
reveal that the benchmark policy will not be able to make
the system stable in terms of the estimation error under
some conditions.

• We then introduce an improvement on the benchmark
policy that employs a local cancellation strategy, which
makes the system always stable. We further analyze

and optimize the performance of the cancellation-enabled
update policy to bound the estimation error at the receiver.

• We suggest how the proposed one-bit update policy can
be applied to more general source models.

• We compare the proposed one-bit update policy with
zero-wait sampling and threshold-based sampling policies
that require more than one-bit of information per update
through simulations. Numerical results show that the
proposed one-bit update policy outperforms the multi-bits
update policies, which implies that the proposed one-
bit update policy is more beneficial when we consider
transmission power that is usually increasing as the
packet size (i.e., the number of bits per update) increases.

The rest of paper is organized as follows. In Section II,
we describe the system model and formulate the problem.
In Section III, we develop and analyze update strategies that
require only one-bit of information per update. In Section IV,
we extend our results to more general source models. In
Section V, we compare the proposed one-bit update policy
with other update policies through simulations. In Section VI,
we conclude our work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a fundamental scenario of n distributed infor-
mation sources (e.g., sensors) whose states evolve according
to a random process, and one remote estimator (e.g., sink or
collector) that aims to remotely track the time-varying state
of the sources over a shared wireless channel, as shown in
Fig. 1. In this work, we are interested in developing strategies
for remote tracking of source states that require one-bit of
information per update as a particular interest, which will be
explained in Section II-B.

Fig. 1: System model.

Considering a time-slotted system operation, we let xi,t
denote the state of source i at the beginning of time t, which
evolves over integer values according to a simple random walk.
In particular, xi,t evolves as

xi,t+1 = xi,t + wi,t, for t ≥ 0, (1)



where wi,t is given by

wi,t =


1, with probability pi,
0, with probability 1− 2pi,

−1, with probability pi,
(2)

for some pi ∈ [0, 0.5]. The transition probability pi is known to
each source. Note that the noise wi,t is independent and iden-
tically distributed (i.i.d.) with a zero-mean and finite variance,
and that it is symmetric, i.e., P(wi,t = 1) = P(wi,t = −1). We
note that such a basic evolution lies at the foundation of many
important estimation and control mechanisms. By varying the
pi parameter, this process can capture more and less variable
source evolution. After developing our results for this model,
we will also discuss more general state evolution in Section IV.

Let Ui,t ∈ {0, 1} denote the packet generation (or sampling)
decision of source i at time slot t, where Ui,t = 1 implies that
source i generates a new packet at time slot t. At the end of
time slot t − 1, the packet generation decision Ui,t is made
in a decentralized manner by each source based on their own
observations up to time slot t − 1. Each source maintains a
First-Come First-Served (FCFS) queue, and the new generated
packet is stored in the queue. The queue length of source i at
time slot t is denoted by Qi,t.

In view of the low-complexity nature of communication
capabilities of these devices, we assume a slotted random
access channel for wireless updates whereby if more than
one sources transmit packets simultaneously, then all the
transmissions fail due to a packet collision. Let Zi,t ∈ {0, 1}
denote the indicator variable for successful transmission of
source i at time slot t. The source i transmits the packet with
probability µi ∈ (0, 1] (which is to-be-determined), and idles
with probability 1 − µi. We assume that if queue i is empty
(i.e., Qi,t = 0) then source i transmits a dummy packet1. Then,
we have

E[Zi,t] = µi
∏
j 6=i

(1− µj). (3)

If source i is the only source transmitting a packet at time slot
t, then the packet is successfully transmitted to the estimator
(i.e., Zi,t = 1). We assume that the communication channel is
error-free and each transmission is done within a time slot.

Let x̂i,t denote the estimated state of source i at the
estimator at time slot t, which can be updated using infor-
mation received by time slot t. Let ei,t denote the information
mismatch (or error) between xi,t and x̂i,t, i.e., ei,t = xi,t−x̂i,t.
We assume that xi,0 = x̂i,0 for all i ∈ {1, ..., n}.

