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Abstract—We consider an information network comprised of
nodes that are: rational-information-consumers (RICs) and/or
biased-information-providers (BIPs). Making the reasonable ab-
straction that any external event is reported as an answer to
a logical statement, we model each node’s information-sharing
behavior as a binary channel. For various reasons, malicious
or otherwise, BIPs might share incorrect reports of the event
regardless of their private beliefs. In doing so, a BIP might
favor one of the two outcomes, exhibiting intentional or un-
intentional bias (e.g. human cognitive biases). Inspired by the
limitations of humans and low-memory devices in information
networks, we previously investigated a graph-blind rational-
information-consumer interested in identifying the ground truth.
We concluded that to minimize its error probability, graph-
blind RIC follows a counter-intuitive but tractable rule. In this
work, we build on this foundational knowledge: “graph-blind
RICs prefer the combination of information-providers that are
all fully-biased against the a-priori likely input, over all other
combinations.” Upon studying RICs with partial knowledge of
the network graph, we find that they act similar to graph-blind
RICs when their BIPs “listen to” sufficiently many information-
providers of their own. Furthermore, if a common node is in-
forming/influencing all n BIPs of a partially-aware RIC, that RIC
anticipates its discovery of the “influential node” to diminish the
average error probability by a factor that increases exponentially
with n. However, from the partially-aware RIC’s perspective,
choosing n fully-, similarly-biased BIPs outweighs the discovery
of influential nodes among its BIPs’ sources. These insights might
inform the design of consumer-centric information networks.

Index Terms—Rational decision-making, information net-
works, statistical decision theory, cognitive bias, data fusion.

I. INTRODUCTION

We consider an information network connecting users
that may be devices with limited resources or human,
and are biased-information-providers (BIPs) and/or rational-
information-consumers (RICs). We assume that reports of a
single event that occurred outside this network are propagated
as a true (1) or false (0) answer to a logical statement.
While our network model and analysis are applicable to
any information network, we were primarily motivated by
the unique qualities and constraints presented by modern-day
social networks.
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That is, a single bit of 0/1 information from a source is
being transferred via BIPs to the RICs. However, the BIPs may
report incorrectly for a variety of reasons; we model a BIP’s
reporting behavior as a binary channel to depict the errors in its
reporting of the input bit. In particular, each BIP can possess a
bias favoring either the 0 bit or the 1 bit in its reporting. Since
RICs (e.g. low-memory devices, humans) might not know the
underlying graph of the information network, we can reason-
ably assume that they are graph-blind (if it only knows a list of
its own neighbors), or that they are partially-aware (if it also
knows the number of neighbors each of its neighbors has, or of
any “influential” nodes among the neighbors of its neighbors.)
Therefore, when trying to minimize its consumption of false
information, an RIC might be graph-blind or only partially-
aware and it will have to assume that all of its BIPs are acting
independently unless there is evidence stating otherwise. This
assumption of independence is a reasonable approximation of
the typical behavior of RICs that are either human or low-
memory devices.

In our prior work [1], we studied the impact of information-
providers’ biases on the choices of a graph-blind RIC that
is attempting to accurately detect the original information.
We recall these results in Section IV. The goal of this
work is to perform a careful study of the impact of the
information providers’ biases on the choices of a “partially-
aware” RIC that is attempting to accurately detect the original
information. Given that BIPs are inevitably unreliable and
biased, we are especially interested in unearthing “how” the
BIPs’ biases impact the RIC, and by “how much”. In online
social networks (OSNs), 0/1 might represent contradicting
depictions/viewpoints of a current event. For a particular social
network user, its trusted media outlets and friends are the BIPs.
A BIP’s favorable opinion of arguments/evidence supporting
one viewpoint as opposed to the other, might color its reports
of the original/source information.

Even though the design is inspired and constrained by
the particular nature of interactions on OSNs, this setting
finds application in other information networks. For example,
sensor networks where the devices have unequal false alarm
and misdetection probabilities. Herein, the 0/1 information at
the source can represent the absence/occurrence of a sensor-
triggering event. Akin to the OSN users described earlier,
the sensors might have limited capacity to account for the
network graph, they might be unreliable, and they might also
have asymmetric sensitivities to the 0/1 triggering event (i.e.,



causing more false alarms than misdetections and vice versa).
Our problem statement bears comparison to these topics in

literature: Containment of Misinformation, Information The-
ory, Social Sensing, and Information Fusion.

Influence maximization and containment of misinformation
on social networks, by placing influential and protector nodes
strategically, is studied in literature (e.g., [2], [3]). Our ap-
proach differs from these works in that we are not interested
in the NP-hard problem of finding the most influential nodes
to target, in a network. Instead, we are interested in the
decisions of any rational-information-consumer choosing from
a (possibly, large) selection of biased-information-providers.

Reliable transfer of information over unreliable binary
channels is widely studied in information theory (e.g. [4]–
[7]). Wherein, unlike the problem statement of this paper,
the BIPs might choose to encode the information or transmit
information about a block of ne events at the same time, to
increase the rate of reliable information transfer (a.k.a. channel
capacity). However, in OSNs and some sensor networks, the
BIPs lack accountability and it is more practical to transmit
information about each event separately and without delay.
Here, BIPs are error-prone, biased, abundantly available and
act promptly. This requires methods for reliable information
transfer when only one event is processed at a time.

Social sensing literature studied the problem of the true
value of a solitary binary quantity based on data arriving from
multiple data sources of unknown credibility (e.g., [8]–[12]).
These works, however, are focused on identifying duplicates
and dependencies in incoming datasets and estimating the
credibility of sources to maximize the probability of discover-
ing the ground truth. As such, they do not consider the impact
of information-providers’ biases.

Information fusion studies the detection of ground truth in
information (mostly, sensor) networks (e.g. [13]–[21]). These
algorithms assume channel and noise characteristics, and may
process signals sequentially, in the order of a sensor’s reliabil-
ity, accounting for channel fading, distance to its measuring
target, etc. Our investigation contributes to these efforts, with
a unique perspective on how, from abundantly-many BIPs,
graph-blind and partially-aware RICs choose BIPs that are
optimally-biased, given their individual error rate.

While intuition might dictate that an unbiased BIP is a better
choice than a biased one, we find that a rational-information-
consumer will choose the opposite. The choices and actions
of the RIC (with limitations similar to those of humans or
low-memory devices) can be summarized as follows:
• When choosing independent BIPs to report a 0/1 event:

we find that an RIC is best served by the BIPs that are fully
biased against the a-priori likely event. Using this optimal
choice of BIPs, the RIC will deduce that the a-priori likely
event is true unless all BIPs report that the a-priori unlikely
event is true (cf. Corollary 1). Further, if it is not possible to
obtain BIPs that are fully-biased against the a-priori likely
event, then the set of n BIPs that will best serve the RIC are
still guaranteed to be maximally-biased (cf. Theorem 1).
• When a system of unbiased BIPs (that do not favor

either outcome) is replaced by a system of fully-biased
BIPs (favoring the same outcome), the gain (in terms of
probability of error) rises as an exponential function of a
positive exponent (cf. Theorem 2) that decreases with the
BIPs’ error rate and increases linearly with n.
• When a RIC is partially-aware of the network graph by

being aware of the number of information sources utilized
by each of its n BIPs), then we can make reasonable
assumptions to deduce that the number-aware RIC will
prefer BIPs that utilize sufficiently many sources to estimate
the ground truth. The minimum number of sources that each
BIP needs to utilize is a number that decreases when the
bias of the BIP and its sources increases.
• Lastly, suppose a number-aware RIC, such as the one

discussed previously, discovers a single node influencing
all n of its BIPs. The partially-aware RIC would anticipate
this discovery to reduce its error probability for detecting
the ground truth to fall exponentially with increasing n.
However, choosing fully-biased BIPs that utilize sufficiently
many sources appears to take precedence over the discovery
of a single “influential” node.

