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Abstract—In this work, we provide a comprehensive analysis
of stability properties and delay gains that wireless multicasting
capabilities, as opposed to more traditional unicast transmis-
sions, can provide for content distribution in mobile networks.

In particular, we propose a model and characterize the
average queue-length (and hence average delay) performance
of unicasting and various multicasting strategies for serving
a dynamic user population at the wireless edge. First, we
show that optimized static randomized multicasting (we call
it ‘blind multicasting’) leads to stable-everywhere operation
irrespective of the network loading factor (given by the ratio of
the demand rate to the service rate) and the content popularity
distribution. In contrast, traditional unicasting suffers from
unstable operation when the loading factor approaches one,
although it outperforms blind multicasting at small loading
factor levels. This motivates us to study ‘work-conserving
multicast’ policies next that always outperform unicasting while
still offering stable-everywhere operation. Then, in the worst-
case of uniformly-distributed content popularity, we explicitly
characterize the scaling of the average queue-length (and hence
delay) under a first-come-first-serve multicast strategy as a
function of the database size and the loading factor.

Consequently, this work provides the fundamental limits,
as well as the guidelines, for the design and performance
analysis of efficient multicasting strategies for wireless content
distribution.

Index Terms—Wireless Content Distribution, Multicast, De-
lay Gains, Information-Centric Networking.

I. INTRODUCTION

The recent advances in the development of capable smart
wireless devices and mobile internet services have resulted in
groundbreaking levels of data traffic over cellular networks.
This excessive data demand is depleting the limited spectrum
resources of wireless transmissions, especially the wireless
connection between the base stations and the end-users. Con-
sequently, wireless resources are becoming scarce due to the
tremendous development of throughput-hungry applications
including video streaming and online gaming. Thus, more
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sophisticated resource management strategies are needed in
order to effectively meet the growing demand.

To tackle this problem, several techniques have already
been proposed such as WiFi offloading, proactive caching,
and wireless multicasting. WiFi offloading is a straight-
forward approach that communicates some of the wireless
cellulars data through WiFi networks (e.g., [1]). Different
approaches to implement WiFi offloading and to improve its
performance have been investigated in [2]. In the aforemen-
tioned approaches, scheduling of wireless demand is applied
reactively so that data requests are initiated beforehand,
and the service provider utilizes the delay tolerance from
end-users to schedule them efficiently. Thus, cost reduction
comes at the expense of disturbed user activity patterns as the
service is postponed to off-peak times, or the next available
WiFi connection. Another possible solution to address the
problem is to cache popular contents on the user’s site (e.g.,
[3]). Cache system can help reduce the total response time
of users’ requests. Cached data can be shared by users
at the same site. It also enables reduced peak-to-average
traffic ratio for the original data management system [4]. By
knowing the popularity of contents, caching efficiency can
be improved by pre-downloading popular contents during
off-peak times and serving predictable peak-hour demands,
which is referred to as proactive caching (see [5]). However,
because of the limited capacity of caching storage, this
technique has also its limitations.

In this work, we consider another natural alternative
strategy to alleviate the growing traffic load of wireless
content distribution, namely, multicasting whereby content
of common interest is transmitted to multiple users at
once. Although arrival requests can be served by sending
a separate unicast packet to each user, this approach suffers
from poor performance. The situation is especially acute in
delay tolerant networks (DTNs) [6].

To illustrate the potential gains of multicasting with an
example, consider a football stadium full of people watching
a game and after a goal, many of them may request (at
different time offsets) the related footage to watch it on their
smart device, giving the opportunity to broadcast content of
common interest to multiple users with small delay, since
in a short period of time, there will be a lot of requests for
one content. There are so many similar real world scenarios
where a large group of users are interested in a certain
group of content during a small time window. These are the
scenarios that potentially can have great delay gains using
the proposed model. Since by utilizing the multicast nature
of wireless communication on the edge, instead of sending



same content to multiple users separately, we can collect
the requests of the content and then broadcast it using one
service of that content over the wireless medium.

In particular, we focus on the distribution of data con-
tent to dynamic users over wireless channels, whereby the
wireless network can simultaneously serve all the requests
awaiting the same data content at the time. Our contributions,
along with the organization of the paper, are as follows.
• In Section III, we present a tractable content distribution

model for serving dynamically arriving demand over
wireless broadcast channels.
• In Section IV-A, for a database of n items with an

arbitrary popularity distribution, we develop the optimal
static-randomized multicasting strategy (called blind mul-
ticasting) that minimizes the aggregate average number
of requests in the system. While unicast transmissions can
only stabilize the system when the loading factor ρ (given
by the ratio of the demand rate to the service rate) is less
than 1, we show in Theorem 1 (proved in Section V-A)
that under our blind multicasting, the system is always
stable for all ρ ≥ 0.
• Moving beyond stability for the worst-case uniform pop-

ularity distribution, in Section IV-B we expand the policies
to the more efficient class of work conserving multicasting
policies in order to improve the delay gains. In Theorem
2, we explicitly characterize the scaling delay gains of
the First-Come-First-Serve work-conserving multicasting
strategy as a function of the loading factor ρ and the
database size n. The proof of Theorem 2, presented in
Section V-B, may be of independent-value as it utilizes
a novel approach for dealing with the nontraditional
abruptly-changing (as opposed to the traditional incre-
mental) nature of queueing dynamics under multicasting
transmissions.
• In Section VI, we provide numerical simulations to

validate the analytical results and compare the perfor-
mance to other service strategies such as Max-Weight-
based multicasting. Finally, we conclude in Section VII.
In the next section we provide a literature review of all
the related works on multicast networks.

II. RELATED WORK

There are massive amount of works in liturature that study
the multicast in wireless networks [7], [8] and [9]. Some of
these works focus on the delay performance of multicasting.
In [10], [11] and [12], authors study the problem of mul-
ticasting in delay tolerant networks. In multi-hop wireless
network, [13] and [14] show that cross-layer cooperation
of different network layers is needed to efficiently utilize
network resources. In [15], by incorporating delay differen-
tiation into cross-layer framework, authors propose a novel
Cross-Layer Control algorithm (CLC-DD) that takes into
account different delay requirements of flows. The main idea
of the proposed algorithm is to distribute delays among flows
to achieve low delays for delay-sensitive flows at the expense
of increasing the delays of other flows, while simultaneously

guaranteeing maximum network utility. In [16] and [17],
authors use network coding for reducing transmission delay
of large files in multicasts. In [18], using the network
coding approach, authors analyze the delay performance in
multicasting systems and show that delay can be minimized
by appropriate scheduling of data packets and appropriate
size of the coding buffer. In [19], authors propose an efficient
framework to model the statistical delay QoS guarantees
and develop a set of optimal adaptive transmission schemes
to minimize the resource consumption while satisfying the
diverse QoS requirements under various scenarios, including
video unicast/multicast. Traditional solution on multicasting
over IP-based network rely on IP multicast which suffer
from poor congestion control, as well as slow and complex
group membership and multicast tree management on the
control plane [20]. Even though multicasting is widely ac-
knowledged to be a promising approach in IP-based wireless
networks, the complex dynamic multicast tree building and
maintenance, specially for large database sizes, increases the
latency and have caused most network operators to eschew
its use [21] and [22]. As datacenter size continues to grow,
one approach is to deploy a high bandwidth network core for
datacenters using optical communication technologies [23].
In [24], authors propose HyperOptics, a low latency optical
multicast architecture for datacenters which eliminates the
reconfiguration delay by using optical switches.

