
A Flexible Distributed Stochastic Optimization
Framework for Concurrent Tasks in Processing

Networks
Zai Shi, Atilla Eryilmaz, Senior Member, IEEE

Abstract—Distributed stochastic optimization has important
applications in the practical implementation of machine learning
and signal processing setup by providing means to allow intercon-
nected network of processors to work towards the optimization
of a global objective with intermittent communication. Existing
works on distributed stochastic optimization predominantly as-
sume all the processors storing related data to perform updates
for the optimization task in each iteration. However, such
optimization processes are typically executed at shared comput-
ing/data centers along with other concurrent tasks. Therefore,
it is necessary to develop efficient optimization methods that
possess the flexibility to share the computing resources with
other ongoing tasks. In this work, we propose a new first-order
framework that allows this flexibility through a probabilistic
computing resource allocation strategy while guaranteeing the
satisfactory performance of distributed stochastic optimization.
Our results, both analytical and numerical, show that by con-
trolling a flexibility parameter, our suite of algorithms (designed
for various scenarios) can achieve the lower computation and
communication costs of distributed stochastic optimization than
their inflexible counterparts. This framework also enables the
fair sharing of the common resources with other concurrent tasks
being processed by the processing network.

I. INTRODUCTION

Distributed stochastic optimization concerns the minimiza-
tion of the average 1

n

∑n
i=1 fi(x) of functions fi in the form

of Eξi∼Di
Fi(x; ξi), where Di is the distribution of random

variable ξi. Each fi or its realizations are only accessible by
a unique processor in a network, where communication can
only happen between the neighbors to find the optimum of the
above global objective. This setup has found many applications
in machine learning and signal processing fields. For example,
when faced with a big dataset, we often divide it to several
small datasets and process them in different servers connected
by a network, such as MapReduce scheme [1]. If the problem
is empirical risk minimization [2] for supervised learning,
then fi represents the loss function of the local dataset in
Server i and Fi is the loss function associated with its single
data point. Each processor needs to determine the parameter
of the prediction function that minimizes the average loss
over the entire dataset. This process can be formulated as

This work was supported in part by NSF grants: CNS-NeTS-1717045,
CMMI-SMOR-1562065, CNS-ICN-WEN-1719371, CNS-SpecEES-1824337,
CNS-NeTS-2007231; the ONR Grant N00014-19-1-2621; the DTRA grant:
HDTRA1-18-1-0050.

Zai Shi and Atilla Eryilmaz are with Department of Electrical and
Computer Engineering, the Ohio State University, Columbus, 43210, US
(email: shi.960@osu.edu; eryilmaz.2@osu.edu).

distributed optimization. Another example is decentralized
estimation. In a wireless sensor network, each sensor has a
measurement of the parameter that we are interested in. Each
measurement contains noise from the environment following a
certain distribution, maybe different from other sensors. How
to estimate the parameter based on all the measurements is
also a distributed stochastic optimization problem.

One of the pioneering works on distributed optimization was
Tsitsiklis et al.’s work [3]. Since then, several types of methods
have been proposed for deterministic optimization, such as
distributed subgradient descent (DSD) [4], [5], distributed dual
averaging [6], [7], alternating direction method of multipliers
(ADMM) [8], [9], Nesterov’s method [10], [11] and second-
order algorithm [12], [13], with different performances and
restrictions. In parallel, a lot of works were focusing on their
stochastic optimization counterpart, which will be summarized
in Section I-A. Among these types, DSD and its stochas-
tic counterpart Distributed Stochastic Subgradient Algorithm
(DSSA) [14] are the most important algorithms because they
are easily implemented in a distributed way (ADMM needs
sequential variable updates and second order methods need
costly distributed Hessian calculation), and the basis of many
further developed algorithms. So in this paper, we will explore
first-order methods built on these fundamental methods.

Meanwhile, we notice that prior works predominantly
consider the scenario of simultaneous updates of all network
processors for single distributed optimization task. However, in
real processing networks, multiple tasks are typically performed
simultaneously by the same computing resources. Consequently,
the computing resources must necessarily be shared amongst
concurrent tasks including distributed optimization for satisfac-
tory performance, which is largely overlooked in prior works.

This motivates us in this work to propose a set of flexible
distributed stochastic subgradient algorithms that allow pro-
cessors to work on multiple ongoing tasks simultaneously by
probabilistically switching between them. Our contributions
can be summarized as follows:

• We introduce a randomization parameter into DSSA that
allows sharing of resources amongst concurrent tasks
being processed by the network. This mechanism provides
the necessary flexibility without disturbing the distributed
nature of the optimization. The algorithm is called Partially
Updated Stochastic Subgradient Descent (PUSSD) and its
details will be presented in Section II

• We analyze the performance of our randomized distributed
stochastic optimization framework for various classes
of functions. Our investigations show that for various
classes of functions, the convergence and convergence rate
characteristics of the traditional DSSA [14] are maintained
while parallel processing ability can be achieved with
lower computation costs in our framework. The discussion
will be presented in Section III.

• Moreover, we develop a variant of our basic algorithm
to further reduce the communication cost of our basic
algorithm with less communication overhead in situations
where communication costs are non-negligible with re-
spect to computation costs. This variant will be introduced
in Section IV.

• Through the experiments of three types of regression
problems in Section V, the efficiency and the fairness of
our algorithms are clearly demonstrated when compared
with traditional and newly-proposed schemes.

A. Related Works

In this subsection, we introduce some related works on
distributed stochastic optimization.

As mentioned above, DSSA proposed by Ram et al. [14] is
the most classical method for distributed stochastic optimization.
They presented different convergence results based on different
stepsizes and stochastic errors. After that several methods were
proposed with certain convergence rates, which is measured by
optimality gap after T iterations of the algorithm. In [6], Duchi
et al. showed that their distributed dual averaging (DDA) algo-
rithm can use stochastic gradients to achieve a O(n log T/

√
T)

rate for general convex functions. For time-varying directed
graphs with strongly convex objectives, A subgradient-push
method [15] was proposed by Nedic and Olshevsky with a
convergence rate of O(log T/T). A class of decentralized
primal-dual type algorithms were presented in [16], which
possesses a O(1/

√
T) (respectively, O(1/T)) convergence rate

for general convex (respectively, strongly convex) functions.
For nonconvex functions, a rate of O(1/T + 1/

√
nT) can be

achieved in [17] to obtain a first-order stationary solution. To
get a faster convergence for strongly convex functions, the
work [18] used a time-dependent weighted mixing of history
values as the final output and proved its O(n

√
n/T) rate. For

random networks, the authors in [19] presented a method with
a O(1/T) rate when the objective is strongly convex. Two
methods called DSGT and GSGT were proposed in [20] for
different purposes, and both of them can achieve a linear rate
converging to a neighborhood of the optimality and a O(1/T)
rate converging to the exact solution for smooth and strongly
convex functions.

Note that the above methods all require simultaneous updates
of all processors in the processing network.

Meanwhile, there is a newly-proposed optimization scheme
called Sparsified Stochastic Gradent Descent (SGD) [21]–[26]
for distributed machine learning, which shares some similarities
with our method. However, our method is fundamentally
different from this scheme. First of all, the motivation of

sparsified SGD is to reduce commnication cost by only
communicating top k components of gradients, while our
method is designed to enable flexible resource allocation for
concurrent tasks in processing networks, which can potentially
reduce computation cost. Secondly, our method does not have
a procedure called error compensations, which is critical for
the convergence results of sparisified SGD. It is an advantage
of our method because we do not need additional memory
to store errors. Thirdly, our method is a truly decentralized
method without any master node collecting all the information
from other nodes, while it is not true for sparsified SGD.

B. Notation.

Throughout the rest of the paper, n is the number of
processors in the network. In the algorithms, xki , u

k
i , y

k
i , z

k
i are

the values of Processor i in iteration k and akij is the weight
which processor i puts on the value sent from Processor j.
∂f(x) refers to the set of subgradients of the function f at x
and ∇f(x) is the gradient of f at x. || � ||p denotes the lp-norm
for vectors. If A is a matrix, then Aij refers to the (i, j)th
entry of A. AT is defined as the transpose of A. πχ{�} is the
projection operator defined as

πχ{x} = arg min
y∈X
||y − x||22.

The complexity of projection is dependent on the structure of
χ and it has a closed form for a simplex or hypercube set.

