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Abstract—We consider the optimal link rate selection prob-
lem in time-varying wireless channels with unknown channel
statistics. The aim of optimal link rate selection is to transmit
at the optimal rate at each time slot in order to maximize the
expected throughput of the wireless channel/link or equivalently
minimize the expected regret. Lack of information about channel
state or channel statistics necessitates the use of online/sequential
learning algorithms to determine the optimal rate. We present
an algorithm called CoTS - Constrained Thompson sampling
algorithm which improves upon the current state-of-the-art, is
fast and is also general in the sense that it can handle several
different constraints in the problem with the same algorithm.
We also prove an asymptotic lower bound on the expected regret
and a high probability large-horizon upper bound on the regret,
which show that the regret grows logarithmically with time in an
order sense. We also provide numerical results which establish
that CoTS significantly outperforms the current state-of-the-art
algorithms.

Index Terms—Constrained Thompson sampling, Optimal link
rate selection, Regret minimization.

I. INTRODUCTION

Optimal link rate selection is an important problem espe-
cially in the context of 802.11 systems and other wireless
networking systems (see [1], [2], [3] and [4]). At each time
slot, the objective of the problem is to choose from a finite
set of transmission rates to identify, as quickly as possi-
ble, the optimal rate, i.e., the rate maximizing the expected
throughput. Along with 802.11 systems, optimal link rate
selection problem is also pertinent in cellular wireless systems,
especially with the advent of mmWave technology. With
the latest advancements in mmWave technology, there is a
greater need for fast learning-based rate adaptation algorithms
which can perform well in unknown and time-varying channel
conditions with limited feedback (see [3]). In such contexts,
the standard sampling-based methods or methods relying on
perfect channel state information (CSI) are inefficient, costly
and unreliable.

We consider a wireless network operating under some MAC
protocol and focus on a particular link (transmitter-receiver
pair) in this network. Time is indexed so that consecutive time
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slots are the time slots at which this link is chosen to transmit.
Thus, we effectively consider a single link in this paper and
we are interested in choosing the optimal transmission rate
for this link. We refer to [1] and [3] for earlier work on
this problem, and later we will elaborate on our contributions
with respect to these prior works. In particular, we consider
a time varying wireless channel/link (h(t))t≥0. At each time
slot t, the channel allows transmission at one of the following
n rates of transmission: r1, r2, ..., rn ∈ R. Without loss of
generality, we assume r1 < r2 < ... < rn. The corresponding
probabilities of success for the transmission at these rates are
assumed i.i.d. at each time slot and are given by the vector
θ = (θ1, θ2, ..., θn). Observe that, at a given time slot t, if
a transmission at rate r will be successful in the particular
channel state h(t), transmission at all rates less than r will
also be successful. Therefore, 1 ≥ θ1 ≥ θ2 ≥ ... ≥ θn ≥ 0.
Let Θ denote the set of valid rate success probability vectors,
i.e., Θ = {λ : 1 ≥ λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0}. The aim
of optimal link rate selection is to transmit at the optimal
rate r∗ (at each time slot) so that the expected throughput
is maximized. Let i∗ be the index of r∗ in the set R, i.e.,
r∗ = ri∗ . Mathematically, r∗ essentially solves the following
optimization problem:

r∗ = ri∗ = arg max
ri

riθi. (1)

If the vector θ is known, the above optimization problem
can be solved easily. But, in most practical applications, the
channel statistics are unknown and hence there is no infor-
mation on the vector θ. This lack of information necessitates
the use of online/sequential learning algorithms, which learn
the optimal rate over time by transmitting at various rates
and gaining information about their probabilities of success
(from the history of transmissions and their outcomes). Such
online algorithms encounter an exploration vs. exploitation
trade-off (see [5], a survey on multi-armed bandit problems),
i.e., while they have to explore different rates to gain more
accurate information, they also have to simultaneously exploit
the information gained to transmit at the best possible rate.