B. One-Bit Update Policy at the Sources

In this work, we consider a low-overhead sampling policy,
whereby each update constitutes one-bit of information so that
the shared channel load is minimized for each transmission.
This is especially important for wireless channels that serve

1This assumption makes the mathematical analysis more tractable. In
practical operation, letting source i idle when it has no packet to send can give
more transmission opportunity to the other sources and improve the system
performance

a large population, as expected in future IoT networks. This
motivates us to consider a threshold-type packet generation
policy, whereby ∆i ∈ N denotes the (state) threshold used
for sampling. To describe this policy more explicitly, let ẽi,t
denote the virtual error of source i, which is a variable being
held by each source i and is updated as

ẽi,t+1 =

{
0, if Ui,t = 1,

ẽi,t + wi,t, if Ui,t = 0.
(4)

Here, the packet generation decision Ui,t under the above
threshold-base policy at time slot t is given by

Ui,t =

{
1, if |ẽi,t + wi,t| = ∆i,

0, otherwise.
(5)

That is, when ẽi,t+wi,t hits the threshold ∆i or −∆i, a packet
with one-bit information is generated with the value +1 for
∆i or −1 for −∆i, and the value ẽi,t+1 is reset to 0. Fig. 2
shows a trajectory of virtual error ẽi,t, where a new packet
with the value +1 is generated at time slot τ .

Fig. 2: A trajectory of virtual error ẽi,t source i.

Next, we provide a few interesting facts about the absolute
estimation error performance of such a threshold-based one-bit
update rule. These are interesting in explicitly characterizing
how the error relate to the threshold level ∆i and the source
dynamics pi.

Theorem 2.1: Under the threshold-based one-bit update
policy with threshold ∆i, the long-term expectation of virtual
error ẽi,t of source i is given by

E[|ẽi,∞|] =
∆2

i−1
3∆i

. (6)

Further, the long-term expectation of update decision Ui,t of
source i is given by

E[Ui,∞] =
2pi
∆2
i

. (7)

Proof: The virtual error ẽi,t is a finite-state Markov chain
with 2∆i − 1 states from (4) and (5). Thus by solving global
balance equations, we can obtain its stationary distribution
π∆i

k = ∆i−|k|
∆2

i
for k ∈ {−∆i+1, ..., 0, ...,∆i−1}, from which

we can obtain the long-term expected virtual error E[|ẽi,∞|]:

E[|ẽi,∞|] =
2

∆2
i

∆i−1∑
k=1

k(∆i − k) =
∆2
i − 1

3∆i
. (8)



Further, since each source independently generates a packet,
we can consider ẽi,t as an independent renewal process, which
is reset to 0 upon every packet generation. In [20], it is shown
that

E[Ui,∞] = lim
t→∞

P(Ui,t = 1) =
2pi
∆2
i

(9)

using Blackwell’s renewal theorem (Theorem 4.6.2 in [21]).

C. Estimation at the Receiver

Now that we described the policy at the sources, we turn
to the corresponding estimation process at the receiver. We
denote V ki,t ∈ {−1, 1} for k ∈ {1, ..., Qi,t} as the value of
k-th packet in queue i at time slot t, where 1 is the index for
the head of the queue. If Zi,t = 1, then the packet with value
V 1
i,t is successfully sent to the receiver and V ki,t+1 = V k+1

i,t .
Then, at the receiver, the estimate x̂i,t is updated as

x̂i,t+1 = x̂i,t + V 1
i,tZi,t∆i. (10)

That is, when a new packet is received from source i, the
estimated x̂i,t is either increased by ∆i if the received infor-
mation is 1, or decreased by ∆i if −1 is received. Then, we
have, with ei,0 = ẽi,0 = 0, that

ei,t = ẽi,t + ∆i

Qi,t∑
k=1

V ki,t. (11)

D. Distributed Remote-Estimation Problem

Given the one-bit update policy at the sources and the
estimation policy at the receiver, the goal of the remote
tracking problem is to optimize the choices of thresholds
∆ , {∆1, ...,∆n}, and the probabilities µ , {µ1, ..., µn}
for random access transmissions that minimize the mean
absolute estimation error. Mathematically, our objective is to
design (∆,µ) given the source dynamics p , (p1, ..., pn)
to minimize the expected average absolute-error over infinite
time horizon:

min
∆,µ

J(∆,µ) = lim
t→∞

1

tn

t∑
s=1

n∑
i=1

Eπ [|ei,s|] . (12)