II. MODEL AND BASIC ALGORITHM

We consider the following stochastic optimization problem
processed by a network consisting of n processors:

min
x∈χ

f(x) =
1

n

n∑
i=1

fi(x), (1)

where fi(x) is convex and in the form of Eξi∼Di
Fi(x; ξi) for

all i, and χ ⊆ Rd is a convex set. Di is a distribution which
may be different from other i’s. The network is represented by
a static connected undirected graph G = (V, E). Processor i
can only have access to its own local function fi and compute
its stochastic (sub)gradients g̃i(x) ∈ ∂Fi(x; ξi(t)) for a sample
ξi(t), whose expectation is a subgradient of fi(x). Meanwhile,
Processor i can communicate its values with its neighbors,
the set of which is denoted as N(i). We assume that the
computation cost of computing a stochastic subgradient is 1
and the communication cost of one link between two processors
is τ , which can be larger or smaller than 1.

In Section I, we already mentioned the application of
distributed stochastic optimization. Here we take one example
to explain why we are interested in solving (1) within our
model. In supervised learning setup, we consider the situation
where the training dataset is stored separately in several servers
interconnected by a network. If each server wants to solve the
empirical risk minimization problem based on its stored training
dataset, then we can write fi(θ) =

∑ni

j=1 l(h(xi,j ; θ), yi,j)
where h(�) is the prediction function such as a linear model
[2], l(�) is the loss function such as l2 norm loss [2], (xi,j , yi,j)

is the jth training data point of the total ni data points
stored in Server i and θ is the global variable that the servers
collaborate to optimize. Obviously Processor i can compute
a stochastic gradient ∇θl(h(xi,m; θ), yi,m) of its local loss
function by randomly choosing a data point (xi,m, yi,m) from
the local dataset. Stochastic gradients are preferred to be used
in machine learning practice [2] because the computation cost
of a stochastic gradient is much less than a true gradient when
the dataset is large. The details of this example will be shown
in Section V.

We assume that (1) has an nonempty optimality set S and
denote x∗ ∈ S. Meanwhile, we give the following assumptions
about fi(x), some of which may be used in the next section:

Assumption 1. fi(x) has bounded stochastic subgradients for
any i and x ∈ χ, i.e., ||g̃i||2 ≤ C for some constant C, where
g̃i is a stochastic subgradient of fi.

Assumption 2. fi(x) is L-smooth for any i and x ∈ χ, i.e.,
||∇fi(x)−∇fi(y)||2 ≤ L||x− y||2, where x, y ∈ χ.

Assumption 3. fi(x) is µ-strongly convex for any i and x ∈ χ,
i.e., fi(y) ≥ fi(x)+gTi (y−x)+ µ

2 ||y−x||
2
2, where gi ∈ ∂fi(x)

and x, y ∈ χ.

It is noted that when Assumption 1 is assumed, we have

f(y)− f(x) ≤ C||y − x||2

for any x, y ∈ χ by the definition of subgradients. Meanwhile,
the above assumptions are only needed to be satisfied when
x ∈ χ.

The goal of distributed optimization is to make the value
xki of each processor converge to the optimal solution of
(1) using limited communication with neighbors. Previous
methods predominantly focus on solving this problem where
each processor updates its value concurrently in each iteration.
One of the questions we address in this work is whether it is
possible to make a subset of the processors update the values
in each iteration while still guaranteeing the convergence of
the algorithm. Such a partial update may potentially reduce
the computation cost of the network by providing flexibility if
each processor is doing multi-tasks. When an processor is not
involved in the process of solving (1) in this iteration, it can
spare its resource in other tasks, such as measurement, data
preprocessing or other distributed optimization problems.

Inspired by the above motivation, we propose Partially
Updated Stochastic Subradient Descent (PUSSD) shown in
Algorithm 1, which can be implemented distributedly in each
processor. The dynamics of Algorithm 1 are as follows:

xki = akiiu
k−1
i +

∑
j∈N(i)

akiju
k−1
j

uki =

{
πχ{xki − ηkg̃ki } if r < p for processor i
xki else

This algorithm can be divided into two operations. Steps
6 and 7 refer to the communication operation, where each
processor communicates with its neighbors to average the

Algorithm 1 Partially Updated Stochastic Subgradient Descent
(PUSSD) for Processor i

1: Input: number of iterations K, probability to run subgra-
dient descent p, stepsizes for K iterations {ηk}Kk=1.

2: Output: Option I: xKi ; Option II: vKi :=
∑K

k=1 ηkx
k
i∑K

k=1 ηk
;

Option III: zKi := 2
K(K+1)

∑K
k=1 kx

k
i

3: Initialize x0
i ∈ χ.

4: Set u0
i ← x0

i .
5: for k = 1 to K do
6: Send uk−1

i to the neighbor processors and receive
{uk−1

j }j∈N(i) from all the neighbor processors.
7: Set xki ← akiiu

k−1
i +

∑
j∈N(i) a

k
iju

k−1
j , where akii, a

k
ij

satisfy Assumption 4.
8: Generate a random number r in [0, 1].
9: if r < p then

10: Compute a stochastic subgradient g̃ki of fi(xki).
11: Set uki ← πχ{xki − ηkg̃ki }.
12: else
13: Set uki ← xki and process other tasks.
14: end if
15: end for

information from its own and the neighbors. Steps 8 to 14
refer to the computation operation, where a subset of processors
compute the subgradients and run the subgradient descent to
approach the optimal solution of (1). The other processors
just maintain their original values and process different tasks.
Using this algorithm, we can process several tasks concurrently
in this network with different emphasis on the distributed
optimization task by choosing p values. The traditional DSSA
[14] corresponds to our algorithm when p = 1. In this way,
PUSSD can be regarded as a generalization of the traditional
DSSA by providing the flexible parallel processing ability.

Meanwhile, there exists some hard-partitioning schemes,
such as assigning a partition of processors to a certain task,
which also allows for parallel processing. But we should
mention that the distributed optimization framework is espe-
cially important under many circumstances whereby different
processors have access to chunks of data that may be private
or infeasible to share with other processors in the network. The
example of wireless sensor networks in Section I is such a case
where each measurement is related to its location and not easy
to be shared. So instead we prefer to let each processor share
its updated parameters with its neighbors. Hard-partitioning
schemes over network processors may be difficult to realize
this end, especially under the above-mentioned circumstances.
Meanwhile, the aim of the probabilistic switching is to make
the gradient computed in each step a good estimation of
the full gradient of the global function, which is essential
for the convergence results shown in the next section. Other
alternatives such as time division multiplexing can be regarded
as specific implementations of sequential processing, which
has been compared with our methods in Section V.

In the next section, we will show how the probabilistic

switching impacts convergence results of our algorithm.

III. CONVERGENCE RESULTS FOR PUSSD

First we give some definitions prepared for an assumption
related to the communication operation of PUSSD. Define
A(k) ∈ Rn×n as the weight matrix in iteration k whose
(i, j)th entry is akij . Because of the communication limitation,
akij 6= 0 only when edge (i, j) ∈ E or j = i. Supposing
{A(k)}k=1,2,... are independent and identically distributed
(i.i.d) random matrices, we can define Ā , E[A(k)] for all
k > 0. With the edge set induced by the positive elements of
Ā, i.e.,

Ē = {(j, i)|Āij > 0}, (2)

we define Ḡ = (V, Ē) as the mean connectivity graph, where
V is the vertex set of the original network.

Now we give the following the assumption about A(k):

Assumption 4. (a) {A(k)}k=1,2,... are i.i.d.;
(b) There exists some constant γ ∈ (0, 1) such that A(k)ii ≥ γ
with probability 1 for all i and minj,i∈Ē

Āij

2 ≥ γ;
(c) The mean connectivity graph is strongly-connected;
(d) A(k) is doubly stochastic with probability 1 for all k > 0,
i.e.,

∑
i a
k
ij =

∑
j a

k
ij = 1 for any i and j.

Remark 1. A simple weight matrix satisfying Assumption 4
is called the lazy Metropolis update [27], which is defined as
follows:

akij =

1

2 max {di,dj} if j ∈ N(i)

1−
∑
j∈N(i)

1
2 max {di,dj} if j = i

0 otherwise

(3)

for all k > 0, where di is the degree of Processor i. In this
case A(k) is deterministic. The mean connectivity graph is
strongly-connected if and only if the underlying graph of the
network is strongly-connected. Using this matrix requires each
processor to broadcast its degree to its neighbors along with
its value.

Now we will give three theorems related to the convergence
results of PUSSD. These theorems can still hold if the order of
communication and computation operations in Algorithm 1 is
exchanged because of their independence. Here we define two
values used in the theorems: B = (3+ 2

γ2(n−1)) exp {−γ
4(n−1)

2 }
and θ = exp {−γ

4(n−1)

4(n−1) }, where γ is defined in Assumption 4.