Transitioning from IP based networks to information-
centric networks (see [25] and [26]) encourages us to
rigorously investigate the multicasting gain in information-
centric networks. Such networks allow us to group requests
targeting the same content and serve all of them at once,
eliminating the need for dynamic multicast tree building
and maintenance. To achieve this multicasting gain, some
requests will not be served instantly. In other words, requests
from different users for the same content do not happen at
the exact same time. Users with earlier requests have to wait
until the content is scheduled for service. This introduces the
delay which each incoming request needs to sustain before
it can be served by database.

In real world scenarios, usually, requests are correlated
and this will help the multicast to potentially have great
delay gains by utilizing the multicast nature of the wireless
communication which is already available on the edge. Base
station will collect the requests and put them in dedicated
queues to be broadcasted upon the availability of the service.
Delay gains in queuing theory are well known and traditional
queuing dynamics, under which requests are served one by
one [27], have been investigated in various works (see [28]
for a survey). However, in our multicasting scenario, due to
the service of all pending demands at once, previous well-
known techniques such as Lyapunov-drift [29] or fluid-limit
[30] analysis techniques do not apply. We aim to reveal the
stability conditions and the delay gains that multicasting can
offer over its unicast counterpart using queuing dynamics.
The multicasting scenario introduces new challenges which
have not been studied before and to the best of our knowl-



edge, this is the first work to study the delay gains of work-
conserving multicasting using queuing theory. In order to
analyze the delay performance of work-conserving multicast
in information-centric networks, we take a different novel
approach based on the number of active queues. This work
extends [31] to improve the bounds as well as obtain an
exact asymptotic expression with numerical simulations.

III. SYSTEM MODEL

We consider a wireless network comprising a content
provider that serves a population of users through a wireless
base station (BS) deployed at the network edge. In a con-
tinuous time fashion, the users1 dynamically send requests
targeting content from a set of n data items with certain
popularity distribution offered by the content provider. The
wireless BS enqueues the incoming requests in n distinct
queues, one queue per data item, in order to serve them.

Demand Generation: The population of users covered by
the BS are assumed to generate data requests according to
a Poisson process with rate λ. That is, for Atot(t), t ≥ 0
being the aggregated number of generated requests by time
t, then Atot(t) is a Poisson random variable with mean λt.

The incoming requests at any point in time are split
independently over the n data items based on their respective
popularity. We capture the popularity of a data item k by the
probability of that item k being intended by a request given a
request is already generated. We denote such probability by
αk, k = 1, · · · , n, where

∑n
k=1 αk = 1. Thus, the aggregate

request generation process {Atot(t)}t is the superposition of
n independent Poisson processes Atot(t) :=

∑n
k=1Ak(t),

where Ak(t), t ≥ 0 is the request arrival process for item
k which is Poisson with rate αkλ. We consider the vector
α := (αk)nk=1 as the popularity profile of the system.

Service Dynamics: The base station serves requests one
at a time, i.e., a single-server system. The service time
of an individual request is considered to follow an expo-
nential distribution with mean 1/µ and the service times
are assumed independent and identically distributed over
time and requests. While, in practice, service times may
exhibit heavily-tailed distributions due to data item length
and retransmissions over the wireless medium, we adopt the
exponential distribution to allow tractable characterization of
the multicasting gains and contrast it with the well-known
unicast results that are already derived for exponentially
distributed service times.

The n queues maintained at the BS hold the requests
awaiting service with queue k has all the pending requests
for item k. We consider these queues to be of infinite length,
hence we are not concerned with outage events due to lost
requests. Instead, we care about the average delay these
requests incur as our metric of interest. Since the set of items
requested by users in a typical content distribution network
is very large, considering that n → ∞ is a reasonable
assumption.

1Note that the number of users that generate demand is unbounded, as
in the infinite-population setting of classical Aloha networks.

We denote the number of requests in queue k at time t
by Qk(t), k = 1, · · · , n. We define the service completion
of a request from queue k as an ON-OFF process Bk(t)
where Bk(t) = 1 if a request from queue k has completed
service at time t, otherwise Bk(t) = 0. We can thus define
the service completion of any request from any queue as the
ON-OFF process Btot(t) :=

∑n
k=1Bk(t).
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Fig. 1: Queuing system model

Fig. 1 shows the model for our queueing system. Requests
are generated at a rate of λ and based on the item being
requested, each request is placed in a queue dedicated for
that item. Then requests are served at the BS with a rate of
µ > 0.

In this paper, we are interested in the comparative and
comprehensive study of unicast (as the baseline that is
widely adopted by today’s wireless technologies) and mul-
ticast modes of service that are described next.

Unicast and Multicast Operation: Through unicast oper-
ation, the BS has to individually serve the requests in each
queue, one request at a time. Thus, when a request is served
from any queue, the length of such queue is decremented
by one. Let QUk (t) be the number of requests in queue k
at time t under the unicast operation, then for dt being an
infinitesimal increment in time, then2

QUk (t+ dt) = [QUk (t)−Bk(t)]+ +Ak(t+ dt)−Ak(t),

where [x]+ = max{0, x}.
In the multicast operation, the BS relies on the broadcast

nature of the wireless medium to send the requested data
simultaneously to all the requesting users, consuming the
same amount of resources required by a single unicast
transmission. Thus, if QMk (t) is the number of requests in
Queue k under the multicast operation, then

QMk (t+ dt) = (QMk (t))(1−Bk(t)) +Ak(t+ dt)−Ak(t),

that is, as shown in Fig. 1, the service of a single request
from queue k collectively serves all of the requests in queue
k yielding an empty queue after each service. This is the
key difference between multicast and unicast dynamics.

2We note that the main results of this work will remain essentially the
same if we use: QUk (t+dt) = [QUk (t)−Bk(t)+Ak(t+dt)−Ak(t)]

+.



Performance Metric: We use the time-average expected
number of requests in the system as our performance met-
ric to quantify the gains of multicasting. At any time t,
the number of requests in the system under Unicast and
Multicast operations are QUtot(t) and QMtot(t), respectively,
where Qotot(t) :=

∑n
k=1Q

o
k(t), o ∈ {U,M}.

For any queue-length process Qk(t), we use the notation
Qk to indicate its time-average expected value, that is,

Qk := lim
T→∞

1

T

∫ T

0

E[Q(t)]dt.

Accordingly, the time-average of the expected total number
of requests in the system under unicast and multicast oper-
ation is denoted by Q

U

tot, Q
M

tot, respectively.
We finally define the loading factor ρ := λ

µ as a key
parameter shaping the traffic intensity of the system. We
then investigate the system’s performance with the number
of data items n in different regimes of ρ. We begin with the
unicast operation as it constitutes our baseline model. From
the well known results of an M/M/1 queue [32], we have

Q
U

tot =
ρ

1− ρ
, ρ ∈ [0, 1), (1)

which clearly shows that the system can be stabilized by
unicasting only for ρ < 1. We can also observe that Q

U

tot

depends neither on the number of data items n, nor on
the individual popularity of data items, since the service of
requests is carried out on an individual request basis. In the
following sections, we investigate the behavior of Q

M

tot and
compare it to that of its unicast counterpart.