We find that an RIC acts according to a counter-intuitive, but
very tractable rule. As such, we consider RICs with limited
knowledge of the network, model their surprising behaviors
such as their perceived benefits of fully-biased information-
providers and their perceived precedence of choosing fully-
biased BIPs over accounting for influential nodes. These
insights inform the models of rational-information-consumers
that exhibit varying levels of network awareness and, thus,
could enable novel RIC-centric frameworks with mechanisms
that can leverage bias to reduce misinformation.

The rest of the paper is organized as follows. In Section II,
we introduce the rational agent’s model of the multi-BIP
system of interest. In Section III, we discuss the characteristics
of the optimal decision rule. In Section IV, we state the main
results and our analysis of biases and their impact on a graph-
blind RIC’s choices from our prior work [1]. In Section V,
we examine the choices that are perceived as optimal by
an RIC that is partially-aware of the information network’s
underlying graph. We first analyze the behavior of an RIC
that is aware of the number of sources that each of its BIPs
utilizes. Next, in Section V-C, we analyze the behavior of
the number-aware RIC when it discovers a single node that
is influencing all n of its BIPs. Finally, in Section V-D, we
will numerically evaluate the least number of sources that a
number-aware RIC will require from each of its BIPs, and
thus, validate the results of Theorem 3. In Section VI, we
summarize our analysis of graph-blind and partially-aware
rational-information-consumers. The proofs of the results in
Sections IV and V are presented in the Appendix.

II. SYSTEM MODEL

In this section, we will discuss the layout of an information
network as viewed by a rational agent in the network, a.k.a. the
rational-information-consumer (RIC). As we already stated,
we are interested in human-like information consumers who



can make rational decisions but cannot be made to learn the
graph due to their limitations.

We differentiate between RICs that are graph-blind (have
no knowledge of the network except the directly observable
parameters of its neighbors) and RICs that are partially-aware
of the network’s graph structure. Partially-aware RICs that we
discuss in this paper include: RICs that are number-aware (are
knowledgeable of the number of biased-information-providers
(BIPs) that each of its own BIPs has used), and RICs that are
influence-aware (are knowledgeable of any common biased-
information-providers that all of its own BIPs have used).

A. Rational Agent’s Perspective of Information Sharing

Network of Information Providers and Consumers:
We consider any information network where the net-
work users/nodes are biased-information-providers (BIPs) or
rational-information-consumers (RICs) or both. We start by
visualizing a general information network (for reference, see
Fig. A.1a in the Appendix) from a graph-blind RIC’s perspec-
tive, as shown in Fig. 1a.

A graph-blind RIC will know the channel characteris-
tics (Fig. 1b) of each of its BIPs, but not much else. It is natural
to assume that any RIC would have limited knowledge of the
global network and, therefore, will perceive its neighboring
BIPs as independent agents who are all accessing the ground
truth. In OSNs, we can assume that an information-provider
might make false reports, perhaps biased in favor of a specific
outcome. We also reason that an RIC can easily quantify the
biases of its information-providers (by using the information-
provider’s history of reporting for past events where the ground
truth is now known, for example).

Building on this, later in Section V, we will consider
the information network from the perspective of a partially-
aware RIC (Figures 6a). In addition to knowing the BIPs’
channel characteristics, a partially-aware RIC will know some
parameters pertaining to the BIPs that cannot be directly
observed. Such as, the number of nodes that a BIP uses to
obtain its raw information from; the presence of a common
“influential” node that shares information with many BIPs of
the same RIC.

Here, in this section, we present the model of the agents in
an information network and their interactions. We discuss the
parameters relevant to the biases of the BIPs and the error-
optimal decision policy that is relevant to the various RICs.

Our goal is to identify an RIC’s best strategy for maximizing
its probability of identifying the ground truth given that it
has no/partial network information. Based on the kind of
information that is available to the RIC, we assume the RIC
adopts a graph-blind perspective (Fig. 1a) or a number-aware
perspective (Fig. 6a) or a influence-aware perspective (Fig. 7).
Multi-Channel Communication Model: The system in Fig-
ure A.1b can be modeled as shown in Figure 1a, where the
information from a source s arrives at an RIC at destination d
through n BIPs, whose reporting behavior can be modeled as
parallel, independent binary channels. In the rest of the paper,
we will use the terms “BIP” and “channel” interchangeably.

(a) System of n independent BIPs connecting a
source s and destination d.

(b) Input-output behavior of the i-
th BIP modeled by channel Ci.

Fig. 1: Information transfer through n independent binary
channels representing n independent BIPs. Simplified version
of Fig A.1a, from the perspective of graph-blind RIC.

Let {X(t)}t be the information stream available to a source s,
where X(t) ∈ {0, 1} is a binary random variable representing
the information available to s at time t. We assume that the
bits in the information stream are independent of each other
and can be examined individually.

For ease of notation, we fix the time instant t and fix X :=
X(t). We assume that the prior probability distribution of X
is given by ρ = (ρ0, ρ1) such that ρ0 = P (X = 0) and ρ1 =
P (X = 1). Without loss of generality, we assume ρ0 ≥ ρ1.

Given X , we denote the information received by an RIC
(at destination d) through its BIPs’ channels, using the binary
random vector Y(n) = {Yi}ni=1. The random variable Yi
corresponds to the channel Ci, ∀i ∈ {1, · · · , n}. We represent
the behavior of the BIP represented by the binary channel
Ci in Fig. 1b, where αi = P (Yi = 1|X = 0) ∈ [0, 1] and
βi = P (Yi = 0|X = 1) ∈ [0, 1]. Let the properties of the
channel Ci be given by Ci := (αi, βi) (cf. Fig. 1b). We denote
the properties of all n channels using Cn := {n,α(n),β(n)},
where α(n) = {αi}ni=1 and β(n) = {βi}ni=1. Also, we define
Sn := {n, ρ0,α(n),β(n)} to denote the system parameters.
Decision Policy: We are interested in the value of X ∈ {0, 1}
that is more likely to generate y(n) = {yi}ni=1 ∈ {0, 1}n
as a realization of the random vector Y(n). In other words,
we are interested in a decision policy π: {0, 1}n 7→ {0, 1}
that achieves the smallest probability of error. We denote the
expected probability of error of decision policy π in the system
Sn by Pπe (Sn) and define it as follows.