Theorem 1. If Assumption 1 and Assumption 4 are satisfied,
then for Algorithm 1 with output Option II we have:
(a) when ηk = η = 1√

K
is fixed,

E[f(vKi)− f(x∗)]

≤ 1√
K

(
||y0 − x∗||22

2p
+

2(1− p+ np+ 1
2n)C2

n
+

8npBC2

1− θ
)

(4)

after K iterations for any i, where y0 = 1
n

∑n
i=1 x

0
i ;

(b) when
∑∞
k=1 ηk =∞ and

∑∞
k=1 η

2
k <∞,

lim
K→∞

E[f(vKi)− f(x∗)] = 0 (5)

for any i.

Proof. See Appendix A for details.

Remark 2. The last term of equation (4) are called consensus
error because it is brought by the processor disagreement
after K iterations. We can see that it is determined by the
weight matrix and the topology of the network via B and θ.

In Theorem 1, if we let the right side of (4) equal to ε and
solve K from the equation, then we can get the the maximum
iterations to achieve ε-suboptimality, which is written as (we
allow K to be non-integer for simplicity):

K =
1

ε2
(
||y0 − x∗||22

2p
+

2(1− p+ np+ 1
2
n)C2

n
+

8npBC2

1− θ)2.

On average, np processors are computing the gradients in each
iteration. Define the network computation cost of distributed
optimization as the sum of the computation cost brought by
the processors which compute the subgradients in the network.
Then the expected network computation cost to achieve ε-
suboptimality is bounded by

Ecomp(ε)

≤ np

ε2
(
1

2p
||y0 − x∗||22 +

2(1− p+ np+ 1
2
n)C2

n
+

8npBC2

1− θ)2.

(6)

where p ∈ (0, 1]. Since the traditional DSSA corresponds
to our algorithm with p = 1, then its expected network
computation cost is bounded by

Ecomp(ε) ≤ n

ε2
(
1

2
||y0 − x∗||22 + 3C2 +

8nBC2

1− θ
)2, (7)

which can be also obtained following the proof line in [5].
Now we fix B and θ by using the same weight matrix for
different p. Then from (6) and (7) we can see that p = 1 is
not necessarily the best choice in terms of computation cost.
If we know cost functions of other concurrent tasks in terms
of p, we can minimize the total cost function by choosing an
appropriate p.

Now we turn to the result for strongly convex functions.

Theorem 2. If Assumption 1 ,3 and 4 are satisfied, then for
Algorithm 1 with output Option III and the diminishing stepsize
ηk = 2

µp(k+1) ,

E[f(zKi)− f(x∗)]

≤ 1

K + 1
(
8(1− p+ np+ 1

2n)C2

nµp
+

16nBC2

(1− θ)µ
+

8npBC2

K(1− θ)
)

(8)
K→∞−→ 0.

Proof. See Appendix B for details.

From Theorem 2, we can see that our algorithm has a
convergence rate of O(1/K), which matches the order of the

convergence rate of centralized stochastic gradient descent
[2]. When K is large, the last term of (8) can be neglected.
Then using the same procedure of deriving (6), we can write
the bound of the expected network computation cost to reach
ε-suboptimality as

Ecomp(ε)

≤ np

ε
(
8(1− p+ np+ 1

2n)C2

nµp
+

16nBC2

(1− θ)µ
)− np (9)

in this case. Again, p = 1 does not necessarily minimize
the above bound. The expected network computation cost of
distributed optimization using PUSSD can be lower than the
traditional DSSA.

Last, we consider smooth and strongly convex functions.

Theorem 3. If Assumption 1, 2, 3 and 4 are satisfied, then
for Algorithm 1 with output Option I and the fixed stepsize
ηk = η ∈ (L−µpµL ,

1
pµ),

E[f(xK+1
i)− f(x∗)] ≤ (

L

µ
− pLη)K(f(y0)− f(x∗)−R)

+R+
npηBC2

1− θ
+ npC2BθK−1

(10)

K→∞−→ R+
npηBC2

1− θ
(11)

for any i, where y0 = 1
n

∑n
i=1 x

0
i , and

R =

2η2L(p(1−p)+np2+ 1
2np)C

2

n + 3np2LBC2(η2+η)
1−θ

1− L
µ + pLη

.

Proof. See Appendix C for details.

From Theorem 3, we can see that a part of the optimality
gap decreases in a linear rate. When this part dominates the
whole optimality gap, the algorithm “seems” to have a linear
convergence rate, which can be observed in Section V-A.

From the above analysis, p should be chosen to minimize (6)
or (9) for computation cost reduction. In practice, we also need
to consider priorities (larger p for tasks of higher priority) and
fairness (not making p too extreme) requirements of concurrent
tasks. It is interesting to explore how to choose p adaptively
in future work.

IV. PUSSD WITH LESS COMMUNICATION OVERHEAD

In general, a fixed weight matrix like (3) is often used in
distributed optimization methods, where all the processors are
involved in the communication operation. However, this may
not be efficient when the communication cost is very large. This
situation may arise in the example of wireless sensor networks
when some channels are in deep fading [28]. Assumption 4
allows us to choose some suitable weight matrix to reduce
the communication cost by not utilizing all the links, but
we need additional communication protocols to realize such
a weight matrix, which increases communication overhead.
In our distributed optimization framework, we can reduce
such overhead by directly taking advantage of the randomness

1

6

4
3

5

2

𝑓1(𝑥)

𝑓2(𝑥)

𝑓3(𝑥)

𝑓6(𝑥)

𝑓5(𝑥)

𝑓4(𝑥)

Fig. 1. The communication operation of Algorithm 2 in a network consisting
of 6 processors in one iteration. The colored processors are active ones in
this iteration and the bold lines are the links involved in the communication
operation.

brought by p in PUSSD while realizing reduction of the
communication cost. The modified algorithm, called PUSSD
with less communication overhead, is shown in Algorithm 2.

Here we call the processors which compute their subgradients
the active processors and the others the inactive processors.
Note that the inactive processors are actually processing other
tasks and their inactivity is only with respect to the distributed
optimization being performed. Define N ′(i) as the set of active
neighbors for the inactive processors. In this algorithm, the
communication only occurs between the active processors
and their neighbors. For example, suppose Algorithm 2 is
running in a network shown in Figure 1. If Processor 3 and
Processor 5 choose to run the subgradient descent in this
iteration, then the communication will happen in the links
represented by bold lines in Figure 1. The inactive processors
can recognize its active neighbors by the receipt of messages
with source indicators (like TCP/IP [29]). A time window
for communication operation can be set for the processors to
guarantee the receipt of all messages that they should receive.

In the following theorem, we will show that Algorithm 2
has the same convergence results with Algorithm 1 based on
the same assumptions. This theorem, however, can only hold
with the order of computation and communication operations
shown in Algorithm 2, because they are coupled by taking
advantage of the same p, which prevents the direct application
of proofs for Algorithm 1.

Theorem 4. For Algorithm 2, Theorem 1, 2 and 3 still hold
with their respective assumptions.

Proof. One step of Algorithm 2 can be written as:

uk+1
i =

{
πχ{xki − ηkg̃ki } if i ∈ Ik+1

xki otherwise

xk+1
i = akiiu

k+1
i +

∑
j∈N ′(i)

akiju
k+1
j .

Similar to (16), we can have

yk+1 = yk +
1

n

∑
i∈Ik+1

(∆k
i − ηkg̃ki).

with Ik replaced by Ik+1. Now, for step (23), we will take
expectations to Ik+1 conditioned on {xki }ni=1 and then follow
the same proof line to get the same convergence results for
Algorithm 2. If the order of communication and computation
operations in Algorithm 2 are exchanged, we need to take
expectations to Ik in (23). Since Ik is coupled with {xki }ni=1,
we cannot obtain the bounds in (23) to continue the proof.

As less processors are involved in the communication
operation, the consensus process across the networks in
Algorithm 2 may be slower than Algorithm 1. For example, in
Algorithm 2 we can use a similar weight matrix to (3):

akij =

1

2 max {dki ,dkj }
if j ∈ Nk(i)

1−
∑
j∈Nk(i)

1
2 max {dki ,dkj }

if j = i

0 otherwise

(12)

where Nk(i), dki , dkj are defined with regard to Gk = (Vk, Ek).
Here Vk is the vertex set of the active processors and their
neighbors in iteration k, and Ek is the edge set of the edges
between the active processors and their neighbors. Using this
matrix, the convergence rate of Algorithm 2 may be slower
than Algorithm 1 because γ in Assumption 4 may decrease,
leading to the increase of B and θ in the convergence results.
Therefore for specific graphs and weight matrices, there should
be a communication-computation cost tradeoff in Algorithm
2. In the Section V-A, we will use two network topologies to
show that this tradeoff is related to the connectivity of networks.