IV. STABILITY AND DELAY GAIN RESULTS OF BLIND
AND WORK-CONSERVING MULTICAST POLICIES

This section presents the main results of this paper and
highlights the significant multicasting gains, with their de-
tailed proofs postponed to Section V. We first show the
endless stability operation furnished by simple multicasting
strategies (cf. Theorem 1). Then, we explore further multi-
casting gains under a first-come-first-serve work-conserving
operation (cf. Theorem 2). We conclude this section with a
discussion of key insights from these results.

A. Endless Stability of Blind Multicast

We begin by considering a simple static multicasting
strategy which we label blind multicast. This strategy is
suitable for scenarios whereby the individual requests are
not known by the BS, and multicasting decisions are made
blindly based on the statistical popularity information. As
such, it is convenient in conditions when it is not feasible
to receive feedback from the individual users.

Definition 1 (Blind Multicast): Define the indicator
σM,B
k (t) ∈ {0, 1} to capture the service decision of queue k

at time t such that σM,B
k (t) = 1 if the queue k is assigned

the service resources at time t, otherwise σM,B
k (t) = 0,

k = 1, · · · , n. Then, blind multicast strategy is a randomized
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Fig. 2: Markov chain diagram of queue k under blind
multicast operation.

strategy through which the BS randomly assigns the service
resources to n queues such that

βk := lim
T→∞

1

T

∫ T

0

σM,B
k (t)dt, k = 1, · · · , n,

for (βk)nk=1 is a vector of non-negative weights to be
determined.

We can note from the definition that the allocation of
the service resources to queues is independent of the queue
length, hence the naming blind. A blind multicasting strategy
thus assigns the service to queue k for a fraction βk of the
time irrespective of its instantaneous state.

The whole system under blind multicast can be split into
n independent and parallel queues with queue k having an
arrival rate of αkλ and service rate βkµ with state evolution
as shown in Fig. 2. Each state represents the number of
requests in the queue k. We have the following result for
such multicasting.

Theorem 1 (Endless Stability of Delay-Optimizing Blind
Multicast): Let Q

M,B

tot be the time-average expected number
of all requests in the queues under blind multicasting.
Then, the average delay-minimizing choice of the design
parameters (βk)k is given by

β?k =

√
αk∑n

l=1

√
αi
, k = 1, · · · , n. (2)

Accordingly, the time-average expected number of requests
under this delay-optimal blind multicast strategy is given by

Q
M,B

tot = ρ

(
n∑
i=1

√
αi

)2

, (3)

which can be written as Q
M,B

tot = ρ||α|| 1
2

.
Note that, even in the worst-case of uniform popularities,
we have Q

M,B

tot = ρ n under the optimal blind multicast.

B. Delay Gains of Work-Conserving Multicast

More multicast gains can be reaped under smarter policies
that schedule services based on the instantaneous state of the
queues. In particular, we consider work-conserving policies
that utilize the BS resources for some pending request(s)
unless all the queues are empty. However, due to the
analytical complexity under a general popularity distribution
α, we study the worst case scenario of uniformly distributed
popularities that serve as a fundamental lower bound on
the performance of a multicasting system besides allowing



tractable closed form expressions for the behavior of the
average expected number of requests in the system.

Definition 2 (work-conserving Multicast): Define the in-
dicator σM,W

k (t) ∈ {0, 1} to capture the service of queue k
at time t such that σM,W

k (t) = 1 if the queue k is assigned
the service resources at time t, otherwise σM,W

k (t) = 0,
k = 1, · · · , n. Also, let QM,W

k (t) be the number of requests
in queue k at time t under work-conserving multicasting.
Then, a work-conserving multicast strategy is a strategy
through which σM,W

k (t) = 0 if QM,W
k (t) = 0, and∑

kQ
M,W
k (t) > 0 implies that σM,W

k∗ (t) = 1 for some k∗

such that QM,W
k∗ (t) > 0.

We can note from the work-conserving operation that the
allocation of the service resources to queues depends on the
state of the queue. In this subsection, we consider the well-
known First-Come-First-Serve (FCFS) work-conserving pol-
icy to characterize an upper bound on the average expected
number of requests in the system. FCFS operates by serving
the queue that contains the oldest unserved request first. We
choose the FCFS for its time-based ordering of service which
enables us to analytically derive our fundamental bound on
the system’s performance. As such, it possesses fairness
characteristics within the class of work-conserving policies.
We have the following result.

Theorem 2 (Scaling Delay Gains of Work-Conserving
FCFS Multicast): Let Q

M,F

tot be the time-average expected
number of all requests for the FCFS work-conserving mul-
ticast strategy under the worst-case of uniform popularities,
i.e., αk = 1/n for all k. Then, we have

Q
M,F

tot


=̇ 1

2

(
ρ2−1
ρ

)
n, ρ > 1,

=̇
√

2
πn, ρ = 1,

≤̇min( ρ
1−ρ ,

1
2ρ

3(1− ρ)2n), ρ < 1,

(4)

where a(n)≤̇b(n) means that lim
n→∞

a(n)

b(n)
≤ 1 and a(n)

.
=

b(n) means lim
n→∞

a(n)

b(n)
= 1.

Note that the bound on Q
M,F

tot is directly related to the
average delay experienced by the users via Little’s law.

E[DM,F
tot ] =

Q
M,F

tot

λtot
.

C. Discussion of Relevant Insights from the Results

Theorems 1 and 2 reveal the potential for content mul-
ticasting to extend the stable operation of the network
significantly beyond that of unicasting. In the following
remarks, we highlight some insights about those theorems.

Remark 1: Under unicast operation, when ρ ↑ 1, we
see from (1) that the average number of requests grows
unboundedly, i.e., Q

U

tot → ∞ signifying the instability of
unicast as the traffic intensity becomes higher. Theorem 1,
on the other hand, shows that blind multicasting guarantees
a finite total average of the number of requests for any
popularity distribution α and ρ ≥ 0 as can be seen in

(3). Hence, blind multicasting promises endless stability
operation for any distribution of content popularity and for
any number of content items.

Remark 2: Uniform and degenerate distributions of popu-
larity are, respectively, the Q

M,B

tot maximizing and minimiz-
ing distributions. This can be seen by optimizing (3) for the
maximum and minimum values over α, where the maximum
value for Q

M,B

tot is ρ n and the minimum value is ρ.
Intuitively, uniformly distributed popularities maximize

the average number of distinct data items being requested in
the system irrespective of the multicasting scheduling policy.
Hence, more requests on average require individual service
than under any popularity distribution. The degenerate dis-
tribution, on the other hand, implies that all of the incoming
traffic is targeting the same data item. Hence, multicasting
operation will reap the highest gains.

Note that, using (3), we can also find the delay per-
formance of the optimal blind multicast strategy under
more common popularity distributions, such as the Zipf
distribution.

A Zipf distribution αz with parameter γ is written as

αzk :=
1
kγ∑n

m=1
1
mγ

, k = 1, ..., n.

Remark 3: For large number of content items n and Zipf
popularity distribution with parameter γ = 2,

Q
M,B

tot ∼ ρ(log n)2.