Pπe (Sn) =
∑

x∈{0,1}

ρxP
{
π
(
Y(n)

)
6= X|X = x

}
. (1)

Let Π∗ (Sn) be the set of error-optimal decision policies in
a system with parameters Sn. Therefore, for an error-optimal



decision policy π∗ ∈ Π∗ (Sn) ,

π∗
(
y(n)

)
= arg max

x∈{0,1}
P
{
X = x;Y(n) = y(n)

∣∣∣Sn} ,
Pπ

∗

e (Sn) =
∑
y(n)

min
x∈{0,1}

ρxP
{
Y(n) = y(n)

∣∣∣X = x
}
. (2)

Channel Bias: The parameters (αi, βi) capture the bias of the
BIP modeled by Ci (see Fig. 1b). So, αi > βi implies that Ci
changes a 0 input to a 1 output more often than it changes a 1
input to a 0 output. And if αi < βi, the opposite holds true. For
the multi-channel system Sn, we are interested in the effect
of the channel biases (α(n),β(n)) on the smallest probability
of error that the RIC can achieve. The following definition
clarifies the concepts of unbiased, biased, and fully-biased (S,
Z) BIPs/channels, which will be useful in the analysis.

Definition 1 (Unbiased/Biased Channels). Channel Ci is said
to be unbiased if αi = βi, and biased if αi 6= βi. Fully-biased
channels are special cases of biased channels: an S-channel
with βi = 0 (Fig. 2a); a Z-channel with αi = 0 (Fig. 2b).

Channel Error Rate: Given the priors ρ = (ρ0, ρ1), the
average rate at which an erroneous output is received at d
from channel Ci is given by

r
(ρ)
i := ρ0αi + ρ1βi. (3)

Also, in vector form, we use r(n) = {r(ρ)i }ni=1.
In the next section, we will characterize the optimal decision

rule that is relevant to the RICs. Following that, in Section IV,
we will state the graph-blind RIC’s choices and behaviors that
were studied in our earlier work.

III. OPTIMAL DECISION RULE

In this section, we will characterize the optimal decision
rule and discuss its complexity. Then, we will reiterate our
conclusions from our previous work that not only does a
graph-blind RIC perceive the set of n BIPs that are fully-biased
against the a-priori likely outcome as the optimal choice,
but it also perceives the set of n unbiased BIPs to be an
exponentially worse choice than the set of n fully-biased BIPs.

(a) S-Channel (b) Z-Channel

Fig. 2: S- and Z-Channels

Fig. 3: Minimum error probability for 2 independent channels
with fixed error rate, but varying bias reveals a complex form.

A. Characterization and Discussion of the Optimal Rule

We start by describing the nature of the decision rule that
forms the optimal decision policy for Sn. We define

P̃α := P̃α

(
y(n)

)
:= P (y(n)|X = 0) =

n∏
i=1

αyii (1− αi)1−yi ,

P̃β := P̃β

(
y(n)

)
:= P (y(n)|X = 1) =

n∏
i=1

(1− βi)yi β1−yi
i .

The classical hypothesis testing framework [22] yields the
optimal decision rule π∗(y(n)) for a given y(n) as follows:

ρ0P̃α

(
y(n)

) π∗(y(n))=1

≶
π∗(y(n))=0

ρ1P̃β

(
y(n)

)
, ∀y(n). (4)

This decision rule can be further simplified into a Log-
Likelihood-Ratio (LLR) with an additive structure. However, it
is easy to see that this test is a highly nonlinear function of the
bias parameters: (α(n),β(n)). This nonlinearity significantly
complicates the error analysis of the decision rule w.r.t. bias,
which is the main objective of this work.

∂ log
(
P̃α/P̃β

)
∂αi

=
(ρ1 − r(ρ)i )yi
ρ1αi(1− βi)

+
(ρ0 − r(ρ)i )(1− yi)
ρ1βi(1− αi)

.

In particular, note that: The value of yi alone (not r(ρ)i ) decides
whether P̃α and P̃β are both increasing or decreasing in αi.
So, even when P̃α

P̃β
is a monotonic function of α(n) for all y(n),

the impact of α(n) on Pπ
∗

e (Sn) =
∑

y(n) min
{
P̃α, P̃β

}
might not be monotonic. Fig. 3 further illustrates the nontrivial
nature of the optimal error as a function of channel biases for
n as small as 2, calling for an analysis of the choices of bias.

IV. CHARACTERISTICS AND PERFORMANCE OF
GRAPH-BLIND RICS

The graph-blind RIC has a limited perspective of the graph
of the information (for reference, see Figure A.1b in the
Appendix). A graph-blind RIC has no knowledge of the
network except for its own BIPs.

In our previous investigation [1], we derived the choices
that the graph-blind RIC will consider optimal. The results



are presented in Theorems 1, 2 and Corollary 1. The proofs
can be found in the Appendix.

The realization of the difficulty in the direct analysis of
the optimal decision rule motivated us to seek a uniform
lower bound on the probability of error. By proving that
for a given n, the minimum error is achieved by a system
Sn of extremely-biased channels, the following theorem later
establishes that systems of fully-biased channels which favor
the a-priori unlikely outcome will yield the least error while
detecting the source information.

Theorem 1 (Performance of the optimal decision policy is
coordinate-wise concave in bias).

Without loss of generality, assume that ρ0 ≥ ρ1. Consider a
system of n independent, parallel binary channels described by
Sn =

(
n, ρ0,α

(n),β(n)
)

, where ρ0α(n) +ρ1β
(n) = r(n). As-

sume that r(n) is fixed to be a constant, and1 r
(ρ)
k ∈

[
0, 12
]
∀k.

For every such Sn, there is an optimal decision policy π∗

chosen from Π∗ (Sn) and an average probability of error
Pπ

∗

e (Sn). This error function Pπ
∗

e (Sn) is a concave function
in each individual αk, for k ∈ {1, · · · , n}.

Theorem 1 leads us to the conclusion that: while holding
the r(n) fixed, the error function Pπ

∗

e (Sn) will achieve its least
value for a system Sn such that αk ∈ {αk,min, αk,max} ∀k.

Here, αk,min ≥
(
r
(ρ)
k −ρ1

)+

ρ0
and αk,max ≤

r
(ρ)
k

ρ0
. We will refine

the 2n possible combinations of extreme bias to find the one
that achieves the lower bound on the probability of error.

Corollary 1 (Similarly and fully-biased BIPs are optimal). As-

sume that ρ0 ≥ ρ1, r(n) ∈
[
0, 12
]n

is fixed, and ρ0
n∏
i=1

r
(ρ)
i

ρ0
≤

ρ1. Then the least probability of error is achieved by an
optimal policy on n parallel, binary channels when Sn is a
system of n S-channels (Fig. 2a). That is, β(n) = 0(n).

Pπ
∗

e (Sn) ≥ ρ0
n∏
i=1

r
(ρ)
i

ρ0
. (5)

Since ρ0 ≥ ρ1, the optimal decision policy for a system of
S-channels is π∗

(
Y(n)

)
= Y1 · Y2 · · · · · Yn.