As a common example of distributed optimization [27],
we use Erdős-Renyi graph [30] to motivate the discussion of
communication cost reduction in Algorithm 2 and examine the
situations where this method is preferred. To that end, consider
the G(n, q) model where n processors connect with each other
with probability q. We can choose q = (1 + ε) log(n)/n for
some ε > 0 to guarantee that the graph is strongly connected
with high probability [30]. For this model we have the following
proposition:

Proposition 1. For Erdős-Renyi networks G(n, q), the expected
communication cost in each iteration of Algorithm 2 is q

2 (2p−
p2)(n2 − n)τ .

Proof. In Algorithm 2, a link is in communication for dis-
tributed optimization if and only if it exists and at least one
of its two vertices is active. Then

P{a link in communication} = q(1− (1− p)2) = q(2p− p2).

So the number of the links in communication follows a
binomial distribution B

((
n
2

)
, 2qp− qp2

)
. Now we can obtain

the expected communication cost in one iteration:

Ecomm =
q

2
(2p− p2)(n2 − n)τ.

In contrast, when all the processors are involved in the
communication operation, the expected communication cost

Algorithm 2 Partially Updated Subgradient Descent (PUSSD)
with Less Communication Overhead for Processor i

1: Input: number of iterations K, probability to run subgra-
dient descent p, stepsizes for K iterations {ηk}Kk=1

2: Output: Option I: xKi ; Option II: vKi :=
∑K

k=1 ηkx
k
i∑K

k=1 ηk
;

Option III: zKi := 2
K(K+1)

∑K
k=1 kx

k
i

3: Initialize x0
i ∈ χ.

4: for k = 1 to K do
5: Generate a random number r in [0, 1].
6: if r < p then
7: Compute a stochastic subgradient g̃k−1

i of
fi(x

k−1
i).

8: Set uki ← πχ{xk−1
i − ηkg̃k−1

i }.
9: Send uki to the neighbor processors.

10: if received {ukj }j∈N(i) from all the neighbors. then
11: Set xki ← akiiu

k
i +

∑
j∈N(i) a

k
iju

k
j , where

akii, a
k
ij satisfy Assumption 4.

12: end if
13: else
14: Set uki ← xk−1

i and process other tasks.
15: if received {ukj }j∈N ′(i) from all the active neigh-

bor(s). then
16: Send uki to the active neighbor(s) and set xki ←

akiiu
k
i +

∑
j∈N ′(i) a

k
iju

k
j for some akii ∈ [0, 1], akij ∈ [0, 1],

where akii, a
k
ij satisfy Assumption 4.

17: end if
18: end if
19: end for

will be
(
n
2

)
qτ . So the decrease is q

2 (p − 1)2(n2 − n)τ . If n
and τ are large, this amount can be significant.

V. NUMERICAL RESULTS

In this section, we will show the advantages of PUSSD and
its variant for three cases, l2-norm loss, l1-norm loss and l2-
norm loss with l1 regularizer , in the regression setting. These
objectives represent three types of functions we discussed in
Section III: one satisfying Assumption 1, 2 and 3, one satisfying
Assumption 1, and one satisfying Assumption 1 and 3. For the
first case, we will conduct more comprehensive experiments
to explore the performance of PUSSD and its variant, while
the experiments of the last two cases are relatively brief.

A. l2-norm Loss

Suppose each processor has a training set consisting of
20 data points (xi,m, yi,m), where xi,m ∈ Rd and yi,m ∈ R
belong to the mth data point stored in Processor i. Then the
empirical risk minimization for the l2-norm loss is to solve
the following optimization problem:

min
θ∈χ

f(θ) =
1

20n
||y −XT θ||22, (13)

where X ∈ Rd×20n is the matrix whose (20(i − 1) + m)th
column is xi,m and y ∈ R20n is the vector whose (20(i− 1) +
m)th entry is yi,m. n(= 100) is the number of processors in the

network. A stochastic gradient at θ of fi is xi,m(xTi,mθ−yi,m)
by randomly choosing one data point (xi,m, yi,m) from the
dataset of Processor i. It is easy to check that (13) satisfies
Assumption 1, 2 and 3 when χ is compact.

First, we consider that two tasks are processed by a network,
which both solve Problem (13) with different datasets. The
network topology is a connected 10-regular graph, where each
node is connected with 10 nodes. For Task 1, we set yi,m =
xTi,mθ

∗+ξi,m, where θ∗ is a 10-dimensional vector whose first
3 entries are 30, 20, 10 and the remaining 0s. In this experiment,
we generate xi,m by sampling from a uniform distribution in
[0, 10]3, and ξi,m ∈ R follows a uniform distribution in [0, 5].
For Task 2, we set θ∗ to be a 10-dimensional vector whose
first 3 entries are 3, 2, 1 and the remaining 0s. The generations
of xi,m and yi,m are the same with Task 1. In both tasks, we
set χ to be [−100, 100]10

When applying PUSSD (Algorithm 1) to these two tasks, we
let each processor process Task 1 with probability p and Task
2 otherwise, both using (3) for the weight matrix. Meanwhile
we use three sequential processing algorithms as comparisons:
DSSA [14] with Task 1 first, DSSA with Task 2 first and
DGST [20] with Task 1 first. For these schemes, when the
optimality gap of one task is less than a certain value (which
is set to be more than what PUSSD can reach within our
iteration range), the network proceeds to process the other
task. 1 The stepsizes of each method are chosen to achieve
their satisfying performance. The optimality gap in iteration
k is measured by f(θki) − f(θ∗) (Option I in Algorithm 1),
where θki is the output of Processor i in iteration k. f(θ∗) is
calculated by an inbuilt Matlab function, which is also true
for other experiments. Processor i is randomly chosen at the
beginning of the experiment, and kept tracked afterwards.

In Figure 2(a) we compare PUSSD using Theorem 3 with
different p values with three sequential processing methods
mentioned above. We set the initial point to be zero vector
for each method. The metric is the total optimality gap of two
tasks. From the figure we can see that larger p gives a faster
rate in the initial phase. This is because Task 1 has a greater
decrease in its optimality gap than Task 2 if processed alone,
given that the initial point of Task 1 is much further away
from the optimum. So more emphasis on Task 1 can benefit
the convergence rate initially. Meanwhile, we can observe that
when any of the tasks is close to its optimum, its convergence
rate will decrease dramatically. Therefore putting more weight
on any task is not a wise decision in this phase. As a result,
PUSSD with extreme p values and the sequential processing
algorithms are all impacted by the slow final phase. Given this
tradeoff, p = 0.6 outperforms others after 150 iterations. For
DSGT algorithm, it has a better performance than DSSA, but
still worse than PUSSD with p = 0.6.

In Figure 2(b), we plot the evolution of two tasks when
PUSSD with p = 0.6 is applied. From the figure, we can see
that the optimality gaps of both tasks decrease together, so

1In practice each processor has no access to the optimality gap and terminates
when the value changes little. The switching criteria used here is for simplicity
and comparison.

0 100 200 300 400 500 600 700 800 900 1000

iterations

10-2

100

102

104

106

to
ta

l o
pt

im
al

ity
 g

ap

p=0.1
p=0.6
p=0.9
DSSA with Task 1 first
DGST with Task 1 first
DSSA with Task 2 first

(a) The comparison of PUSSD with p = 0.1, p = 0.6, p = 0.9 and the three
sequential processing algorithms for l2 norm loss

0 100 200 300 400 500 600 700 800 900 1000

iterations

10-4

10-2

100

102

104

106

op
tim

al
ity

 g
ap

Task 1
Task 2

(b) The evolution of two tasks using PUSSD with p = 0.6 for l2 norm loss

Fig. 2. PUSSD applied to two concurrent optimization tasks for l2 norm loss

the fairness is also guaranteed. The decrease is approximately
in a linear rate before reaching the final optimality gap, as
explained after the statement of Theorem 3. This experiment
shows the advantages of PUSSD when dealing with concurrent
optimization problems for strongly convex, smooth functions.

To further explore the impact of p values on the performance,
we run PUSSD with different p values for different iterations
to see the total optimality gap that they can achieve. We plot
the total optimality gap versus p values in Figure 3 after
K(= 100, 200, 300) iterations of PUSSD. We can see that
for small iterations, larger p values like 0.8, 0.9 can achieve
smaller optimality gap, which demonstrates our observation of
the initial phase in Figure 2(a). For more iterations of PUSSD,
the preferred p values are towards to the middle of the range
(like 0.6, 0.7) because we need to balance the progress of two
tasks without letting the final phase of any task drag the other
task. This phenomenon motivates us to consider PUSSD with
dynamic p values, which is left for future work.