Proof. For γ = 2, the direct substitution of αz in (3)
yields:

Q
M,B

tot =ρ||αz|| 1
2

= ρ

(
n∑
k=1

√
αzk

)2

= ρ

(
n∑
k=1

√
1
k2∑n

m=1
1
m2

)2

= ρ
(
∑n
k=1

1
k )2∑n

m=1
1
m2

.
=

6ρ

π2
(log n)2.

Which is asymptotically true as n→∞.
Remark 4: For large number of content items n and Zipf

popularity distribution with parameter 0 ≤ γ < 2,

Q
M,B

tot ∼ ρnmin{2−γ,1}.

Proof. By direct substitution of Zipf distribution with pa-
rameter γ in Equation (3), we have:

Q
M,B

tot = ρ

(
n∑
k=1

√
1
kγ∑n

m=1
1
mγ

)2

=
ρ∑n

m=1
1
mγ

(
n∑
k=1

1

k
γ
2

)2

≤ ρ∑n
m=1

1
mγ

(∫ n

0

1

k
γ
2

dk

)2

=
ρ∑n

m=1
1
mγ

4n2−γ

(2− γ)2

≤ ρ∫ n+1

1
1
mγ dm

4n2−γ

(2− γ)2
=

4(γ − 1)nγ−2(n+ 1)γρ

(γ − 2)2((n+ 1)γ − (n+ 1))

(5)



On the other hand we have:

Q
M,B

tot ≥
ρ

1 +
∫ n

1
1
mγ dm

(∫ n+1

1

1

k
γ
2

dk

)2

=
4ρ(γ − 1)nγ((n+ 1)γ − 2(n+ 1)1+ γ

2 + (n+ 1)2)

(γ − 2)2(n+ 1)γ(γnγ − n)
(6)

From equations (5) and (6) as n grows, we have the result.

Remark 5: Note that the result of (1) is obtained assuming
work-conserving unicast operation. For stable operation, i.e.,
ρ < 1, we see that Q

U

tot is independent of the number of
content items n irrespective of their popularity distribution.
This is not the case under blind multicast operation for the
same range of ρ < 1 where Q

M,B

tot is determined by both n
and α. In fact, for large values of n, and several distributions,
e.g., Zipf with γ ≤ 2, we have Q

U

tot ≤ Q
M,B

tot . Thus, unicast
outperforms blind multicast for ρ < 1.

Remark 6: Assume uniform distribution of popularities
and ρ > 1. As n → ∞, the average expected number of
requests per queue under multicast operation satisfies

lim
n→∞

Q
M,o

tot

n
=

{
1
2 (ρ

2−1
ρ ), o = F,

ρ, o = B.

That is, FCFS work-conserving multicasting attains an ex-
pected value of 1

2 (ρ
2−1
ρ ) requests per queue while blind

multicasting attains ρ. Thus, FCFS experiences at most half
the delay of blind multicasting for ρ > 1.

Remark 7: Assume uniform distribution of popularities
and ρ = 1. As n → ∞, the average expected number of
requests per queue under multicast operation satisfies

lim
n→∞

Q
M,o

tot

n
=

{√
2
πn , o = F,

1, o = B.

That is, FCFS work-conserving multicasting attains a delay
that grows with

√
n while blind multicasting delay grows

with n. We emphasize that in the case of ρ = 1, FCFS
multicasting has its most advantage compared to blind
multicasting.

Remark 8: Our analysis reveals important practical in-
sights that, while work-conserving multicast always outper-
forms unicast and blind-multicast: (i) unicast strategy can
be sufficiently satisfactory under lightly-loaded conditions,
i.e., when ρ � 1; and (ii) blind-multicast strategy tends to
suffer a delay performance loss within a factor of 2 under
over-loaded conditions, i.e., when ρ � 1. The gains of
work-conserving multicasting is highest in the regime (that
is explicitly characterized by our analysis in terms of ρ and
n) where the loading factor is neither too small, nor too
large.
Table I shows a summary of the main results. For the case
of loading factor ρ < 1, our simaulatins shows that unicast
performs as good as multicast. In other words for the case
ρ < 1 there is no need to multicast and we will just drive
an upper bound on the delay of FCFS multicasting for the
case ρ < 1.

TABLE I: limn→∞
Qtot
n for different strategies

FCFS Multicast Blind Multicast Unicast

ρ > 1 = 1
2
( ρ

2−1
ρ

) = ρ =∞

ρ = 1 =
√

2
πn

= 1 =∞

ρ < 1 ≤ 1
2
ρ3(1− ρ)2 = ρ = 0

V. PROOFS OF THE STABILITY AND
DELAY GAIN RESULTS

In this section, we provide the full proofs of the main
results discussed in the previous section. The proof of
Theorem 1 (in Section V-A) is based on decomposing the
system into parallel queues to optimize the delay. However,
the proof of Theorem 2 (in Section V-B) requires a much
more sophisticated strategy due to the coupling between the
queues and their nontraditional dynamics.

A. Endless Stability of blind multicast (Theorem 1)

We start by obtaining the expected queue-length under the
blind multicast operation with a general (βk)k choice.

Lemma 1: Let QM,B
k (t) be the number of requests in

queue k under blind multicast operation, then

lim
T→∞

1

T

∫ T

0

E[QM,B
k (t)]dt = ρ

αk
βk
. (7)

Proof. For a queue with input rate αkλ and service rate βkµ
using the multicast operation, when a new request arrives,
number of requests increases by one but when there is
a service available for queue k, because of the multicast
nature, after serving the total number of requests in queue
k becomes 0. Markov chain for queue k is shown in Fig. 2.
The average number of requests in the system is given by:

lim
T→∞

1

T

∫ T

0

E[QM,B
k (t)]dt =

∞∑
m=0

mpm. (8)

Which pm is the probability of having m requests in queue
k. Using the markov chain and by induction we have:

pm =
µβk

λαk + µβk

(
λαk

λαk + µβk

)m
.

Substituting pm in Equation (8) and using the definition of
loading factor ρ = λ

µ , we have:

lim
T→∞

1

T

∫ T

0

E[QM,B
k (t)]dt =

αkλ

βkµ
= ρ

αk
βk
.

We thus have Q
M,B

tot = ρ
∑n
k=1

αk
βk

. Noting the convexity
of this expression with respect to (βk)k, we use the KKT
optimality conditions to find that the choice of β?k in (2)
minimizes Q

M,B

tot subject to the constraints that βk ≥ 0, ∀k,
and

∑n
k=1 βk = 1.

Finally, the direct substitution of β?k =
√
αk∑n

l=1

√
αi

in (7)
completes the proof of Theorem 1.



B. Delay Gains of Work-Conserving Multicast (Theorem 2)
Traditional queuing dynamics, under which requests are

served one by one, have been investigated in various works
(see [28] for a survey). However, in our multicasting sce-
nario, due to the service of all pending demands at once,
previous well-known techniques such as Lyapunov-drift [29]
or fluid-limit [30] analysis techniques do not apply. In order
to analyze and prove the results of multicasting systems,
we take a different approach based on the number of active
queues defined next.

Definition 3 (Active Queue): We define an active queue as
a nonempty queue, i.e., a queue that has at least one request
in it. Formally, queue k is active at time t, if QM,W

k (t) > 0.
Utilizing the statistics of active queues, we we character-

ize the behavior of the average number of requests in the
system. Each proof is broken down into segments in order
to facilitate the understanding. Some of the results in these
proofs may be of independent-interest, especially in the case
of Theorem 2.