III. DESIGN AND ANALYSIS OF ONE-BIT UPDATE
POLICIES FOR REMOTE ESTIMATION

In this section, we attack the problem formulated in the
previous section by designing one-bit update policies for
distributed remote tracking. At the outset, it is even unclear
whether there exists a policy that can guarantee a bounded
absolute estimation error. In fact, in Section III-A, we in-
vestigate a class of First-Come-First-Serve (FCFS) policies
to find a condition on the (source-dynamics, threshold-level)
pairs, (p,∆), that can be stabilized by such policies. The
negative result from this design motivates us in Section III-B
to propose an improved class of policies that employ a
cancellation strategy within the transmission queues in order
to guarantee stability for all possible source dynamics p.
Then, in Section III-D, we undertake the optimization of our
cancellation-enabled design with performance guarantees.

A. Benchmark Analysis for First-Come First-Serve Updates

To develop a basic understanding of the system operation,
let us consider the operation of the one-bit update and random-
access service policy from the perspective of a given source
i. Omitting the subscript i for notational simplicity, suppose
that the source uses a threshold level of ∆ and achieves a
transmission success probability of µ in each transmission.
The next theorem establishes a condition between ∆, p, and
µ that would make the FCFS update policy unstable.

Theorem 3.1: Under the threshold-based one-bit sampling
and the First-Come First-Serve update policy, if ∆ ≤

√
2p
µ ,

then the system is unstable, i.e.,

lim
t→∞

E[|e∞|] =∞. (13)

This follows from the fact that, to make the system stable,
the source has to make the queue stable and the condition for
queue stability is that, in the long-term, the arrival rate must be
less than the service rate, i.e., 2p

∆2 < µ. The detailed proof is
in [22]. In the next section, we shall show that this deficiency
can be eliminated through a cancellation mechanism within
the transmission queue of each source.

B. One-Bit Update Policies with Packet Cancellation

The performance of FCFS update policy revealed that the
estimation error will be unbounded if 2p

∆ > µ. In this
subsection, we introduce an improvement on these benchmark
policies with substantial improvement. To that end, we first
note that the dynamics of xi,t in (2) is symmetric, i.e.,
P(xi,t0+t = x | xi,t0 = 0) = P(xi,t0+t = −x | xi,t0 = 0),
due to symmetry of noise wi,t. Using this symmetry of
the dynamics, we can manipulate the FCFS queue if the
information of packets in the queue can be accessed. If the
values of the newly generated packet and the packet at the
tail of the queue are the opposite, then those two packets
cancel each other and are discarded from the queue before
transmission. Let Di,t ∈ {0, 1} be the indicator variable for
this event, where Di,t = 1 indicates the packet cancellation
occurs. Note that E[Di,t] = 1

2E[Ui,t]P{Qi,t > 0} since
P(xi,t = ∆i | Ui,t = 1) = P(xi,t = −∆i | Ui,t = 1) = 1

2
from symmetry of the dynamics of xi,t.

Under this cancellation-enabled policy, the values of all the
packets at the queue i must be the same at all times, i.e.,
V 1
i,t = · · · = V

Qi,t

i,t . We assume that departure happens after
arrival. Under this queueing discipline, the queue length Qi,t
evolves as

Qi,t+1 = Qi,t + Ui,t − 2Di,t (14)
− Zi,t[(1− Ui,t)I{Qi,t > 0}+ Ui,t(1−Di,tI{Qi,t = 1})]

or we also can write

Qi,t+1 = [Qi,t + Ui,t − Zi,t − 2Ui,tDi,t]
+
, (15)

where [·]+ = max{·, 0}. Let λi,t = E[Ui,t] = P(Ui,t = 1)
denote the packet generation probability of source i at time t,
which converges to λi = 2pi

∆2
i

as t→∞ from Theorem 2.1.



C. Analysis of One-Bit Updates with Cancellation

In this subsection, we present fundamental results on the
error performance of cancellation-enabled one-bit update poli-
cies that is introduced in the previous subsection. We start
with the next lemma that establishes the strongly ergodic (non-
stationary) nature of the transmission queue-length {Qi,t}t.

Lemma 3.1: For each source i, the queue length process
{Qi,t}t≥0 under the cancellation-enabled one-bit update pol-
icy described in (14) forms a strongly ergodic Markov Chain
for any ∆i > 0, µi > 0, and pi ∈ [0, 1/2].