Now we assume that Task 1 is processed along with other
kinds of tasks and focus on the performance of Task 1. The
measurement of the optimality gap is the same with the above
experiment, but now only for Task 1. We compare Algorithm
2 using the weight matrix defined in (12) with Algorithm 1
using (3) for p = 0.2, p = 0.4 and p = 0.6 in Figure 4(a)
where the network topology is a 10-regular graph. We can find
that the convergence rates of two algorithms are very close to
each other for all the choices of p. In this case, Algorithm 2
is better if we take communication cost into account.

Meanwhile, since the communication cost of Algorithm 2 is

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p values

10-1

100

101

102

103

104

to
ta

l o
pt

im
al

ity
 g

ap

K=100
K=200
K=300

Fig. 3. The comparison of PUSSD with different p values after K iterations

sensitive to the network topology, we also test our algorithms
in a star graph, where one processor is connected with the other
99 processors. It has much less connectivity than the 10-regular
network which we considered above. It means for the same
p, the number of active communication links of Algorithm 2
in a star network is much less than the one in a 10-regular
network.

The result is shown in Figure 4(b). We can see the gaps
between Algorithm 1 and Algorithm 2 are larger compared
with Figure 4(a) because of less connectivity. Meanwhile, for
a large p value, the gap becomes smaller. To further compare
Algorithm 1 and 2 in the star network, we also plot the total
cost of algorithms mentioned above versus communication cost
per link τ in Figure 4(c). Here the total cost of an algorithm
is its sum of computation cost and communication cost across
the network to reach 0.5 optimality gap of Task 1. Recall that
we set the computation cost of a stochastic gradient to be 1.
We can see that for all the p values, when the communication
cost is large enough, the total cost of Algorithm 2 is lower than
Algorithm 1. It demonstrates the communication efficiency of
Algorithm 2 compared with Algorithm 1.

B. l1-norm Loss

In this subsection, we consider an unconstrained empirical
risk minimization for the l1-norm loss with the same dataset
in Section V-A:

min
θ∈Rd

f(θ) =
1

20n
||y −XT θ||1. (14)

It is easy to check the above function satisfies Assumption 1.
Similarly, we first consider the case where two tasks are

processed by a 10-regular network. We refer Task 3 and 4
to be the tasks solving (14) with the same dataset of Task 1
and Task 2, respectively. The performance metric is similar to
Section V-A.

In Figure 5(a) we compare PUSSD using Theorem 1(a) with
different p values with three sequential processing algorithms:
DSSA with Task 3 first, DSSA with Task 4 first and DDA
[6] with Task 4 first. The switching criteria of the sequential
algorithms are similar to Section V-A. From the figure we can
see that PUSSD with p = 0.6 and p = 0.9 give the fastest rate
at the initial phase. After that p = 0.6 and DDA with Task 4

0 100 200 300 400 500 600 700 800 900 1000

iterations

10-4

10-2

100

102

op
tim

al
ity

 g
ap

Algorithm 2 with p=0.2
Algorithm 2 with p=0.4
Algorithm 2 with p=0.6
Algorithm 1 with p=0.2
Algorithm 1 with p=0.4
Algorithm 1 with p=0.6

(a) The comparison of Algorithm 1 and Algorithm 2 for a 10-regular network

0 500 1000 1500

iterations

10-2

10-1

100

101

102

103

op
tim

al
ity

 g
ap

Algorithm 2 with p=0.2
Algorithm 2 with p=0.4
Algorithm 2 with p=0.6
Algorithm 1 with p=0.2
Algorithm 1 with p=0.4
Algorithm 1 with p=0.6

(b) The comparison of Algorithm 1 and Algorithm 2 for a star network

10-2 10-1

communication cost per link

2

2.5

3

3.5

4

4.5

to
ta

l c
os

t

104

Algorithm 2 with p=0.2
Algorithm 1 with p=0.2
Algorithm 2 with p=0.4
Algorithm 1 with p=0.4
Algorithm 2 with p=0.6
Algorithm 2 with p=0.6

(c) The total cost of Algorithm 1 and 2 to reach 0.5 optimality gap with different
communication cost per link in a star network

Fig. 4. The comparison of Algorithm 1 and 2 for different network topologies

first have similar rates, which is faster than others. Accounting
for the whole process, PUSSD with p = 0.6 is the best choice.
From Figure 5(b) we can also see that the optimality gaps of
both tasks decrease concurrently when we apply PUSSD with
p = 0.6, so the fairness is maintained with this choice. This
experiment shows the advantages of PUSSD when dealing with
concurrent optimization problems for nonsmooth functions.

Now we assume that Task 4 is processed along with
other kinds of tasks in a 10-regular network and study the
performance of Task 4. We apply Algorithm 2 to Task 4 with
the weight matrix defined in (12). We compare this algorithm
with Algorithm 1 using (3) for different p to show how the
computation cost is impacted.

In Figure 6, we plot the optimality gap of Task 4 versus
iterations for Algorithm 1 and Algorithm 2 when p = 0.2,
p = 0.6 and p = 1 (which is also the traditional DSSA). We can
see that for the same p, the performance of the two algorithms
is almost the same. So similar to Figure 4(a), the decrease

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

iterations

100

101

102

103

to
ta

l o
pt

im
al

ity
 g

ap

p=0.1
p=0.6
p=0.9
DSSA with Task 4 first
DSSA with Task 3 first
DDA with Task 4 first

(a) The comparison of PUSSD with p = 0.1, p = 0.6, p = 0.9 and the three
sequential processing algorithms for l1 norm loss

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

iterations

10-1

100

101

102

103

op
tim

al
ity

 g
ap

Task 3
Task 4

(b) The evolution of two tasks using PUSSD with p = 0.6 for l1 norm loss

Fig. 5. PUSSD applied to two concurrent optimization tasks for l1 norm loss

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iterations

100

101

op
tim

al
ity

 g
ap

Algorithm 2 with p=0.2
Algorithm 2 with p=0.6
Algorithm 2 with p=1
Algorithm 1 with p=0.2
Algorithm 1 with p=0.6
Algorithm 1 with p=1

Fig. 6. The comparison of Algorithm 1 and Algorithm 2 with different p for
l1 norm loss

of communication does not impact the convergence rate too
much when Algorithm 2 is applied. In this case, Algorithm 2
can reduce the communication cost while not increasing the
computation cost of Task 4, which is preferred when the system
has high communication costs. Meanwhile we can compare
the computation cost of PUSSD with the traditional DSSA
(p = 1) to reach a certain gap in this figure. For example, when
the optimality gap is 100, PUSSD with p = 0.6 needs about
2500 iterations, while the traditional DSSA needs about 1500
iterations. So the expected network computation cost to reach
100 gap is almost the same for PUSSD and the traditional
DSSA (since 2500 × 0.6 = 1500). But our algorithm allows
for the parallel processing of other tasks.

C. l2-norm Loss with l1 Regularizer

For the completeness of our simulation, we also consider
the example of LASSO regression [31], where we add the l1
regularizer to (14) for the sparsity of θ. In this simulation, the
objective function is as follows:

min
θ∈χ

f(θ) =
1

20n
||y −XT θ||22 + 0.1||θ||1, (15)

where χ = [−100, 100]10. When we use the datasets mentioned
in Section V-A, it can be proved that (15) satisfies Assumption
1 and 3.

For brevity, we only consider the case where two tasks
minimizing the above objective function are processed by a
10-regular network in this subsection. They are referred as Task
5 and 6 with the datasets same with Task 1 and 2, respectively.
We compare PUSSD using Theorem 2 and different p values
with two sequential processing algorithms: the method in [18]
with Task 5 first and with Task 6 first. The result is shown in
Figure 7(a). We can see that PUSSD with p = 0.6 is still the
best among these methods. Here except the reason mentioned in
the previous two subsections, we can observe another advantage
of PUSSD. Because both PUSSD using Theorem 2 and the
method in [18] adopt diminishing stepsizes, the stepsize of
the first iteration can be too large, which causes a jump in
function values. Obviously, this kind of jump is not good for
convergence. For the sequential processing algorithms, there
is a jump at the start of each task, while PUSSD only has
one jump at the beginning of the whole algorithm. So the
jump has less harm for the convergence of PUSSD. Meanwhile
in Figure 7(b), we can see that the optimality gaps of two
tasks decrease concurrently for PUSSD with p = 0.6, which
maintains the fairness of two tasks. Through this experiment,
we also demonstrate the advantages of PUSSD for strongly
convex functions.