Corollary 1 strongly reveals that systems with n inde-
pendent, fully-biased BIPs/channels which favor the a-priori
unlikely outcome (i.e., BIPs with S or Z-channels, depending
on the priors) are preferable to all other possible BIPs/channels
with the same individual average error rates. An RIC with such
BIPs is prone to error only when all n of them are wrong.

This result provides an insight that may be against common
sense: when looking for n independent biased-information-
providers with prefixed error rates r(n), it is not optimal to
choose the diversely biased or totally unbiased BIPs! In fact,
it is best to select all similarly and fully biased BIPs, but pay
extra attention if one of them reports against their bias.

1If ∃k such that r(ρ)k > 1
2

, then we can map (1−Yk, 1−r
(ρ)
k , 1−αk, 1−

βk) 7→ (Yk, r
(ρ)
k , αk, βk).

We note that this finding greatly extends a loosely related
result in [6], which proves that only among channels of very
low and equal capacity, a maximally asymmetric channel with
a noiseless symbol has the least probability of error.

Motivated by the optimality of full bias in minimizing
probability of error, we also studied the gains obtained by
working with a set of similarly and fully-biased BIPs over a
set of unbiased BIPs. For fair comparison, we assume that the
average error rates r(ρ)i of the BIPs are all equal to r(ρ) in both
scenarios. Therefore, the BIPs are equivalent in their average
rate of sending erroneous bits, but differ in their biases.

A. Characterizing the gains of fully-, similarly-biased BIPs

Corollary 1 demonstrates “how” the BIPs’s affect the RIC’s
decisions. In this section, we will investigate the gains that the
RIC anticipates to obtain from its choices.

The following theorem characterizes these gains with upper
and lower bounds, which become asymptotically tight as the
number of BIPs, n, increases.

Theorem 2 (Gains of Fully-Biased BIPs vs Unbiased BIPs).
Fix r(ρ) ∈

(
0, 12
]

to be the common error rate for all the

BIPs’ channels. Then, let Sun =
{
n, ρ0, r

(ρ)1(n), r(ρ)1(n)
}

and Sfn =
{
n, ρ0,

r(ρ)

ρ0
1(n),0(n)

}
, respectively, describe the

unbiased and fully-biased systems, each containing a set of
n independent BIPs. Correspondingly, let the error-optimal
decision policies for Sun and Sfn be denoted as π∗u and π∗f ,
respectively2. Then, for any n ∈ N, we have

ln

 P
π∗
u

e (Sun)

P
π∗
f

e

(
Sfn
)
 ≤ m ln

(
4ρ20

(
1

r(ρ)
− 1

))
+ ln

2(m+ 1)

ρ0

ln

 P
π∗
u

e (Sun)

P
π∗
f

e

(
Sfn
)
 ≥ m ln

(
4ρ20

(
1

r(ρ)
− 1

))
− ln

4m

ρ1
,

where m =
⌊
n
2

⌋
. Moreover, asymptotically, these bounds

converge to get

lim
n→∞

1

n
ln

 P
π∗
u

e (Sun)

P
π∗
f

e

(
Sfn
)
 =

1

2
ln

(
4ρ20

(
1

r(ρ)
− 1

))
. (6)

This theorem (proof in Appendix) reveals that the propor-
tional gains of using all fully biased BIPs rather than all
unbiased BIPs will increase exponentially with n, and the
factor that is explicitly characterized in (6) in terms of the
average error rates r(ρ) of the channels. This shows that the
gains are particularly high when the average error rates r(ρ)

are closer to zero. It is expected that the gains will be relatively
small when r → 1

2 , since the probability of error approaches
1
2 in both scenarios.

Numerical results pertaining to this theorem can be found
in the following section.

2Note that π∗
f is the policy described in Corollary 1.



This result is quite useful in characterizing the conditions
under which the use of fully biased BIPs would be especially
preferable to unbiased BIPs, and the conditions under which
using all unbiased channels may be acceptable. Moreover, the
upper and lower bounds on the gains can be reverse engineered
to determine the number of BIPs n needed to guarantee a
desired limit on the probability of error for a graph-blind RIC.

B. Simulations

In this section, we perform numerical experiments to vali-
date our theoretical results and to develop a broader under-
standing of the impact of bias on the choices that appear
optimal to a graph-blind RIC that seeks n BIPs.

We showed that a graph-blind RIC expects to minimize its
error probability, by choosing fully-biased BIPs amongst all
BIPs that have the same individual error rates (cf. Corollary 1).
Further, we want to know if the RIC expects other choices to
yield vastly different error probabilities (as in Theorem 2).

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0
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Fig. 4: Distribution of probabilities of error in a system with
fixed priors (ρ) and fixed channel error rate r(ρ).

In Figure 4, we explore this question for n = 5 channels,
ρ = (0.6, 0.4), and r(ρ) = 0.3. We choose many different
values of (α(n), β(n)) that satisfy r(ρ) = 0.3 in order to
generate the plotted histogram of the optimal-probability-of-
error values obtained by them. The resulting plot confirms
that the fully-biased system with all S-channels (βi = 0,∀i)
achieves the minimum value (in this case ≈ 0.02). Moreover,
it reveals that the error probabilities has a wide range between
0.02 and 0.2 with most of the distribution centered around
higher values of ≈ 0.15. In particular, the case of unbiased
channels (αi = βi,∀i) yields an error probability of ≈ 0.165.
As such, this figure further highlights the significance of
utilizing fully-biased channels as opposed to other choices.

In Theorem 2, we replaced unbiased BIPs (αi = βi) with
fully-biased BIPs that favor the same outcome (αi = 0,∀i or
βi = 0,∀i). There, we established that the RIC’s anticipated
gains (factor by which probability of error will fall) grow
asymptotically at an exponential rate with the exponent being
linearly dependent on n (the number of BIPs/channels used).
We obtained this result by deriving upper and lower bounds
on the gains that become tight as n increases. To check the
tightness of these bounds, the rates of change of the exponents
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Fig. 5: Asymptotic growth rate of the gain Pue
P fe

.

with n are plotted in Figure 5 for different ρ and r(ρ). From
this plot, we verify that the growth rates of the exponents of
the gains are, in fact, linear in n. Moreover, the upper and
lower bounds are tight even for fairly small values of n. We
also confirm that the growth rates of the exponents in the
gains and their bounds all converge to 1

2 ln
(
4ρ20

(
1
r(ρ) − 1

))
.

Incidentally, the plot also reveals that the RIC expects to obtain
almost no gains, by replacing unbiased BIPs with fully-biased
BIPs when ρ1 = r(ρ) = 1

2 , confirming our earlier intuition.
From a graph-blind RIC’s perspective, these numerical

investigations not only validate the optimality of fully-biased
BIPs and their asymptotic gains over unbiased BIPs, but also
reveal that: (i) even partially-biased BIPs lose substantially
against the fully- and similarly-biased ones, and (ii) the asymp-
totic performance is approached quite rapidly for increasing
n.

Recall that, the graph-blind RIC perceives the following
behaviors as optimal:
• Among the BIPs with the same channel error rate, the

optimal choice is BIP that is extremely-biased (fully-
biased, if such a BIP exists).

• When choosing BIPs that are fully-biased, the estimation
error is minimized if the BIPs are all biased in the same
direction, against the a-priori likely event.