The detailed proof is in [22]. In contrast to the FCFS
policy performance (see Theorem 3.1), Lemma 3.1 proves
that cancellation-enabled policy can stabilize the error level
for any ∆i > 0, µi > 0 and any feasible pi. Specifically, it
proves that there exists a unique steady-state distribution and
the queue length process {Qi,t}t≥0 to the unique steady-state
distribution.

Next, we note that, under the cancellation-enabled policy,
we can write the error ei,t between the estimator and source
i as

ei,t = ẽi,t + ∆iV
1
i,tQi,t. (16)

Then, we can obtain bounds on the expected long-term abso-
lute error E[|ei,∞|] using E[|ẽi,∞|] and E[Qi,∞] as follows.

Lemma 3.2: Under the cancellation-enabled one-bit up-
date policy with parameter (∆,µ), we have

∆i

2
E[Qi,t] +E[|ẽi,t|] ≤ E[|ei,t|] ≤ ∆iE[Qi,t] +E[|ẽi,t|] (17)

for all t ∈ N.
We obtain (17) from (16), with details provided in [22]. Build-
ing on this lemma, the next theorem bounds the long-term
expected queue length E[Qi,∞] and absolute-error E[|ei,∞|] of
source i under the cancellation-enabled one-bit update policy
described in Section II-B with parameter (∆,µ).

Theorem 3.2: Under the cancellation-enabled one-bit up-
date policy with parameter (∆,µ), the long-term expected
queue length of source i ∈ {1, ..., n} is bounded by

pi
∆2
iMi

≤ E[Qi,∞] ≤ pi
∆2
iMi

+
1

2
, (18)

where Mi = µi
∏
j 6=i(1−µj). Further, the long-term expected

absolute-error of source i is bounded by

pi
2∆iMi

+
∆2
i − 1

3∆i
≤ E[|ei,∞|] ≤

pi
∆iMi

+
5∆i

6
(19)

for i ∈ {1, ..., n}.
The lower and upper bounds for the long-term expected queue
length E[Qi,∞] of source i can be obtained from Lyapunov
analysis using (14) and (15), respectively. Further, we can
obtain (19) from (17). The detailed proof is in [22].

From Theorem 3.2, we can observe that a remote tracking
system is always stable under the cancellation-enabled one-bit
update policy for any (∆,µ) with strictly positive entries, i.e.,

lim
t→∞

1

tn

t∑
s=1

n∑
i=1

E [|ei,s|] <∞. (20)

D. Optimum Design for One-Bit Updates with Cancellation

Now that we have shown that the system is always stable
with packet cancellation, we next aim to select the design
parameters (∆,µ) to minimize the upper bound on (12):

min
∆,µ

lim
t→∞

1

tn

t∑
s=1

n∑
i=1

E [|ei,s|] ≤ min
∆,µ

fu(∆,µ), (21)

where

fu(∆,µ) :=
1

n

n∑
i=1

pi
∆iµi

∏
i 6=j(1− µj)

+
5∆i

6
. (22)

We undertake this optimization for homogeneous and hetero-
geneous sources separately.

1) Homogeneous sources: When the sources are homoge-
neous, i.e., pi = p for i ∈ {1, ..., n}, we find the optimal values
∆i = ∆ ∈ N and µi = µ ∈ (0, 1]. In this homogeneous source
case, we can rewrite (22) as

fu(∆, µ) :=
p

∆µ(1− µ)n−1
+

5∆

6
. (23)

The next theorem, provides the optimal (∆u, µu) that mini-
mizes (23).

Theorem 3.3: When the sources are homogeneous, the op-
timal threshold ∆u and activation probability µu of fu(∆, µ)
are given by

µu = 1
n and

∆u =
⌊√

1.2p
µu(1−µu)n−1

⌋
or

⌈√
1.2p

µu(1−µu)n−1

⌉
.

(24)

Proof: We first ignore that ∆ is integer-valued. Then,
since f(∆, µ) is convex in (∆, µ) for ∆ > 0 and µ ∈ (0, 1)2,
by solving ∂f(∆̄,µu)

∂∆ = 0 and ∂f(∆̄,µu)
∂µ = 0, we can obtained

∆̄ and µu as

µu = 1
n and ∆̄ =

√
1.2p

µu(1−µu)n−1 . (25)

Now, since ∆ is integer-valued, the optimal threshold ∆u is
given by (24) by comparing (23).