Let N(t) be the Markov process describing the number
of active queues at time t under any given work-conserving
multicast strategy. The evolution of this process is shown in
Fig. 3. We are interested in the limit of N(t)

d−−−→
t→∞

N̄(ρ, n),
i.e., the steady state distribution of N(t) which is character-
ized next and studied subsequently3.
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Fig. 3: Markov chain for active queues N(t) under any work-
conserving multicast

Lemma 2: Let πk = P (N̄(ρ, n) = k) be the probability
of having k active queues under work-conserving multicast
operation, then

πk = π0

k−1∏
m=0

(1− m

n
)ρ, ∀k ≥ 1, (9)

where π0 =
(∑n

k=0

∏k−1
m=0(1− m

n )ρ
)−1

.
Proof. Global balance equations of Fig. 3 yields

πk =(
λ

µ
)k.1.(1− 1

n
)(1− 2

n
)...(1− k − 1

n
)π0

π0(
λ

µ
)k

k−1∏
m=0

(1− m

n
) = π0

k−1∏
m=0

((1− m

n
)(
λ

µ
)).

Replacing λ
µ with loading factor ρ gives (9). Then, setting

the sum of probabilities to 1 gives the result for π0.
We introduce a new parameter si(ρ, n) as:

si(ρ, n) :=

n∑
k=1

ki
k−1∏
m=0

(1− m

n
)ρ, (10)

3Such a steady state behavior holds since N(t), t ≥ 0 follows a finite
state ergodic Markov chain.

which we use in deriving the moments of N̄(ρ, n). In the
light of si(ρ, n), we can rewrite the π0 as π0 = 1

1+s0(ρ,n) .
We also make the following connection between si(ρ, n) and
si−1(ρ, n).

Lemma 3: For si(ρ, n) defined in (10),

si(ρ, n) =n(1− 1/ρ)si−1(ρ, n)

+
n

ρ

i∑
m=2

(−1)m
(
i− 1

m− 1

)
si−m(ρ, n) + nδ(i− 1)

(11)

such that i ∈ {1, 2, ...}.
Proof. We prove this by induction.

si(ρ, n)− n(1− 1/ρ)si−1(ρ, n)

+
n

ρ

i−1∑
q=1

(−1)q
(
i− 1

q

)
si−1−q(ρ, n)

=
n∑
k=1

[
ki − n(1− 1/ρ)ki−1

+
n

ρ

i−1∑
q=1

(
i− 1

q

)
(−1)qki−1−q

]
k−1∏
m=0

(1− m

n
)ρ.

(12)

We have n terms on the right hand side of (12), by induction
we can show that sum of p last terms is equal to:

n

ρ
(n− p)i−1

n−p∏
m=0

(1− m

n
)ρ.

Since we have n total terms, putting p = n gives n
ρ (n −

n)i−1ρ = nδ(i− 1).
Lemma 4: The first and second moments of the number

of active queues, N̄(ρ, n), are given by:

E[N̄(ρ, n)] =
n(1− 1

ρ )s0(ρ, n) + n

1 + s0(ρ, n)
, (13)

E[N̄(ρ, n)2] =
(n2(1− 1

ρ )2 + n
ρ )s0(ρ, n) + n2(1− 1

ρ )

1 + s0(ρ, n)
.

(14)
Proof.

E[N̄(ρ, n))] = π0

n∑
k=1

k

k−1∏
m=0

(1− m

n
)ρ =

s1(ρ, n)

1 + s0(ρ, n)
.

From Lemma 3, writing s1(ρ, n) as a function of s0(ρ, n)
gives Equation (13). Similarly,

E[N̄(ρ, n)2] = π0

n∑
k=1

k2
k−1∏
m=0

(1− m

n
)ρ =

s2(ρ, n)

1 + s0(ρ, n)
.

Writing s2(ρ, n) in terms of s0(ρ, n) gives the result in
Equation (14).

Lemma 5: For ρ = 1, s0(ρ, n) asymptotically achieves

s0(1, n)
.
=

√
π

2
n, (15)



where a(n)
.
= b(n) means lim

n→∞

a(n)

b(n)
= 1.

Proof. For ρ = 1, s0(1, n) =
∑n
k=1

∏k−1
m=0(1 − m

n ).
Rewriting and changing the variable j = n− k gives:

s0(1, n) =
n!

nn

n−1∑
j=0

nj

j!

Now by using the fact that
∑n−1
j=0

xj

j! = ex Γ(n,x)
Γ(n) , such

that Γ(n, x) =
∫∞
x
tn−1e−tdt and Γ(n) = Γ(n, 0) [33], we

can rewrite s0(1, n) as:

s0(1, n) =
n!

nn
en

Γ(n, n)

Γ(n)
. (16)

Since from [34], lim
n→∞

Γ(n, n)

Γ(n)
=

1

2
, and utilizing the

asymptotic behavior of Stirling’s approximation, we obtain

s0(1, n)
.
=
√

2πn(
n

e
)n

1

2
en =

√
π

2
n.

Lemma 6: Let f(ρ, n) = s0(ρ,n)
1+s0(ρ,n) , then:

lim
n→∞

f(ρ, n) =

{
ρ, ρ < 1,
1, ρ > 1,

(17)

Proof. First we show that for ρ < 1, limn→∞ f(ρ, n) = ρ.

s0(ρ, n) =

n∑
k=1

k−1∏
m=0

(1− m

n
)ρ =

n∑
k=1

ρk
k−1∏
m=0

(1− m

n
)

≤
n∑
k=1

ρk =
ρ

1− ρ
(1− ρn)

(18)

On the other hand we have:

s0(ρ, n) >

√
n∑

k=1

ρk
k−1∏
m=0

(1− m

n
)

>

√
n∑

k=1

ρk(1− k − 1

n
)k >

√
n∑

k=1

ρk(1−
√
n− 1

n
)k

>
ρ(1−

√
n−1
n )

1− ρ(1−
√
n−1
n )

× (1− ρ
√
n(1−

√
n− 1

n
)
√
n).

(19)

From (18) and (19), and letting n→∞, we have:
ρ

1− ρ
≤ lim
n→∞

s0(ρ, n) ≤ ρ

1− ρ

This proves the fact that lim
n→∞

s0(ρ, n) =
ρ

1− ρ
. By using

the definition of f(ρ, n), we have that lim
n→∞

f(ρ, n) = ρ.
In order to prove the lim

n→∞
f(ρ, n) = 1 for ρ > 1, we

show that for any ρ > 1, s0(ρ, n) grows exponentially in n.

s0(ρ, n) =

n∑
k=1

k−1∏
m=0

(1− m

n
)ρ =

n∑
k=1

ρk
k−1∏
m=0

(1− m

n
)

=
n!

(nρ )n

n∑
k=1

(nρ )n−k

(n− k)!
=

n!

(nρ )n

n−1∑
j=0

(nρ )j

j!

(20)

Now by the fact that
∑n−1
j=0

(nρ )
j

j! = e
n
ρ

Γ(n,nρ )

Γ(n) , we can
rewrite s0(ρ, n) as

s0(ρ, n) =
n!

(nρ )n
e
n
ρ

Γ(n, nρ )

Γ(n)
.