From the conclusions that arise from the above model
of a graph-blind RIC, we are given to wonder how partial
knowledge of the graph will affect the RIC’s choices and
how these choices can affect the network. In particular, we
are given to wonder whether the optimality of similarly-and-
highly-biased BIPs will persist and if the selection of such
BIPs takes precedence over the conclusions drawn from the
partial knowledge of the graph. To that end, we will study
partially-aware RICs in the next section. These are RICs
that have partial knowledge of the information network’s
underlying graph, as opposed to graph-blind RICs which have
no knowledge of the information network’s underlying graph.

V. CHARACTERISTICS AND PERFORMANCE OF
NUMBER-AWARE RICS

Given the behaviors and choices that are perceived as
optimal by the graph-blind RIC in the previous section, here



we intend to expand our analysis to the behaviors that are
perceived as optimal by an RIC that is also aware of the
number of information-providers that were employed by its
own BIPs.

Assumptions about the number-aware RIC: We note
that a number-aware RIC is only aware of the number of
information-providers employed by its BIPs, but not their
biases. Therefore, in order to conduct our analysis, we start
by assuming that the RIC conjectures that: its i-th BIP will
choose its own information-providers such that they each
independently have error rates and biases that are identical
to those of the i-th BIP itself.

However, we also find that our assumption does not affect
the larger implications of our analysis in this section. That
is because, based on the optimal decision policy from Sec-
tions II and III, we can verify the extension of our conclusions
to the case where the i-th BIP and its Ni sources have biases
and individual error rates which differ from each other. And
also, because we find that the broader conclusions of our anal-
ysis are that: “the number-aware RIC will still view similarly-
and-highly-biased nodes as the optimal choice.” And since the
channel characteristics are assumed to be independent (even if
they are identical), we can see that the broader implications of
the analysis in this section will apply even when the channel
characteristics are not identical. For instance:
• Assume a BIP and its information sources are similarly-

and-highly-biased (have a high α to β ratio). A number-
aware RIC will consider this BIP to be reliable even if
its information sources are fewer in number.

• If a BIP and its information sources are unbiased, then a
number-aware RIC will consider this BIP to be reliable
only if it has a larger number of information sources.

• Lastly, assume a BIP and its information sources are
highly-biased, but their biases are in opposite directions.
To a number-aware RIC, the combined (augmented) BIP
derived from (7)-(9) will appear to have very little bias.
Model of a number-aware RIC in an information

network: Consider the network given in Figure A.1a. Let
the underlying graph be denoted by G = (V, E). We will
assume that the nodes in V can be partitioned into subsets
V(1),V(2), · · · ,V(h) and so on, where the nodes in V(i), i ≥
2 are the rational information-consumers and derive their BIPs
from V(i−1) alone. From Figure 6a and A.1, it is obvious that
the nodes in V(1) do not have biased-information-providers
but get the true information or ground truth directly.

Let the RIC be denoted by the node vD ∈ V . Every node v ∈
V , that acts as a BIP at some point of time, has the individual
error rate is given by r(v) ≤ 1

2 and the biases are given by

α(v) and β(v) =
1

ρ1
·(r(v)−ρ0α(v)). To facilitate our analysis

we will assume that α(v) ≥ β(v) and α(v) + β(v) < 1 for
every v ∈ V .

Now, we note that from the perspective of a number-aware
RIC the network appears as shown in Figure 6a. That is, with
its limited knowledge of the information network, the number-
aware RIC assumes that: it belongs to the subset V(3) in the

(a) Perspective of a number-aware RIC.

(b) Augmentation of BIPs by the number-aware RIC.

Fig. 6: Augmented BIPs of a number-aware RIC.

network hierarchy, that its BIPs belong to V(2), and that their
BIPs belong to V(1). Further, we assume that the RIC itself
has n BIPs and the i-th BIP receives information from Ni
BIPs of its own. Let N(n) = [N1, N2, · · · , Nn]T .

Let the number-aware RIC, vD, receive the binary vector
Y

(n)
in (vD) from its BIPs. The RIC will be interested in the

optimal decision policy,

π∗
(
Y

(n)
in (vD),N(n)

)
= arg max

X
P
(
X;Y

(n)
in (vD) | N(n)

)
.

A. Perspective of a number-aware RIC: Augmented BIPs

Figure 6b shows how the network, as perceived by the
number-aware RIC, can be distilled into the simpler form with
n parallel BIPs with the individual error rates r

(n)
aug and the

biases α
(n)
aug , β(n)

aug .
Let r

(n)
aug = {r(ρ)aug(vi)}ni=1, α

(n)
aug = {αaug(vi)}ni=1 and

β(n)
aug = {βaug(vi)}ni=1. Note that the channel Cαaug(vi) is a

series combination of the channels Cα(Vin(vi)) and Cα(vi).
From the perspective of the RIC node vD, all of its BIPs

are in V(2). We notice that every node in V(2) has BIPs, but
those BIPs access the ground truth and do not have (or need)
any information-providers of their own. Thus, the number-
aware RIC assumes that when each of its BIPs were receiving
information and identifying the ground truth, they could only
have acted as graph-blind RICs and not number-aware RICs.
The channel Cα(Vin(vi)) is a distilled representation of the
graph-blind decision policy adopted by vi ∈ V(2), which is
the i-th BIP of the node vD.

αVin(vi) = P 0
e,Vin(vi) := P

(
π∗(Y

(n)
in (vi)) = 1 | X = 0

)
,

βVin(vi) = P 1
e,Vin(vi) := P

(
π∗(Y

(n)
in (vi)) = 0 | X = 1

)
.



Therefore, the channel Cα(Vin(vi)) has an individual error
rate denoted by

rVin(vi) = Pe,Vin(vi) := ρ0P
0
e,Vin(vi) + ρ1P

1
e,Vin(vi).

The biases and error rate corresponding to Cαaug(vi) are
αaug(vi), βaug(vi), and raug(vi). Since the channel Cαaug(vi)
is a series combination of the channels CVin(vi) and Cα(vi),

αaug(vi) = α(vi) + (1− α(vi)− β(vi))P
0
e,Vin(vi) (7)

βaug(vi) = β(vi) + (1− α(vi)− β(vi))P
1
e,Vin(vi) (8)

raug(vi) = r(vi) + (1− α(vi)− β(vi))Pe,Vin(vi). (9)

B. Optimal choices of a number-aware RIC

For the RIC in Figure 6, the following result proves that
the minimum probability of error achieved by the number-
aware RIC is coordinate-wise concave with respect to the
value of α(vi) assuming that raug(vi) is fixed. Thus, using
this Corollary, we can extend the result of Theorem 1 that
applies only to graph-blind RICs, to number-aware RICs.

Corollary 2. The minimum probability of error Pπ
∗

e (Sn)
for the RIC in Figure 6 is coordinate-wise concave in both
αaug(vi) and α(vi), when raug(vi), P 0

e,Vin(vi) and P 1
e,Vin(vi)

are fixed and raug(vj) ≤ 1
2 , j = 1, 2, · · · , n.

Proof. We already know from Theorem 1 that the minimum
probability of error Pπ

∗

e (Sn) for the RIC is coordinate-wise
concave in αaug(vi) when raug(vi) is fixed.