2) Heterogeneous sources: Now, we consider remote track-
ing of heterogeneous sources. The next theorem provides the
optimal (∆u,µu) that minimizes (22).

Theorem 3.4: When the sources are heterogeneous, the
optimal thresholds ∆u

i fu(∆, µ) are given by

∆u
i =

⌊√
1.2pi

µu
i

∏
j 6=i(1−µu

j )

⌋
or

⌈√
1.2pi

µu
i

∏
j 6=i(1−µu

j )

⌉
, (26)

for all i, and the optimal activation probabilities µu of
fu(∆, µ) are obtained by solving the convex problem:

minµ∈Rn

√
10pi

3µi

∏
j 6=i(1−µj)

subject to
∑n
i=1 µi = 1;

µi ∈ (0, 1),∀i ∈ {1, ..., n}.

(27)

Proof: We first ignore that ∆i is integer-valued for all i.
Then, f(∆,µ) is convex in (∆,µ) since ∆i > 0 and µi ∈

21/
∏n

i=1 xi is convex on {(x1, ..., xn) ∈ Rn : xi > 0, ∀i}.



(0, 1). By solving ∂f(∆̄,µu)
∂∆i

= 0 and ∂f(∆̄,µu)
∂µi

= 0 for all i,
we can obtain

∆̄i =
√

1.2pi
µu
i

∏
j 6=i(1−µu

j ) , (28)

1−µu
i

µu
i

√
1−µu

i

µu
i

=
∑
j 6=i

√
pj
pi

√
1−µu

j

µu
j
. (29)

for all i and
∑n
i=1 µ

u
i = 1. Although solving (29) is in-

tractable, we have

f(∆̄,µu) =
√

10pi
3µu

i

∏
j 6=i(1−µu

j ) , (30)

which is convex in µu and thus we can numerically find µu

solving the convex optimization problem (27). Also, since ∆i

is integer-valued, the optimal thresholds ∆u are given by (26)
by comparing (22).

Combining (18) and (28), we have E[Qi,∞] ≤ 4
3 for all i.

That is, given some µ (not necessarily optimal service rates),
the behavior of the optimal sampling policy is to make the
queue length close to 1 by increasing its threshold level ∆i.
As such, when source i makes a successful transmission, it
can make the error ei,t close to ẽi,t. Suppose there are two
sources: one with 10 packets in its queue having values ∆
and another with 1 packet in its queue having value 10∆.
After one successful transmission, the first source decreases
its error by ∆ while the second source decreases its error by
10∆. However, if the threshold is too large, the source will
lose their chance to update the receiver and have high ẽi,t.

Remark 3.1: Let µu(p) denote the optimal service rates
that minimize (22) given parameters p = {pi}i. Let pi = γiα
and qi = γ1β for all i, where 0 < α, β < 1/2 maxi γi. Then,
we can notice that µu(p) = µ(q) from (29).

The next theorem provides the asymptotic performance
guarantee of the parameters (∆u,µu) obtained in Theo-
rem 3.4.

Theorem 3.5: Under the cancellation-enabled one-bit up-
date policy with parameters (∆u,µu), we have

lim
n→∞

J(∆u,µu)

min∆,µ J(∆,µ)
≤
√

5. (31)

The detailed proof is in [22]. This theorem states that the
parameters (∆u,µu) obtained by optimizing the upper bound
of the objective function will not be worse than

√
5 of optimal

performance of the cancellation-enabled one-bit update policy.
However, it will be shown that their performance gap is
insignificant through simulations in Section V.

IV. EXTENSION TO MORE GENERAL SOURCE DYNAMICS

In this section, we provide extensions of our results to
sources with more general dynamics. In particular, suppose
that the state xt of a source changes as

xt+1 = xt + wt, for t ≥ 0, (32)

where wt is a noise with zero mean and finite variance σ2,
and a symmetric pdf. A new packet is generated (i.e., Ut = 1)

if |ẽt + wt| ≥ ∆ for ∆ ∈ (0,∞), and the virtual error ẽt is
updated as

ẽt+1 = ẽt + wt −∆I{ẽt ≥ ∆}+ ∆I{ẽt ≤ −∆}. (33)

Also, the source randomly accesses the channel with the
successful transmission probability of µ ∈ (0, 1]. Then, the
next theorem provides the long-term expected absolute error
performance under the cancellation-enabled one-bit update
policy.