For ρ > 1, we have Γ(n, nρ ) > Γ(n, n), which implies:

lim
n→∞

Γ(n, nρ )

Γ(n)
> lim
n→∞

Γ(n, n)

Γ(n)
=

1

2
,

and applying Stirling’s inequality n! ≥
√

2πn(ne )n yields

s0(ρ, n) ≥
√
πn

2
(
ρ

e
)ne

n
ρ =

√
πn

2
en( 1

ρ+log ρ−1).

Setting g(ρ) := 1
ρ + log ρ− 1, since g(1) = 1 and g′(ρ) > 0

for ρ > 1, s0(ρ, n) grows exponentially in n for ρ > 1.
After having introduced a number of crucial lemmas, we

proceed to our investigation of the number of requests in the
system under work-conserving multicasting. To that end, we
focus on the FCFS strategy.

Let QM,F
k (t) be the number of requests in queue k

at time t under FCFS work-conserving multicasting and
QM,F
tot (t) :=

∑n
k=1Q

M,F
k (t) be the aggregate number of

requests in all queues at time t. The following lemma
specifies an expression for the average total number of
requests in the system under FCFS multicast operation.

Lemma 7: Let

Q
M,F

tot := lim
T→∞

1

T

∫ T

0

E[QM,F (t)]dt,

be the time-average expected number of aggregate requests
in the system operating under FCFS multicasting and Nk(t)
be the number of active queues in the system when queue
k just becomes active at time t, then

Q
M,F

tot = n
ρ

2nE[Nk(t)2] + (1 + ρ
2n )E[Nk(t)]

E[Nk(t)] + n
ρ

. (21)

Proof. Since the request arrivals and services are statistically
indistinguishable across the n queues, we have under steady
state operation that E[QM,F

k (t)] = E[QM,F
l (t)], ∀k, l. Thus,

it suffices to study E[QM,F
k (t)] and then obtain Q

M,F

tot =

nQ
M,F

k , where

Q
M,F

k := lim
T→∞

1

T

∫ T

0

E[QM,F
k (t)]dt.

Let t0 = 0 and ti be the time instant at which queue k
has completed service for the ith time. So at time instants
{ti}i, we will have:

QM,F
k (ti) = 0, and QM,F

k (ti − ε) > 0, i = 0, 1, · · · ,

for some 0 < ε < ti − ti−1. Let Xi be the time it takes
queue k to become active for the ith time since it has been
last served (emptied) at time ti. So QM,F

k (ti +Xi) = 1 and
QM,F
k (ti + Xi − s) = 0, ∀s ∈ (0, ti]. Since the popularity

distribution is uniform, Xi follows exponential distribution
with mean n

λ . Let Nk(ti
′) be the number of active queues
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Fig. 4: Evolution of queue k under FCFS multicasting.

in the system, given that queue k has just become active
at time ti′. We should note that Nk(ti

′) includes queue k
itself. That is, Nk(ti

′) ≥ 1. Let τi denote the duration queue
k must wait while being active in order to be fully serviced
for the ith time. So ti = ti−1 +Xi+ τi. Fig. 4 demonstrates
the evolution of queue k under FCFS multicasting. Since we
are interested in the average number of requests in queue k,
based on Fig. 4 we claim that:

E
[
QFCFSk

]
= lim
i→∞

1

ti

i−1∑
j=0

Aj =
E [Ai]

E [Xi] + E [τi]
,

where Ai is the area shown in the figure and based on the

figure is equal to E [Ai] = E [τi] + λ
n

E[τ2
i ]

2 . The first term
comes from the fact that at time ti′ there is one arrival to
queue k that makes it active and the second term is the
area of the triangle knowing that the rate at which queue k
receives arrival is λ

n . Now we will provide a rigorous proof
for the claim we just presented.

We define Ti := Xi + τi. Given Nk(ti
′) = v, τi =∑v

j=1 Yj , where Yj is the service time of an active queue
which has an exponential distribution with mean 1

µ .
We are now interested in the time-average value of ex-

pected number of requests in queue k, Q
M,F

k , where

Q
M,F

k = lim
T→∞

1

T

∫ T

0

E[QM,F
k (t)]dt.

Let KT = max {i ≥ 0|ti−1 ≤ T}, which is the number of
times that queue k has received service by time T . We have:∫ T

0

E[QM,F
k (t)]dt =

KT−1∑
i=0

∫ ti+1

ti

E[QM,F
k (t)]dt

+

∫ T

tKT

E[QM,F
k (t)] ≤

KT∑
i=0

Mk[i],

where Mk[i] =
∫ ti+1

ti
E[QFk (t)]dt and {Mk[i]}i is an identi-

cally distributed sequence of random variables. Then:

1

T

∫ T

0

E[QM,F
k (t)]dt ≤ 1

T

KT∑
i=0

Mk[i] ≤ KT

T

1

KT

KT∑
i=0

Mk[i],

We note that KT → ∞ and KT
T →

1
E[Ti]

as T → ∞, both
with probability 1. We thus have

lim
T→∞

1

T

∫ T

0

E[QM,F
k (t)]dt =

1

E[Ti]
E[Mk[i]],

For E[Mk[i]], we have:

E[Mk[i]] = E[

∫ ti+1

ti

E[QFk (t)]dt] =

EXi,τi

[
τ +

∫ ti+x+τ

ti+x

∫ ti+x+τ

ti+x

E[Ak(t)]dldt|xi = x, τi = τ

]
= EXi,τi

[
τ +

λ

2n
τ2

]
=

E[Nk(t)]

µ
+

λ

2nµ2
E[Nk(t)2 +Nk(t)],

where Ak(t) is the arrival process to queue k at time t. We
thus obtain

lim
T→∞

1

T

∫ T

0

E[QM,F
k (t)]dt =

E[Nk(t)]
µ + λ

2nµ2 E[Nk(t)2]

n
λ + E[Nk(t)]

µ

.

Which Nk(t) is the number of active queue in the system
when queue k turns active at time t. Substituting in the
previous inequality, we get

Q
M,F

k =

E[Nk(t)]
µ + λ(E[Nk(t)2]+2E[Nk(t)])

2nµ2

n
λ + E[Nk(t)]

µ

.

By multiplying with n and substituting λ
µ with loading factor

ρ, we will have the result.
Lemma 8: Let Nk(t) be the number of active queues in

the system, given that queue k has just become active at
time t, then:

E[Nk(t)]
.
=

{
E[N̄(ρ, n)], ρ > 1,

E[N̄(1, n)] + 2
π , ρ = 1.

(22)

E[Nk(t)2]
.
=

{
E[N̄(ρ, n)2], ρ > 1,

E[N̄(1, n)2] + E[N̄(1, n)], ρ = 1.
(23)

Proof. Define N c
k(t) which is the number of active queues

at time t given that queue k is not active, as:

N c
k(t) = 1(QM,F

k (t) = 0)

n∑
i=1

1(QM,F
i (t) > 0), (24)

where 1(x) =

{
1, x > 0,
0, x = 0.