VI. CONCLUSION

In this paper we proposed Partially Updated Subgradient
Descent (PUSSD) to enable the split of computing resources
for distributed optimization and concurrent tasks in networks.
We then derived the convergence results of PUSSD with
different assumptions on each function, which showed its
favorable convergence and convergence rate characteristics.
For one possible application situation, we developed PUSSD
with less communication overhead to get a better performance
in communication costs. The experiments of three machine
learning problems demonstrated the flexibility and efficiency
of our algorithms along with their ability to share computing
resources more fairly amongst concurrent tasks.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] L. Bottou, F. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–311,
2018.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iterations

100

105

to
ta

l o
pt

im
al

ity
 g

ap

p=0.1
p=0.6
p=0.9
[22] with Task 6 first
[22] with Task 5 first

(a) The comparison of PUSSD with p = 0.1, p = 0.6, p = 0.9 and two
sequential processing algorithms for LASSO

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iterations

10-5

100

105

op
tim

al
ity

 g
ap

Task 5
Task 6

(b) The evolution of two tasks using PUSSD with p = 0.6 for LASSO

Fig. 7. PUSSD applied to two concurrent optimization tasks for LASSO

[3] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on automatic control, vol. 31, no. 9, pp. 803–812, 1986.

[4] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[5] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex
optimization over random networks,” IEEE Transactions on Automatic
Control, vol. 56, no. 6, pp. 1291–1306, 2011.

[6] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic control, vol. 57, no. 3, pp. 592–606,
2012.

[7] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual
averaging for convex optimization,” in Decision and Control (CDC),
2012 IEEE 51st Annual Conference on. IEEE, 2012, pp. 5453–5458.

[8] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence
of the admm in decentralized consensus optimization.” IEEE Trans. Signal
Processing, vol. 62, no. 7, pp. 1750–1761, 2014.

[9] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed admm
over networks,” IEEE Transactions on Automatic Control, vol. 62, no. 10,
pp. 5082–5095, 2017.

[10] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal
algorithms for smooth and strongly convex distributed optimization in
networks,” arXiv preprint arXiv:1702.08704, 2017.

[11] G. Qu and N. Li, “Accelerated distributed nesterov gradient descent,”
arXiv preprint arXiv:1705.07176, 2017.

[12] R. Tutunov, H. B. Ammar, and A. Jadbabaie, “A distributed new-
ton method for large scale consensus optimization,” arXiv preprint
arXiv:1606.06593, 2016.

[13] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton distributed
optimization methods,” IEEE Transactions on Signal Processing, vol. 65,
no. 1, pp. 146–161, 2017.

[14] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” Journal
of optimization theory and applications, vol. 147, no. 3, pp. 516–545,
2010.

[15] A. Nedić and A. Olshevsky, “Stochastic gradient-push for strongly

convex functions on time-varying directed graphs,” IEEE Transactions
on Automatic Control, vol. 61, no. 12, pp. 3936–3947, 2016.

[16] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms for de-
centralized and stochastic optimization,” arXiv preprint arXiv:1701.03961,
2017.

[17] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” in Advances in
Neural Information Processing Systems, 2017, pp. 5330–5340.

[18] M. O. Sayin, N. D. Vanli, S. S. Kozat, and T. Basar, “Stochastic
subgradient algorithms for strongly convex optimization over distributed
networks,” IEEE Transactions on Network Science and Engineering,
vol. 4, no. 4, pp. 248–260, Oct 2017.

[19] D. Jakovetic, D. Bajovic, A. K. Sahu, and S. Kar, “Convergence rates
for distributed stochastic optimization over random networks,” arXiv
preprint arXiv:1803.07836, 2018.

[20] S. Pu and A. Nedić, “Distributed stochastic gradient tracking methods,”
Mathematical Programming, pp. 1–49, 2020.

[21] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems, 2018, pp. 5973–
5983.

[22] S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu, “A convergence analysis
of distributed sgd with communication-efficient gradient sparsification.”
in IJCAI, 2019, pp. 3411–3417.

[23] S. Shi, Z. Tang, Q. Wang, K. Zhao, and X. Chu, “Layer-wise adaptive
gradient sparsification for distributed deep learning with convergence
guarantees,” arXiv preprint arXiv:1911.08727, 2019.

[24] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,”
in Advances in Neural Information Processing Systems, 2018, pp. 4447–
4458.

[25] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” in Advances in Neural
Information Processing Systems, 2018, pp. 1299–1309.

[26] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu, “A
distributed synchronous sgd algorithm with global top-k sparsification for
low bandwidth networks,” in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2019, pp. 2238–2247.

[27] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
arXiv preprint arXiv:1709.08765, 2017.

[28] T. Watteyne, S. Lanzisera, A. Mehta, and K. S. Pister, “Mitigating
multipath fading through channel hopping in wireless sensor networks,”
in 2010 IEEE International Conference on Communications. IEEE,
2010, pp. 1–5.

[29] W. Stallings, High-speed networks: TCP/IP and ATM design principles.
Prentice hall Englewood Cliffs, NJ, 1998, vol. 172.

[30] P. Erdős and A. Rényi, “On the evolution of random graphs,” Publ. Math.
Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[31] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[32] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont,
2016.

Throughout the appendix, || � || refers to l2 norm, and Ik is
the set of processors computing (sub)gradients in iteration k.

APPENDIX A
PROOF OF THEOREM 1

Suppose k ≥ 1. The output of Processor i in iteration k + 1
in Algorithm 1 is

xk+1
i = ak+1

ii uki +
∑

j∈N(i)

ak+1
ij ukj ,

where uki =

{
πχ{xki − ηkg̃ki } if i ∈ Ik
xki otherwise

and g̃ki is a

stochastic subgradient of fi(xki) and E[g̃ki] = gki ∈ ∂fi(xki).
Now we define yk+1 = 1

n

∑n
i=1 x

k+1
i , vki = xki − ηkg̃ki ,∆k

i =
πχ{vki } − vki .

Since A(k + 1) is doubly stochastic with probability 1, we
have

yk+1 =
1

n

n∑
i=1

[ak+1
ii uki +

∑
j∈N(i)

ak+1
ij ukj]

=
1

n

n∑
i=1

uki

=
1

n

n∑
i=1

xki +
1

n

∑
i∈Ik

(∆k
i − ηkg̃ki)

= yk +
1

n

∑
i∈Ik

(∆k
i − ηkg̃ki). (16)

Define x∗ as any point in the optimality set S of the original
problem. Then

||yk+1 − x∗||2 = ||yk − x∗||2 +
1

n2
||
∑
i∈Ik

(∆k
i − ηkg̃ki)||2

+
2

n

∑
i∈Ik

(∆k
i − ηkg̃ki)T (yk − x∗). (17)

Now we look at the second term in equation (17).
1

n2
||
∑
i∈Ik

(∆k
i − ηkg̃ki)||2 ≤ 1

n2
(
∑
i∈Ik

||∆k
i ||+

∑
i∈Ik

ηk||g̃ki ||)2.

Since χ is a convex set and uki ∈ χ, then xk+1
i ∈ χ because

it is a convex combination of uki . Similarly, we have xki ∈ χ.
From the definition of projection operation, πX {vki } has the
smallest distance to vki among the points belonging to χ. Since
xki ∈ χ, we have

||∆k
i || = ||πX {vki } − vki ||
≤ ||xki − vki ||
= ηk||g̃ki || ≤ ηkC. (18)

Meanwhile, from (18) and Assumption 1, we have
1

n2
||
∑
i∈Ik

(∆k
i − ηkg̃ki)||2 ≤ 1

n2
(
∑
i∈Ik

||∆k
i ||+

∑
i∈Ik

ηk||g̃ki ||)2

≤ 4

n2
(
∑
i∈Ik

ηk||g̃ki ||)2

≤ 4η2
k|Ik|2C2

n2
. (19)

where |Ik| is the cardinality of the set Ik. Now we look at
the last term in equation (17). We notice that

(∆k
i)T (yk − x∗) = (∆k

i)T (yk − vki) + (∆k
i)T (vki − x∗)

≤ ||∆k
i ||(||yk − xki ||+ ηk||g̃ki ||)

+ (∆k
i)T (vki − x∗ −∆k

i + ∆k
i)

≤ ηkC||yk − xki ||+ η2
kC

2

+ (∆k
i)T (vki − x∗ −∆k

i + ∆k
i) (20)

= ηkC||yk − xki ||+ η2
kC

2 − ||∆k
i ||2

+ (vki − πχ{vki })T (x∗ − πχ{vki })
≤ ηkC||yk − xki ||+ η2

kC
2, (21)

where the inequality (20) is from (18) and the inequality (21) is
from (vki −πχ{vki })T (x∗−πχ{vki }) ≤ 0 due to the projection
theorem (Proposition 1.1.4 of [32]).