We know that the minimum probability of error Pπ
∗

e (Sn)

is a function of α(n)
aug and r

(n)
aug alone. So it is enough to show

that αaug(vi) is a linear function of α(vi) alone, provided
raug(vi) is constant. Now, we rearrange (7),(8),(9) as follows.

αaug(vi) = α(vi)(1− P 0
e,Vin(vi))− β(vi)P

0
e,Vin(vi) + P 0

e,Vin(vi)

βaug(vi) = −α(vi)P
1
e,Vin(vi) + β(vi)(1− P 1

e,Vin(vi))

+ P 1
e,Vin(vi)

raug(vi) = α(ρ0 − Pe,Vin(vi)) + β(vi)(ρ1 − Pe,Vin(vi))
+ Pe,Vin(vi).

Therefore, we have the following linear mapping between
αaug(vi) and α(vi).

αaug(vi) =α(vi) · ρ1 ·
1− P 0

e,Vin(vi) − P
1
e,Vin(vi)

ρ1 − Pe,Vin(vi)

+ P 0
e,Vin(vi) ·

ρ1 − raug(vi)
ρ1 − Pe,Vin(vi)

. (10)

From (10), we can conclude that since the minimum proba-
bility of error Pπ

∗

e (Sn) for the RIC is coordinate-wise concave
in αaug(vi) for a fixed raug(vi), it is also coordinate-wise
concave in α(vi) corresponding to the i-th BIP.

The corollary above extends our insight in Theorem 1
regarding the effect of bias on the optimal choices of the
graph-blind RIC to the optimal choices of the number-aware
RIC. In both cases, a BIP becomes more preferable to the
RIC, if it becomes more biased than it was before while its

augmented error rate remains the same. While the corollary
only requires that raug(vi) remain constant and not r(vi),
we find it is more crucial to understand how changes in the
biases as well as the error rates of the individual BIPs and
their information-providers will affect the choices that will be
perceived as optimal by the number-aware RIC.

1) Critical Assumption on Number-aware RIC: vD is a
number-aware RIC and as its name suggests, it only knows
the number of information-providers used by its own BIPs.
Their individual biases are either unavailable to vD or not
being utilized by vD or will become irrelevant to vD.

In any such case, the RIC might reasonably assume that all
Ni sources of its i-th BIP will have biases and individual error
rates identical to those of the i-th BIP. (Based on the optimal
decision policy from Sections II and III, we can verify the
extension of our conclusions to the case where the i-th BIP
and its Ni sources have biases and individual error rates which
differ from each other.) We also consider this a reasonable
assumption based on the following conjectures.

(i) Since the RIC is only number-aware and it cannot/will
not access the identities or individual values of the biases
and error rates of the i-th BIP’s sources.

(ii) However, similar to the graph-blind RIC, the number-
aware RIC can either access or empirically estimate
the bias and the individual error rate of the i-th BIP
augmented by its Ni sources.

(iii) For social networks, it is reasonable to assume that the
i-th BIP acquires information from sources that hold
similar biases as it does.

(iv) It also stands to reason that the number-aware RIC might
optimize for the number of information sources utilized
by each of its BIPs.

Our analysis in the rest of this section shows that conjectures
(i)-(iv) are consistent with each other and with (7),(8),(9).

i-th BIP of a number-aware RIC: From here on, we will
analyze the i-th BIP of the number-aware RIC. To facilitate
analysis, we will assume that, α(v) = α, β(v) = β, and
r(v) = r when v = vi or v ∈ sources(vi). With this
assumption, it turns out that the individual biases of the BIPs’
sources will be of no relevance to the RIC node vD. Which
covers under it the conditions where the individual biases of
the BIPs’ sources are unavailable to vD, or are of no interest
to vD.

As stated earlier, here we consider the cases where α ≥ β,
r ≤ 1

2 , and α + β < 1. As discussed before, each RIC in
the network regardless of its actual location in the hierarchy
assumes that it is in V(3) and that all the BIPs’ input-output
behavior is characterized by identical binary channels, Cα(vi).

Therefore, an RIC can only maintain its assumption that all
nodes have the same channel characteristics if αaug(vi) ≈ α,
etc. The assumption can hold, to an approximation, if for each
BIP with Ni sources we can find a lower bound on Ni such
that αaug(vi) − α < ε, βaug(vi) − β < ε, and raug(vi) −
r < ε. In essence, the number-aware RIC at node vD, when
choosing its i-th BIP is enforcing a minimum requirement on
the number of sources (Ni) of the i-th BIP. By doing so, the



RIC is ensuring that its own estimates of α(vi), β(vi), and
r(vi) do not deviate from their actual values by more than an
ε amount. Thus, the number-aware RIC is ensuring that the
BIPs utilize sufficiently many sources to arrive at a highly-
reliable estimate of the ground truth themselves.

In summary, since the RIC is only number-aware, using our
critical assumption from above, we will assume that α(v) = α,
β(v) = β for all v ∈ V in this analysis. And since any RIC in
V(h), h ≥ 3 views itself as being in V(3), we also need this
assumption to remain valid regardless of whether the RIC is
in V(3) or not.

Consider vi, the i-th BIP of the RIC node vD. From the
perspective of the RIC, the node vi is in V(2), and thus, vi
is making a graph-blind decision regarding the true value of
X . Let X̂i be the estimate of the ground truth made by the
node vi using Ni independent and exclusive BIPs of its own,
according to the RIC.

Decision policy of the i-th BIP of the number-aware
RIC: From the perspective of the RIC, the observations that vi
receives from its own BIPs are unknown and can be denoted
by Y

(n)
in (vi). Let k and Ni− k be the number of 0s and 1s in

Y
(n)
in (vi), respectively. Since all the nodes are assumed to have

identical channel characteristics, the estimation of X made by
vi is as follows.

ρ0α
Ni−k(1− α)k

X̂i=0

≷
X̂i=1

ρ1(1− β)N−kβk

=⇒ k
X̂i=0

≷
X̂i=1

k∗i =
Ni · La − Lp
La + Lb

, (11)

where La := log

(
1− β
α

)
≤ Lb := log

(
1− α
β

)
, and

Lp := log

(
ρ0
ρ1

)
≥ 0 since α ≥ β, α + β ≤ 1, and ρ0 ≥ ρ1.

Since La ≤ Lb, we also see that k∗i ≤ 1
2 ·Ni.

According to (7), if αaug(vi)−α = (1−α−β)P 0
e,Vin(vi) ≤

ε > 0 then we must obtain the value of Ni for which
P 0
e,Vin(vi) ≤

ε

1− α− β
=: δ > 0. It is obvious that if

α + β = 1 or if ε ≥ 1 − α − β, then αaug(vi) − α ≤ ε
for all Ni. The following theorem discusses the acceptable
values of Ni if 0 < ε ≤ 1− α− β.

Theorem 3. Consider any r ≤ 1
2 with α such that α ≥ β

and α + β ≤ 1. Then, we have αaug(vi) − α < ε for some
0 < ε < 1− α− β if

Ni ≥

log ε− log(1− α− β) + log


√

2πfa(1− fa)

1 +
αfa

1− α− fa


fa log

(
1− α
fa

)
+ (1− fa) log

(
α

1− fa

) ,

(12)

where fa :=
La

La + Lb
.