Let ti′ be the time when queue k just became active for the
ith time. Therefore Nk(ti

′) is the number of active queues
when queue k became active for the ith time. Then we can
write:

Nk(ti
′) = N c

k(ti
′ − δ) + 1, (25)

For small enough δ. In other words, at time ti
′ − δ that

queue k is not still active, number of active queues is given
by N c

k(ti
′ − δ). After small enough time δ when queue k

just becomes active, the number of active queues is given
by Nk(ti

′). If δ is small enough, queue k turning active
is the only event ocurring in the tiny interval (ti

′ − δ, ti′),
so the number of active queues will increase exactly by
one at the moment when queue k just becomes active.
Since Ak(t) is the request arrival process for item k which
under uniform popularity distribution is a Poisson with
rate λ

n independent of all the arrival processes to other
queues. Let δ be infinitesimally small and define the event



Ak(t) := {Ak(t)−Ak(t− δ) = 1} to show the time t that
queue k just receives an arrival. Since the arrivals to queues
are independently distributed, Ak(t) is independent of N c

k(t).
In other words at any time t, whether there is a arrival to
queue k or not is independent of how many active queues
are in system given that queue k is not active. We thus have:

P (N c
k(t) = k) = P (N c

k(t) = k|Ak(t)) = P (N c
k(ti

′) = k)∀i,

since the time that queue k have an arrival given that it
was not already active is shown with ti′. Under any work-
conserving multicast strategy, N c

k(t) is a Markov process
and we are interested in the steady state distribution of
N c
k(t)

d−−−→
t→∞

N̄ c
k . As we started with general t, P (N c

k(t) =

k) = P (N̄ c
k = k), which gives the distribution of Nk(ti

′)
as:

P (Nk(ti
′) = k) = P (N̄ c

k = k − 1), (26)

Using the Markov chain for N c
k(t) under any work-

conserving multicast, let πk′ = P (N̄ c
k = k), then:

πk
′ = π0

′
k∏

m=1

(1− m

n
)ρ, ∀k ≥ 1, (27)

setting the sum of probabilities to 1 gives π0
′ = ρ

s0(ρ,n) .
Then:

E[N̄ c
k ] = π0

′
n−1∑
k=0

k

k∏
m=1

(
1− m

n

)
ρ =

s1(ρ, n)− s0(ρ, n)

s0(ρ, n)
,

E
[
(N̄ c

k)2
]

= π0
′
n−1∑
k=0

k2
k∏

m=1

(
1− m

n

)
ρ

=
s2(ρ, n)− 2s1(ρ, n) + s0(ρ, n)

s0(ρ, n)

According to Equation (26) and letting t be a general time
that queue k just became active, we have E[Nk(t)] =
1 + E[N̄ c

k ] and E[Nk(t)2] = E[(N̄ c
k)2] + 2E[N̄ c

k ] + 1. Using
the Equations (11), we expand s2(ρ, n) and s1(ρ, n) as
a function of s0(ρ, n). Then comparing the results with
Equations (13) and (14) and using the behaviour of s0(ρ, n)
which is given at Equation (15) for ρ = 1 and in (17) for
ρ > 1, we have the results.

Lemma 9: Let Nk(t) be the number of active queues in
the system, given that queue k has just become active at
time t, then for ρ < 1:

E[Nk(t)] ≤ E[N̄(ρ, n)] + 1,

E[Nk(t)2] ≤ E[N̄(ρ, n)2] + 2E[N̄(ρ, n)] + 1.

Proof. First we show that πk′ ≤ πk ∀k ≥ 1 which πk
and πk

′ are given in Equations (9) and (27) respectively.
Assuming that the inequality πk′ ≤ πk ∀k ≥ 1 holds, gives:

ρ

s0(ρ, n)

k∏
m=1

(1− m

n
)ρ ≤ 1

1 + s0(ρ, n)

k−1∏
m=0

(1− m

n
)ρ,
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Fig. 5: Comparison between unicast and blind multicast for
n = 1000 items.

removing the terms from both sides and by replacement we
have:

(n− k)ρ ≤ s0(ρ, n)

1 + s0(ρ, n)
n.

Replacement of s0(ρ,n)
1+s0(ρ,n) =̇ρ which is given in Lemma 6 for

ρ < 1 gives (n − k) ≤ n that is always true for all values
of k ≤ n, so the assumption holds.

Then using (26) for arbitrary time t that queue k just
becomes active, gives:

P (Nk(t) = k) = πk−1
′ ≤ πk−1 = P (N̄(ρ, n) = k − 1),

which hold for ∀k ≥ 1. Recall that Nk(t) ≥ 1, since
it at least includes queue k which just became active at
time t. Taking expectation of both sides gives, E[Nk(t)] ≤
E[N̄(ρ, n)] + 1 and similarly E[Nk(t)2] ≤ E[N̄(ρ, n)2] +
2E[N̄(ρ, n)] + 1.

Now for ρ = 1 and ρ > 1, using the results for E[Nk(t)]
and E[Nk(t)2] given in Equations (22) and (23) which is a
function of ρ and n from the analysis of active queues and
substituting the results in Equation (21), we have the exact
expression for the total average number of requests in the
system operating under FCFS multicasting as a function of ρ
and n. For ρ < 1, using the results of Lemma 9 and analysis
for statistics of active queues and using the behaviour of
s0(ρ, n) which is given in Equation (17) for ρ < 1, we derive
the upper bound for the average number of requests in the
system working under FCFS multicasting. Letting n → ∞
gives the result of Theorem 2.

VI. NUMERICAL RESULTS

The analytical results obtained in this paper are validated
through numerical simulations in this section. Each of the
following simulation results is an average behavior over
106 iterations. We first validate the main analytical results
under uniform popularity distribution, and then provide more
numerical results for non-uniform popularity distributions
(such as the commonly used Zipf distribution). Moreover, we
compare the performance of FCFS work-conserving policy
to a heuristic Max-Weight work-conserving multicast policy
that is expected to yield favorable delay-minimization merits.
We should note that our analysis is conducted under the
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Fig. 6: Average number of requests in the system over n for different loading factors ρ.

assumption of large database size and uniform popularity
distribution. We have investigated the average number of
requests in the system, proposed an upper bound for the case
of ρ < 1 and derived the exact asymptotic expression for the
two cases of ρ = 1 and ρ > 1. Also, since the analysis has
been provided for asymptotic as n grows, we simulate the
system’s behavior when the number of data contents, n, is
large, we set it to n = 1000, unless stated otherwise.

A. Validation of Main Results under Uniform Popularities

In Fig. 5, we provide a numerical evaluation of Q
U

tot and
Q
M,B

tot under different content popularity distributions for
n = 1000. For degenerate distribution of content popularity,
Q
M,B

tot is equal to ρ which is the minimum that blind
multicast can achieve for given n and ρ. On the other hand,
uniform distribution of content popularity gives the maxi-
mum value of Q

M,B

tot which equals nρ. It is obvious from
the figure that as ρ approaches 1, unicast system becomes
unstable, while blind multicasting operation guarantees a
finite total average number of requests upper bounded by
n ρ for any popularity distribution α and ρ ≥ 0 as can be
seen in Fig. 5. We can also observe from Fig. 5 that unicast
outperforms blind multicast for ρ < 1 under the considered
instances of Zipf distributed popularity with parameter γ ≤ 2
which is consistent with the insights of Remark 5. Notice the
degenerate distribution is a Zipf distribution with parameter
γ =∞ which results in the minimum average delay, shown
in Fig. 5 as the minimum blind multicast.