Define Dk = maxi∈{1,2,...,n} ||yk − xki ||. Then we have

2

n

∑
i∈Ik

(∆k
i)T (yk − x∗) ≤ 2|Ik|

n
(ηkCDk + η2

kC
2). (22)

Taking expectation to both sides of (17) conditioned on
{xki }ni=1 along with (19) and (22), we have

E[||yk+1 − x∗||2|{xki }ni=1]

≤ ||yk − x∗||2 +
4η2
k(np(1− p) + n2p2)C2

n2

+ 2p(ηkCDk + η2
kC

2)− 2pηk
n

n∑
i=1

(gki)T (yk − x∗), (23)

where E[|Ik||{xki }ni=1] = np and E[|Ik|2|{xki }ni=1] = np(1 −
p) + n2p2 by the properties of the binomial distribution. For
the last term of equation (23), we have the following bound:

− pηk
n

n∑
i=1

(gki)T (yk − x∗)

= −pηk
n

n∑
i=1

(gki)T (xki − x∗ + yk − xki)

≤ −pηk
n

n∑
i=1

(fi(x
k
i)− fi(x∗)) +

pηk
n

n∑
i=1

||gki ||||yk − xki ||

(24)

≤ −pηk
n

n∑
i=1

(fi(x
k
i)− fi(x∗)) + pηkCDk, (25)

where (24) is from the definition of subgradients and the
Cauchy-Schwartz inequality, (25) is from ||gki || ≤ E||g̃ki || < C
by Assumption 1 and Jensen’s inequality.

For any j ∈ {1, ..., n}

− pηk
n

n∑
i=1

(fi(x
k
i)− fi(x∗))

= −pηk
n

n∑
i=1

(fi(x
k
j)− fi(x∗) + fi(x

k
i)− fj(xki))

≤ −pηk(f(xkj)− f(x∗)) +
pηk
n
C

n∑
i=1

||xki − xkj ||

≤ −pηk(f(xkj)− f(x∗)) + 2pηkCDk, (26)

where (26) is from ||xki −xkj || ≤ ||yk−xki ||+||yk−xkj || ≤ 2Dk.
Combining all these results, we have

E[||yk+1 − x∗||2|{xki }ni=1]

≤ ||yk − x∗||2 +
4η2
k(p(1− p) + np2 + 1

2np)C
2

n
+ 8pηkCDk − 2pηk(f(xkj)− f(x∗)). (27)

Now taking expectations over {xki }ni=1, we have:

E[||yk+1 − x∗||2]

≤ E[||yk − x∗||2] +
4η2
k(p(1− p) + np2 + 1

2np)C
2

n
+ 8pηkCEDk − 2pηkE[f(xkj)− f(x∗)]. (28)

Now we want to bound EDk. First, for k ≥ 2, one step of the
algorithm can be written as

xki =

n∑
j=1

[A(k)]ij(x
k−1
j + ζk−1

j),

where

ζk−1
j = (πχ{xk−1

j − ηkg̃k−1
j } − xk−1

j)1j∈Ik−1

Define

Φ(k, s) = A(k)A(k − 1)...A(s)

for k > s and Φ(k, k) = A(k). Then by induction we have

xki =

n∑
j=1

[Φ(k, 1)]ijx
0
j +

k∑
r=2

n∑
j=1

[Φ(k, r)]ijζ
r−1
j .

Meanwhile, as A(k) is doubly stochastic with probability 1
for any k and 1

n

∑n
i=1 x

1
i = 1

n

∑n
i=1 x

0
i , we have

yk = yk−1 +
1

n

n∑
j=1

ζk−1
j

=
1

n

n∑
j=1

x0
j +

1

n

k∑
r=2

n∑
j=1

ζr−1
j .

So we have

E||yk − xki ||

= E||
n∑
j=1

x0
j (

1

n
− [Φ(k, 1)]ij) +

k∑
r=2

n∑
j=1

(
1

n
− [Φ(k, r)]ij)ζ

r−1
j ||

(29)

≤ max
1≤j≤n

||x0
j ||

n∑
j=1

E| 1
n
− [Φ(k, 1)]ij |

+

k∑
r=2

n∑
j=1

E[| 1
n
− [Φ(k, r)]ij |||ζr−1

j ||] (30)

= max
1≤j≤n

||x0
j ||

n∑
j=1

E| 1
n
− [Φ(k, 1)]ij |

+

k∑
r=2

n∑
j=1

E| 1
n
− [Φ(k, r)]ij |E||ζr−1

j ||, (31)

where (30) is from Cauchy-Schwartz inequality and (31) is
because Φ(k, r) and ζr−1

j are independent. By the projection
theorem (Proposition 1.1.4 of [32]), we have

E||ζkj || ≤ E[||(πχ{xkj − ηkg̃kj } − xkj)||||1j∈Ik ||]
≤ E[||ηkg̃kj ||||1j∈Ik ||]
≤ ηkCp.

Meanwhile, define b(k, s) = max(i,j)∈1...n | 1n − Φ(k, s)ij |.
From Lemma 7 in [5], when Assumption 4 is satisfied, we
have

E[b(k, s)] ≤ Bθk−s, (32)

where B = (3 + 2
γ2(n−1)) exp(−γ

4(n−1)

2), θ =

exp(−γ
4(n−1)

4(n−1)) < 1.
So we have for k ≥ 2 and any i ∈ {1, 2, ..., n}

E||yk − xki || ≤ n(max
1≤j≤n

||x0
j ||)Bθk−1 +

k∑
r=2

npBθk−rηr−1C

≤ np
k∑
r=1

ηr−1CBθ
k−r (33)

by assuming max1≤j≤n ||x0
j || ≤ pC (we can always enlarge

C to make this assumption satisfied) and η0 = 1.
Thus EDk ≤ np

∑k
r=1 ηr−1CBθ

k−r. Plugging it into (28),
we have

E[||yk+1 − x∗||2]

≤ E||yk − x∗||2 +
4η2
k(p(1− p) + np2 + 1

2np)C
2

n

+ 8np2ηkC
2

k∑
r=1

ηr−1Bθ
k−r − 2pηkE[f(xkj)− f(x∗)].

Telescoping from k = 1 to K and doing simple manipulations,
we have

E[

∑K
k=1 ηk(f(xkj)− f(x∗))∑K

k=1 ηk
]

≤ ||y
0 − x∗||2

2p
∑K
k=1 ηk

+

∑K
k=1 η

2
k∑K

k=1 ηk
·

2(1− p+ np+ 1
2n)C2

n

+
4npBC2

∑K
k=1 ηk

∑k
r=1 ηr−1θ

k−r∑K
k=1 ηk

, (34)

where y1 = y0 = 1
n

∑n
i=1 x

0
i .

(a) If ηk = η = 1√
K

for some constant K, then from (34)
we have
K∑
k=1

1

K
E[f(xkj)− f(x∗)]

≤ 1√
K

(
||y0 − x∗||2

2p
+

2(1− p+ np+ 1
2n)C2

n
+

8npBC2

1− θ
).

(b) If
∑∞
k=1 ηk =∞ and

∑∞
k=1 η

2
k <∞, then

K∑
k=1

ηk

k∑
r=1

ηr−1θ
k−r ≤

K∑
k=1

k∑
r=1

η2
r−1θ

k−r. (35)

By applying Lemma 9 in Lobel et al.’s work [5] to the right
hand of (35), we have

lim
K→∞

4npBC2
K∑
k=1

ηk

k∑
r=1

ηr−1θ
k−r <∞.

So from (34) we have

lim
K→∞

E[

∑K
k=1 ηk(f(xkj)− f(x∗))∑K

k=1 ηk
] = 0.

Since f is convex, then
∑K

k=1 ηk(f(xk
j)−f(x∗))∑K

k=1 ηk
≥

f(
∑K

k=1 ηkx
k
j∑K

k=1 ηk
)− f(x∗), which gives the final result.