Similarly, we have βaug(vi) − β < ε for some 0 < ε <

1− α− β if

Ni ≥

log ε− log(1− α− β) + log


√

2πfb(1− fb)

1 +
βfb

1− β − fb


fb log

(
1− β
fb

)
+ (1− fb) log

(
β

1− fb

) ,

(13)

where fb :=
Lb

La + Lb
and N is such that k∗ = faN −

Lp
La + Lb

≥ βN . That is,

N ≥ Lp
La − (La + Lb)β

.

If αaug(vi)−α < ε, βaug(vi)−β < ε, then raug(vi)− r < ε.

From Theorem 3, we now know the minimum required
number of sources Ni for the i-th BIP of the number-aware
RIC vD to have αaug(vi)−α ∈ [0, ε) and βaug(vi)−β ∈ [0, ε)
(and thus, raug(vi) − r ∈ [0, ε)). We already know that if
an RIC is aware of the number of information-providers that
its i-th BIP is using, then it can impose restrictions on the
number of information-providers that its i-th BIP must use in
order for its information to be considered trustworthy. We also
now know that a number-aware RIC can through reasonable
assumptions obtain a minimum number of such information-
providers that the i-th BIP must use. Further, we notice that
such a requirement on the part of the number-aware RIC will
also ensure that if the i-th BIP is highly-biased or unbiased
or otherwise on its own, then the augmented version of the
i-th BIP that is observable by the RIC is also highly-biased
or unbiased or otherwise (i.e., has the same behavior in terms
of bias).

In this section, we considered an information network where
an RIC assumes that any BIP and its sources will have identical
input-output channel characteristics. Using this simplifying
assumption, we derived the behavior that is perceived as
optimal by the number-aware RIC, a partially-aware RIC that
is aware of the number of information-providers its own BIPs
referred to.

In the next section, we will consider a number-aware RIC
that is also aware that there is an “influential” node that acts
as a common source for all n of its BIPs. The presence of the
“influential” node and the RIC’s awareness of it implies that
the RIC no longer sees its BIPs as independent.

C. Effect of one Influential node on a Number-aware RIC

In this section, we will study how the knowledge of the
presence of a single “influential” node among the n BIPs of a
number-aware RIC could change the RIC’s decision policy and
the associated probability of error. We note the same analysis
holds for scenarios where the number-aware RIC knows of
coordinated action among n distinct nodes each of which acts
as a source for exactly one of its n BIPs.



Fig. 7: An influential node serving as a source each of the n
BIPs of an RIC, from the perspective of a number-aware RIC.

Influential Node: In this section, when we say that a
node vI is influential with respect to the RIC node vD, we
mean that the node vI is two hierarchical levels above vD
and that it is the information-provider to all n BIPs of vD as
shown in Figure 7.

Perceived effect of a single influential Node: We will
assume that all the BIPs of the vD have N RICs. Let the
influential node vI be the first node indexed in V(1), as well
as the first node indexed in Vin(vi), ∀ i ∈ {1, · · · , n}.

We assume that the influential node vI sends the same
outcome, either YI = 0 or YI = 1, to all the nodes that it sends
reports of the event to, including all the n BIPs of the number-
aware RIC (vD). Let us denote by (αaug(0), βaug(0)) and
(αaug(1), βaug(1)) to be the biases of the i-th augmented BIP
when the output of the influential node is 0 and 1, respectively.
Similarly, we extend the notations and definitions for raug(YI)
and k∗aug(YI).

Then, we continue to calculate the average probability of
error for an RIC that is aware of this dependency.

Decision policy: Let π∗d(·) and π̂∗d(·) be the decision
policies that are perceived as optimal by the number-aware
RIC when it is aware of the influential node and when it is
unaware of the influential node, respectively.

We are interested in the perceived increase in probability
of error that the number-aware RIC expects to incur when
it either ignores or remains unaware of the dependency. We
denote this ratio by ρd(vI).

ρd(vI) =
Pe(π̂

∗
d)

Pe(π∗d)
. (14)

Biases of the BIPs conditional on YI : Now, let us denote
Tk,N (x) := xN−k(1− x)k.

Given the k∗ in (11), when the influential node vI broadcasts
the outcome YI = 0 (this occurs w.p. (1 − α) when X = 0
and w.p. β when X = 1) to all n BIPs (each of which have
N information-providers of their own),

αaug(0) = α+
(1− α− β)

N(1− α)

∑
k≤k∗

k

(
N

k

)
Tk,N (α) ≤ αaug

βaug(0) = β +
(1− α− β)

Nβ

∑
k>k∗

k

(
N

k

)
TN−k,N (β).

Similarly, when the influential node vI broadcasts the outcome
YI = 1 (this occurs w.p. α when X = 0 and w.p. (1−β) when
X = 1) to all n BIPs,

αaug(1) = α+
(1− α− β)

Nα

∑
k≤k∗

(N − k)

(
N

k

)
Tk,N (α) ≥ αaug

βaug(1) = β +
(1− α− β)

N(1− β)

∑
k>k∗

(N − k)

(
N

k

)
TNk,N (β).

Also, we notice that, the characteristics of the augmented
channels with and without being conditioned on the influential
node’s YI are related as follows.

αaug = EYI [αaug(YI)] = (1− α)αaug(0) + ααaug(1)

βaug = EYI [βaug(YI)] = ββaug(0) + (1− β)βaug(1).

Influence-aware decision policy: To arrive at the optimal
decision policy of the number-aware RIC it is sufficient to find
k∗aug , k∗aug(0), and k∗aug(1) to compare against the number of
0’s received by the number-aware RIC from n BIPs.

For each of the cases, using the values of the biases
(αaug, βaug), (αaug(0), βaug(0)), and (αaug(1), βaug(1)) we
arrive at the values of k∗aug , k∗aug(0), and k∗aug(1) from (11).

Now, for a fixed n, let us denote Tk(x) := xn−k(1 − x)k

and Tn−k(x) := xk(1 − x)n−k. We can calculate the RIC’s
perceived probability of error when it is unaware of the
influential node vI and its perceived probability of error when
it is aware of vI as:

Pe(π̂
∗
d) =

∑
k≤k∗aug

ρ0

(
n

k

)
[(1− α)Tk(αaug(0)) + αTk(αaug(1))]

+
∑

k>k∗aug

ρ1

(
n

k

)
[βTn−k(βaug(0)) + (1− β)Tn−k(βaug(1))] .

(15)

Pe(π
∗
d) = ρ0(1− α)

∑
k≤k∗aug(0)

(
n

k

)
Tk(αaug(0))

+ ρ0α
∑

k≤k∗aug(1)

(
n

k

)
Tk(αaug(1))

+ ρ1β
∑

k>k∗aug(0)

(
n

k

)
Tn−k(βaug(0))

+ ρ1(1− β)
∑

k>k∗aug(1)

(
n

k

)
Tn−k(βaug(1)). (16)

Now, in keeping with Section V-B, let us assume that α, β,
N are such that αaug ≥ βaug , αaug + βaug < 1 along with
αaug(0) ≥ βaug(0), αaug(0) + βaug(0) < 1 and αaug(1) ≥
βaug(1), αaug(1) + βaug(1) < 1.