Theorem 4.1: Under the cancellation-enabled one-bit up-
date policy with parameter (∆, µ) when a noise is a Gaussian
random variable with zero mean and finite variance σ2, we
have

E[|e∞|] ≤
σ2 + P(|ẽ∞| ≥ ∆)∆2

2∆P(|ẽ∞| ≥ ∆)
+

∆E[U∞]

2µ
+

∆

2
. (34)

To prove this, we first show that the virtual error process ẽt
with a Gaussian noise with zero mean and finite variance σ2

forms a positive Harris recurrent Markov chain with a unique
invariant distribution. If one can show that the virtual error
process ẽt with an arbitrary symmetric noise with zero mean
and finite variance σ2 forms a positive Harris recurrent Markov
chain with a unique invariant distribution, then Theorem 3.4
holds for the particular symmetric noise. The detailed proof is
in [22].

Note, for ∆ ∈ (0,∞), that P(|ẽ∞|) ≥ ∆; otherwise, i.e.,
P(|ẽ∞| < ∆) with probability 1, the system is naturally stable
with E[|e∞|] < ∆. Further, from Theorem 4.6.2 in [21], we
have E[U∞] = limt→∞ P(Ut = 1) = 1

E[T ] , where T is the
packet generation period. Since P(|ẽ| ≥ ∆) > 0, we have
E[T ] ∈ [1,∞). Thus, the upper bound in (34) is finite, which
implies that the system is always stable for any σ ∈ (0,∞).
Further, if we can analytically obtain the long-term probability
P(|ẽ∞| ≥ ∆) of packet generation and the long-term expected
packet generation period E[U∞], then we can optimize the
upper bound in (34) and have a sub-optimal update policy.

V. NUMERICAL RESULTS

In this section, we verify the performance of our threshold-
based one-bit update policies. We first compare three dif-
ferent one-bit update policies: updates without packet can-
cellation proposed in Section III-A (denoted by No-pck-
cancel), cancellation-enabled updates (denoted by Pck-cancel)
proposed in Section III-B and threshold-based updates keeping
queue length at most one (denoted by Q-at-most-one (1
bit)). Given (∆, µ), the Q-at-most-one (1 bit) policy tries to
generates a new packet after a successful transmission thus the
queue being empty. If ẽt ≥ ∆ (or ≤ −∆), then a packet having
∆ (or −∆) is generated and the virtual error ẽt decreases (or
increases) by ∆, i.e., ẽt+1 = ẽt − ∆ (or ẽt+1 = ẽt + ∆). If
|ẽt| < ∆, then it waits until ẽt hits the thresholds ∆ or −∆.

We first consider remote tracking of a single source. The
source has transition probability p = 0.4 and activation
probability µ = 0.04, and the simulations run for T = 105

time slots and are averaged over 20 repetitions. Fig. 3 shows
the average absolute error of three different one-bit update
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Fig. 3: Average absolute error of three different 1-bit update
policies for a single source with different thresholds ∆ given
p = 0.4 and µ = 0.04.
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Fig. 4: Average absolute error of four different 1-bit update
policies for homogeneous sources with different number n of
sources given p = 0.4.

policies with respect to threshold ∆. For No-pck-cancel policy,
the thresholds ∆ >

√
2p
µ ≈ 4.4741 is the stability condition

as stated in Theorem 3.1, while the other two policies (Pck-
cancel. and Q-at-most-one) make the system always stable.
Further, Pck-cancel policy outperforms the other one-bit up-
date policies for all ∆.

Next, consider remote tracking of multiple homogeneous
sources with pi = p = 0.4 for all i. Since the sources
have the same dynamics, it is reasonable to set the activation
probabilities µ = 1

n for all the sources given n number of
sources in the system. For the cancellation-enabled one-bit
updates, we use two different thresholds: one is the threshold
∆u =

⌊√
1.2p

1
n (1− 1

n )n−1

⌋
or

⌈√
1.2p

1
n (1− 1

n )n−1

⌉
, which is the op-

timal threshold of the upper bound fu of the objective obtained
in Theorem 3.3, and another one is the optimal threshold
∆∗, which is numerically found through exhaustive search.
For No-pck-cancel and Q-at-most-one policies, the optimal
thresholds ∆ are also numerically found. The simulations run
for T = 105 time slots and are averaged over 20 repetitions.
Fig. 4 shows the average absolute error of four different one-
bit update policies with respect to the number n of sources. We
have showed that the optimality ratio of the Pck-cancel with
threshold ∆u is