APPENDIX B
PROOF OF THEOREM 2

Our proof will start from (23). Since fi is µ-strongly convex,
we have the new bound for the last term:

− pηk
n

n∑
i=1

(gki)T (yk − x∗)

= −pηk
n

n∑
i=1

(gki)T (xki − x∗ + yk − xki)

≤ −pηk
n

n∑
i=1

(fi(x
k
i)− fi(x∗) +

µ

2
||xki − x∗||2)

+
pηk
n

n∑
i=1

||gki ||||yk − xki || (36)

≤ −pηk
n

n∑
i=1

(fi(y
k)− fi(x∗) +

µ

2
||xki − x∗||2

+ fi(x
k
i)− fi(yk)) + pηkCDk

≤ −pηk
n

n∑
i=1

(fi(y
k)− fi(x∗) +

µ

2
||xki − x∗||2

+ (ḡk)T (xki − yk) +
µ

2
||yk − xki ||2) + pηkCDk (37)

≤ −pηk(f(yk)− f(x∗) +
µ

2
||yk − x∗||2) + 2pηkCDk,

where ḡk ∈ ∂fi(yk). In (36) and (37), we use the following
property of strong convexity ((B.3) of [32])

f(y) ≥ f(x) + gT (y − x) +
µ

2
||y − x||2,

where g ∈ ∂f(x). The last inequality follows from
−(ḡk)T (xki − yk) ≤ CDk and ||xki − x∗||2 + ||yk − xki ||2 ≥
||yk − x∗||2.
Plugging it into (23), we have

E[||yk+1 − x∗||2|{xki }ni=1]

≤ (1− pµηk)||yk − x∗||2 +
4η2
k(p(1− p) + np2 + 1

2np)C
2

n
+ 6pηkCDk − 2pηk(f(yk)− f(x∗))

= (1− pµηk)||yk − x∗||2 +
4η2
k(p(1− p) + np2 + 1

2np)C
2

n
+ 6pηkCDk − 2pηk(f(xkj)− f(x∗) + f(yk)− f(xkj))

≤ (1− pµηk)||yk − x∗||2 +
4η2
k(p(1− p) + np2 + 1

2np)C
2

n
+ 8pηkCDk − 2pηk(f(xkj)− f(x∗))

for any j. Taking expectations over {xki }ni=1 and plugging the
bound of EDk, we have

E(f(xkj)− f(x∗))

≤ 1

2pηk
[(1− pµηk)E||yk − x∗||2 − E||yk+1 − x∗||2]

+
2ηk((1− p) + np+ 1

2n)C2

n
+ 4npBC2

k∑
r=1

ηr−1θ
k−r.

Multiplying both sides by k and telescoping from k = 1 to
K yields

K∑
k=1

kE(f(xkj)− f(x∗))

≤ 1− pµη1

2pη1
E||y1 − x∗||2 − K

2pηK
E||yK+1 − x∗||2

+

K∑
k=2

(
k

2pηk
(1− pµηk)− k − 1

2pηk−1
)E||yk − x∗||2

+

K∑
k=1

2kηk((1− p) + np+ 1
2n)C2

n

+

K∑
k=1

4knpBC2
k∑
r=1

ηr−1θ
k−r.

Letting ηk = 2
µp(k+1) , we have k

2pηk
(1 − pµηk) = k−1

2pηk−1
.

Then for the last term, we have
K∑
k=1

k

k∑
r=1

ηr−1θ
k−r =

K∑
k=1

k

k−2∑
z=0

ηk−z−1θ
z

=

K−2∑
z=0

θz
K∑

k=z+1

kηk−z−1

≤ 1

1− θ

K∑
k=1

kηk−1

=
1

1− θ
+

2(K − 1)

(1− θ)µp
.

Then
K∑
k=1

kE(f(xkj)− f(x∗))

≤ −µK(K + 1)

4
E||yK+1 − x∗||2 +

4K(1− p+ np+ 1
2n)C2

nµp

+
8(K − 1)nBC2

(1− θ)µ
+

4npBC2

1− θ
.

Multiplying both sides by 2
K(K+1) , we have

2

K(K + 1)

K∑
k=1

kE(f(xkj)− f(x∗))

≤ 1

K + 1
(
8(1− p+ np+ 1

2n)C2

nµp
+

16nBC2

(1− θ)µ
+

8npBC2

K(1− θ)
).

Since f is convex, we have the final result.

APPENDIX C
PROOF OF THEOREM 3

We still prove the theorem based on (23). For the last term
of (23), starting from (25) we have

− pηk
n

n∑
i=1

(gki)T (yk − x∗)

≤ −pηk
n

n∑
i=1

(fi(x
k
i)− fi(x∗)) + pηkCDk

≤ −pηk
n

n∑
i=1

(fi(y
k)− fi(x∗)) + 2pηkCDk

= −pηk(f(yk)− f(x∗)) + 2pηkCDk.

Meanwhile since f is µ-strongly convex, L-smooth, and
∇f(x∗) = 0, we have (Section B.1 of [32])

µ

2
||y − x∗||2 ≤ f(y)− f(x∗) ≤ L

2
||y − x∗||2.

So (23) can be transformed into
2

L
E[f(yk+1)− f(x∗)|{xki }ni=1]

≤ (
2

µ
− 2pηk)(f(yk)− f(x∗))

+
4η2
k(p(1− p) + np2 + 1

2np)C
2

n
+ 6pηkCDk. (38)

Taking expectations over {xki }ni=1 and plugging the bound of
EDk into (38), we have

E[f(yk+1)− f(x∗)] ≤ (
L

µ
− pLηk)E(f(yk)− f(x∗))

+
2η2
kL(p(1− p) + np2 + 1

2np)C
2

n

+ 3np2LBC2ηk

k∑
r=1

ηr−1θ
k−r. (39)

When ηk = η is fixed, then

3np2LBC2ηk

k∑
r=1

ηr−1θ
k−r

≤ 3np2LBC2η2

1− θ
+ 3np2LBC2ηθk−1 ≤ 3np2LBC2(η2 + η)

1− θ
,

since θk−1 ≤ 1
1−θ . Define

R =

2η2L(p(1−p)+np2+ 1
2np)C

2

n + 3np2LBC2(η2+η)
1−θ

1− L
µ + pLη

.

Now we can write (39) as

E[f(yk+1)− f(x∗)]−R

≤ (
L

µ
− pLη)(E(f(yk)− f(x∗))−R)

≤ (
L

µ
− pLη)k(E(f(y1)− f(x∗))−R)

= (
L

µ
− pLη)k(f(y0)− f(x∗)−R)

since y1 = y0 = 1
n

∑n
i=1 x

0
i . Meanwhile,

E[f(xk+1
i)− f(x∗)]

≤ E[f(yk+1)− f(x∗)] + CEDk+1

≤ E[f(yk+1)− f(x∗)] + np

k∑
r=2

ηC2Bθk−r + npC2Bθk−1.

If η ∈ (L−µpµL ,
1
pµ), then (Lµ − pLη) ∈ (0, 1). So

E[f(xk+1
i)− f(x∗)] ≤ (

L

µ
− pLη)k(f(y0)− f(x∗)−R) +R

+
npηBC2

1− θ
+ npC2Bθk−1

k→∞−→ R+
npηBC2

1− θ

Zai Shi received the B.E. degree from Zhejiang
University, China, in 2014. He is currently pursuing
the PhD degree in the Ohio State University, US. His
research interests include optimization for network-
ing and machine learning. He received university
fellowship in 2016.

Atilla Eryilmaz (S’00 / M’06 / SM’17) received
his M.S. and Ph.D. degrees in Electrical and Com-
puter Engineering from the University of Illinois at
Urbana-Champaign in 2001 and 2005, respectively.
Between 2005 and 2007, he worked as a Postdoctoral
Associate at the Laboratory for Information and
Decision Systems at the Massachusetts Institute of
Technology. Since 2007, he has been at The Ohio
State University, where he is currently a Professor
and the Graduate Studies Chair of the Electrical and
Computer Engineering Department.

Dr. Eryilmaz’s research interests span optimal control of stochastic networks,
machine learning, optimization, and information theory. He received the NSF-
CAREER Award in 2010 and two Lumley Research Awards for Research
Excellence in 2010 and 2015. He is a co-author of the 2012 IEEE WiOpt
Conference Best Student Paper, subsequently received the 2016 IEEE Infocom,
2017 IEEE WiOpt, 2018 IEEE WiOpt, and 2019 IEEE Infocom Best Paper
Awards. He has served as: a TPC co-chair of IEEE WiOpt in 2014 and of
ACM Mobihoc in 2017; an Associate Editor (AE) of IEEE/ACM Transactions
on Networking between 2015 and 2019; and is an AE of IEEE Transactions
on Network Science and Engineering since 2017.