Theorem 4. Fix a target number-aware RIC that has n BIPs
and denote it by vD. Assume that each of the n BIPs utilizes N



sources. Suppose a single influential node vI and the decision
policies π∗d and π̂∗d as described above. Consider the ratio
ρd(vI) comparing the two decision policies, as defined in (14).

For the case where k∗aug ≤ k∗aug(0), k∗aug(1), the magnitude
of the ratio ρd(vI) is bounded below by 1.

On the other hand, ρd(vI)− 1 is bounded above by:

∑
YI

Pe (π∗d; k ∈
(
k∗aug, k

∗
aug(YI)

]
| X = 0, YI

)
P (X=0;YI)
P (X=1;YI)

∗en
(

1−αaug(YI )−βaug(YI )
αaug(YI )

)]
. (17)

where, N is such that αaug(0), αaug(1) ≤ α + ε,
βaug(0), βaug(1) ≤ β + ε (Theorem 3) and k∗ ≥ Nβ.

Similar bounds can be derived for other conditions on the
values k∗aug , k∗aug(0), and k∗aug(1) in relation to each other.

Notes on the effect of one influential node on an RIC:
Recall that, α > r(ρ) > β. In the above theorem, the RIC
would perceive its own awareness of the influential node to
be at most exponentially beneficial with a positive exponent
which:
(i) is vanishingly small when α + β → 1 (i.e., a nearly

ineffective BIP with P (Y = 0|X) ≈ P (Y = 1|X));
(ii) is arbitrarily large only when r(ρ) ≤ αaug(YI)→ 0 (i.e.,

a nearly perfect BIP).
Further, we note that:
(iii) if β → 0, then the error corresponding to

Pe
(
π∗d; k ∈

(
k∗aug, k

∗
aug(YI)

]
| X = 0, YI

)
also

approaches zero. Thus, when the BIPs are completely
biased against the a-priori likely outcome, the upper
bound on the ratio ρd(vI) approaches one. That is, the
error probability of the decision policy πd∗ approaches
that of the sub-optimal decision policy π̂∗d .

(iv) if N exceeds the minimum number required
by Theorem 3 for αaug(0), αaug(1), αaug ≈ α
and βaug(0), βaug(1), βaug ≈ β, then
Pe
(
π∗d; k ∈

(
k∗aug, k

∗
aug(YI)

]
| X = 0, YI

)
approaches

zero. Thus, when the BIPs of the node vD rely on
sufficiently many information-providers of their own,
the upper bound on the ratio ρd(vI) approaches one.
That is, the error probability of the decision policy πd∗
approaches that of the sub-optimal decision policy π̂∗d .

Therefore, upon becoming aware of an influential node
among the sources of its BIPs, the influence-aware RIC
anticipates to reduce its error probability by a value that is at
most an exponential with the exponent being a multiple of n.
However, we can see that from the perspective of the influence-
aware RIC: (a) choosing BIPs that are fully-biased against the
a-priori likely outcome; (b) each of which, in turn, utilizes
sufficiently many sources/information-providers of its own;
would take precedence over the RIC being aware of a single
influential node. Thus, we discover that the preference of
similarly-and-highly-biased BIPs as the optimal choice is not
limited to graph-blind RICs, but is retained for both number-
aware and influence-aware RICs. Further, the preference for

BIPs with a high number of sources/information-providers
of their own extends beyond number-aware RICs, and onto
influence-aware RICs.

In this section, we evaluated the effect of a single influential
node on the choices perceived as optimal by the number-aware
RIC. In the next section, we will numerically evaluate the least
number of sources that a number-aware RIC will require from
each of its BIPs, and thus, validate the results of Theorem 3.

D. Numericals: Minimum number of sources used by the BIPs
of a number-aware RIC

In the previous section, we obtained the minimum number
of sources that a BIP must utilize in order to appear as the
optimal choice to the number-aware RIC (cf. Theorem 3).
In this section, we will numerically validate the results of
Theorem 3 and record our observations. In Figure 8, we only
demonstrate the minimum number of information-providers
that the i-th BIP must use for a number-aware RIC to assume
that αaug(vi) ≈ α. Later, in the Appendix in Figure A.2, we
demonstrate the minimum number of information-providers
that the i-th BIP must use for a number-aware RIC to assume
that βaug(vi) ≈ β. In conjunction with each other, these
figures demonstrate Theorem 3 and the minimum number
of information-providers that the i-th BIP must use for a
number-aware RIC to assume that raug(vi) ≈ r, along with
αaug(vi) ≈ α, βaug(vi) ≈ β.

In Figures 8, A.2, we notice that in an information
network with a number-aware RIC, the minimum num-
ber of information-providers that each BIP must use for
(αaug(vi), βaug(vi), raug(vi)) ≈ (α, β, r) will increase:

1) When the individual rate of error r increases. As the
individual rate of error r increases across the network,
the i-th BIP will need to consult more information-
providers to identify the ground truth without increasing
its probability of making an error.

2) When the value of α decreases (β increases) while r
remains the same. As the information-providers/sources
of the i-th BIP become more biased, the i-th BIP can
consult a smaller number of them without increasing its
probability of making an error.

VI. CONCLUSION

In this work, we consider information networks with
nodes that act as biased-information-providers (BIPs), rational-
information-consumers (RICs), or both. Inspired by modern-
day social networks, we consider biases and allow the RICs to
have limitations. We previously found that a graph-blind RIC
would act according to a counter-intuitive, but tractable rule.
It would rationally perceive a set of n BIPs that are fully-
biased against the a-priori likely outcome to be its optimal
choice when compared to any other set of n BIPs with similar
individual error rates.

In this work, we extend our analysis to partially-aware RICs.
We find that RICs that are aware of the number of sources
utilized by each of its BIPs will continue to perceive fully-
biased BIPs as its optimal choice for any fixed individual error



(a) For αaug(vi)− α ≤ ε at the RIC.

(b) For αaug(vi)− α ≤ ε at the RIC.

Fig. 8: Minimum number of information-providers that the i-
th BIP must use for the RIC to assume that αaug(vi) ≈ α.
With this, when given that βaug(vi) ≈ β, the RIC can assume
raug(vi) ≈ r.

rate. With reasonable assumptions, the number-aware RIC can
also pick BIPs with sufficiently many sources, making the
properties of the individual sources of each BIP unnecessary
to its estimation of the ground truth. Finally, we analyze
the effect of a single node that influences all n BIPs of a
number-aware RIC. We find that the number-aware RIC would
anticipate its discovery of a single influential node to reduce
its error probability exponentially with increasing n. However,
we also find that the rate of this exponent would become less
significant if the BIPs are highly biased and have sufficiently
many sources.

Our analysis further emphasizes the perceived optimality
and perceived importance of fully and similarly-biased BIPs to
an RIC with human-like limitations. These insights could help
adapt information networks to: i) become more RIC-centric,
and ii) leverage bias to reduce misinformation.
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