√
5 for large n in Theorem 3.5. However, the

Fig. 4 shows that the gap between the cancellation-enabled
one-bit updates with thresholds ∆u and ∆∗ is unnoticeable,
and Pck-cancel policies with ∆∗ and ∆U outperform the other
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Fig. 5: Average absolute error of the 1-bit Pck-cancel policy
and three different M bits update policies for a single source
with different thresholds ∆ given p = 0.4 and µ = 0.2.
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Fig. 6: Average absolute error of four different update policies
for homogeneous sources with respect to the number n of
sources given p = 0.4.

two update policies.
Next, we compare the cancellation-enabled one-bit update

policy with three different multi-bits update policies: updates
keeping the queue with the freshest packet (denoted by Keep-
fresh-pck), zero-waiting updates (denoted by Zero-waiting)
and threshold-based updates keeping queue length at most
one (denoted by Q-at-most-one (M bits)). The Keep-fresh-pck
policy generates a new packet at every time slot and replaces
the packet in the queue with the new packet. Thus, when
a source has a transmission opportunity, it always sends the
freshest information to the receiver. The Zero-waiting policy
generates a new packet with the actual state value after a
successful transmission. The Q-at-most-one (M bits) policy
is similar with the Q-at-most-one (1 bit) policy except that,
if ẽt ≥ ∆ (or ≤ −∆), a packet having the actual value ẽt is
generated and the virtual error ẽt becomes 0. If |ẽt| < ∆, then
it waits until ẽt hits the thresholds ∆ or −∆. Note that the
Pck-cancel and Keep-fresh-pck policies are preemptive in the
sense that it interrupts the packet in service by eliminating it
from the queue or replacing it with a new packet while the
Zero-waiting and Q-at-most-one policies are non-preemptive.
Among non-preemptive policies, it is known that Zero-waiting
is age-optimal and Q-at-most-one is error-optimal for a Wiener
process [8] with a channel with random delay.

Fig. 5 shows the average absolute error of the four different
update policies with respect to threshold ∆ with a single
source having transition probability p = 0.4 and activation



probability µ = 0.2, and Fig. 6 shows the average absolute
error with respect to the number n of homogeneous sources
with p = 0.4. The simulations run for T = 105 time slots
and are averaged over 20 repetitions. As can be seen in
Figs. 5 and 6, the Pck-cancel policy at its optimal threshold
level outperforms the multi-bits Zero-waiting and Q-at-most-
one policies. In general, transmission time and power are
increasing as the packet size (i.e., the number of bits for
the state information) is increasing. This suggests that the
cancellation-enabled one-bit update policy could be greatly
beneficial for applications where transmission power or shared
channel capacity are limited.

VI. CONCLUSION

Motivated by massive IoT network applications, we consid-
ered the scenario of a large number of low-complexity devices
update their evolving state to a receiver over low-capacity
random access channels. In particular, we developed decen-
tralized update policies that require one-bit of information
per update for minimizing the expected absolute (estimation)
error when states of sources evolve according to symmetric
random walks. We first studied a benchmark first-come first-
serve (one-bit) update policy and showed that this policy will
fail to stabilize the system under some conditions. Then, we
introduced a cancellation-enabled one-bit update policy that
improves the performance of the benchmark policy and makes
the system always stable with appropriate threshold parameter
selection. We analyzed and optimized the performance of
the cancellation-enabled one-bit update policy to bound the
estimation error, and obtained a closed-form expression of
sub-optimal parameters of cancellation-enabled update policies
for homogeneous sources. We showed that the cancellation-
enabled policy with sub-optimal parameters has optimality
ratio

√
5 to the optimal performance of the cancellation-

enabled policy. Through simulations, we identified that the
sub-optimal parameters are robust to errors compared with
the optimal parameters obtained through exhaustive search,
and compared the cancellation-enabled one-bit update policy
with zero-wait sampling and threshold-based sampling policies
that require more than one-bit of information per update.
The comparison showed that the cancellation-enabled update
policy at its optimal threshold level outperforms the multi-bits
update policies. This suggests that the cancellation-enabled
one-bit update policy could be greatly beneficial for appli-
cations where transmission power or shared channel capacity
are limited.
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