Fig. 6 shows the average number of requests as a function
of number of queues in a system with uniform distributions
of content popularity under different values of loading factor
ρ and scheduling policies. We can see that for different
levels of the loading factor ρ, the FCFS multicast policy
performs very close to the heuristic Max-Weight that serves
a queue with the largest number of requests at the time of
service, both of which outperform blind multicasting by a
large margin. Also, we can see from Fig. 6(c) that our upper-
bound for the case of ρ < 1 is very accurate even for small
number of queues and we expect that as n increases, our
upper bound becomes tighter. For the case of ρ = 1 and
ρ > 1 our analysis for the average number of active queues

 

Fig. 7: Average number of requests in the system for
different policies under uniform popularity distribution and
n = 1000.

 

Fig. 8: Average delay of month june under the assumption
of Zipf(0.86) popularity distribution and n = 10000.

that we did under large database size n, is close to simulation
values even though that n = 1000 is not large here.

Fig. 7 shows the total average number of requests in the
system for different policies under the uniform popularity
distribution. As it can be seen in this figure, analytical results
that we derived for FCFS in Equation (4) is very exact.
Moreover, performance of FCFS is very close to that of Max-
Weight. According to Fig. 7, for small loading factor ρ, uni-



cast performance is very close to work-conserving multicast
performance and it is much better than the blind multicast
performance. For ρ close to 1, when the unicast becomes
unstable, work-conserving multicast become substantially
efficient compared to both unicast and blind multicast. For
ρ � 1, work-conserving multicast still outperforms blind
multicast by a factor of 2 as it has been noted in Remark 6.

B. Performance Comparison for Non-uniform Popularities

In this section, to illustrate the possibility of practical
application of the proposed content multicasting schemes
and to verify the validity of research conclusions, we aim
to investigate the performance of our blind and work-
conserving multicast policies under non-uniform popularity
distributions and compare their performance to a heuristic
Max-Weight multicast policy.

To show the practicality of our analysis, we use an
extensive set of real-world data, namely the data set of
the BBC iPlayer [35], [36], [37], to obtain realistic video
demand distributions. The BBC iPlayer is a video streaming
service from BBC that provides video content for a number
of BBC channels without charge. Content on the BBC
iPlayer is available for up to 30 days depending on the
policies. We consider the dataset covering June, 2014, which
include 192,120,311 recorded access sessions, resulting in
request rates λ = 74.1205 requests per second. The number
of files according to the iPlayer database is larger than
n = 10000. We consider multicast over 802.11 (Wi-Fi)
wireless networks to stream video files. The 802.11 standard
allows for multicast transmission as part of asynchronous
services. According to [38], the popularity distribution of
video files of the BBC iPlayer requested by the users in
June 2014 can be approximated by the Zipf distributions
with parameter γ = .86.

Fig. 8 shows the average delay of the system for different
policies in the month of June under the approximation of
Zipf popularity distribution with parameter γ = 0.86. As it
can be seen from the figure, the performance of FCFS is very
close to Max-Weight and our analysis which we derived for
FCFS in Theorem 2, under uniform popularity distribution,
is also reasonable upper bound for more practical systems
and under non-uniform popularity distributions like the Zipf
distribution.

Fig. 9 shows the delay gain of FCFS multicast compared
to blind multicast as a function of parameter of zipf dis-
tribution under different loading factors ρ. Under uniform
popularity distribution with s = 0 given that ρ > 1, the gain
is 2( ρ2

ρ2−1 ) as it has been noted in Remark 6 which is large
for ρ close to 1 and the gain decreases as ρ increases. When
zipf parameter s increases, content popularity distribution
will become more degenerate and blind multicasting will
assign most the service to queue with largest arrival rate,
resulting in same performance of FCFS multicasting. So
we expect that gain will pick somewhere between and as
it can be seen from figure, for loading factor ρ = 1, gain
picks under Zipf distribution with parameter 1. Also, this

 

 Fig. 9: Blind/FCFS average delay ratio over Zipf parameter
s and n = 1000.

figure confirms that when ρ increases, the gain decreases
which also agrees with the results of Remarks 6 and 7 that
FCFS has the most advantage when ρ is close to 1 ans as ρ
increases, the gain decreases. Note that, as we see in Fig. 7,
unicast is a reasonable policy when ρ � 1, but it becomes
unstable for ρ ≥ 1, revealing the benefits of our proposed
FCFS work-conserving policy.

C. Effect of Error on Delay Gains

In this section, we consider the transmission failures over
the wireless channel as a practical issue and address the
effect of multicasting error on delay gains to demonstrate
that the reaped gains are still substantial even in the systems
with high multicasting outage. In practical systems, it is not
possible to multicast to all users at once and due to multicast
error, some users may not receive the multicasting content
properly. So, we need to send that content again until it is
successfully received. We should note that in the presence
of outage, we adjust the FCFS multicasting policy so that,
if a multicast transmission fails to be received by a user, we
treat that request as a new request. We call such a policy
FCFS with outage.

Fig. 10 shows the effect of channel failure on the delay
performance of different policies for different loading factors
ρ. For this figure, we assume n = 1000 and Zipf(1)
popularity distribution. We can see from Fig 10(a) that,
as the outage probability increases, unicast is the first
policy to become unstable. Also, the proposed FCFS work-
conserving multicast always outperforms both unicast and
blind multicast. For ρ ≥ 1, when unicast becomes unstable,
Fig. 10(b) shows the effect of multicast outage probability
on the average delays. As it can be seen from the figure,
even in the presence of multicast error, both blind multicast
and FCFS multicast with outage are stable in contrary to the
unicast which is unstable for both ρ = 1 and ρ = 2. Also,
the delay gains of FCFS multicast with outage compared to
blind multicast is still substantial especially if ρ is close to 1.
As the multicast outage probability approaches 1, the system
becomes unstable independent of the multicast policy. We
can conclude from this figure that under practical operational
conditions with multicasting error and Zipf-like popularity
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Fig. 10: The effect of channel failure on the performance for different loading factors under Zipf(1) popularity distribution.

distributions, the gain of FCFS work-conserving multicast
is significant compared to other multicast policies like blind
multicast. Recall that for large loading factors ρ ≥ 1, unicast
is always unstable and is not a possible service policy.

VII. CONCLUSION

In this work, we provided a comprehensive analysis of
multicast gains for wireless content distribution networks
serving a dynamic population of users that aim to access
a content database with a given popularity distribution. In
particular, we characterized the delay performance of two
classes of multicasting strategies, namely, ‘blind’ multi-
casting whereby the pending requests are unknown to the
transmitter, and ‘work-conserving’ multicasting whereby the
pending requests are known. Our results establish that both
types of multicasting yields endless stability, in that an
unbounded traffic load can be supported by them by ex-
ploiting the multicast advantage of wireless communication.
This is in contrast to the bounded stability of unicast mode
of transmission whereby requests are fulfilled individually.
Moreover, we show that work-conserving multicast based on
a first-come-first-serve principle can yield further delay gains
over its blind counterpart that are explicitly characterized
in our analysis as a function of the traffic load and the
database size. In addition to the explicit characterization of
delay performance of these proposed multicast strategies,
our work also revealed key insights on the conditions under
which blind and work-conserving multicast solutions can
yield most benefit.
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