A quantity often used to quantify the performance of online
algorithms is expected regret. In order to define expected
regret, we will introduce some notation first. Since the model
we use is similar to the one used in [1] and [3], we will



use similar notation to make our analysis and results more
accessible to a reader familiar with those works. Let r(t)
denote the rate of transmission chosen at time slot t. Let i(t)
denote the index of r(t) in the set of rates R, i.e., r(t) = ri(t).
Let X(t) denote the outcome of the transmission at time slot
t, i.e., X(t) = 1 in the case of a successful transmission and
X(t) = 0 otherwise. Note that X(t) is a Bernoulli random
variable with parameter θi(t). Observe that the optimization
problem given by Equation (1) can be rewritten as:

r∗ = ri∗ = arg max
ri

E[r(t)×X(t)|r(t) = ri, θ].

Expected regret for T time slots is defined as the expected loss
in throughput incurred by the algorithm due to transmission
at sub-optimal rates. Let R(T ) denote the regret for T time
slots. Mathematically:

E[R(T )] = E[

T∑
i=1

{ri∗θi∗ − ri(t)θi(t)}].

Let Ni(T ) denote the number of times transmission was made
at rate ri until time T . Also, let ∆i = ri∗θi∗ − riθi denote
the loss in expected throughput because of transmitting at rate
ri instead of rate ri∗ . A more useful way to rewrite expected
regret is the following:

E[R(T )] = E[
∑
i 6=i∗

Ni(T )∆i] =
∑
i 6=i∗

E[Ni(T )]∆i. (2)

Another quantity which is useful in quantifying the perfor-
mance of online algorithms is simply the number of times
transmissions at sub-optimal rates are made, i.e.:

R′(T ) =
∑
i 6=i∗

Ni(T ) (3)

Note that R′(T ) is a random variable. We will study both
the expected regret and R′(T ) in this paper.

In [1], the authors tackle the optimal link rate selection
problem by treating each rate as an independent arm in the
standard multi-armed bandit problem setup. Although this
approach overcomes certain challenges associated with the
problem, it does not exploit the structure in the set Θ as treat-
ing the rates as independent arms implies lack of ordering in
the components of the vector θ. They take a KL-UCB inspired
frequentist approach and present an algorithm called KL-R-
UCB, which achieves logarithmic regret. With an additional
assumption that the expected throughput at different rates is
unimodal, they present an asymptotically optimal algorithm
called G-ORS (also, see [6] for a Thompson sampling inspired
algorithm for the unimodal case).

In [3], the authors treat the problem similarly and present
a Thompson sampling inspired algorithm called Modified
Thompson Sampling (MTS). This algorithm takes a Bayesian
approach and is shown to have the same regret upper bound
as KL-R-UCB, since it also does not exploit the structure in
the set Θ. They also provide a lower bound for the problem
but only for the very specific case of three channel states

and rate r1 = 0. It is worth noting that while both KL-R-
UCB and MTS have been shown to have the same regret
upper bound, simulations in this paper indicate that MTS
performs significantly better than KL-R-UCB. In this paper,
we do not need any additional assumptions on Θ such as
unimodality since such assumptions are hard to justify in
practice. However, our algorithm can easily incorporate any
additional structure.

Our main contributions are the following:
1) We have designed an algorithm called Constrained

Thompson Sampling (CoTS). CoTS exploits the struc-
ture in the set Θ efficiently (i.e., the fact that θ1 ≥ θ2 ≥
... ≥ θn) and is more general in the sense that any addi-
tional structure in Θ (such as unimodality) can also be
incorporated with minor tweaks in the same algorithm
(unlike previous approaches where different constraints
were tackled using very different algorithms). We also
present SITS, an efficient and fast way to implement
CoTS in practice (see Sections III-A and III-B).

2) We provide theoretical guarantees for the regret
achieved by CoTS by proving a high probability large-
horizon logarithmic upper bound for the notion of regret
quantified by R′(T ) (see Section IV).

3) We prove an asymptotic lower bound for the expected
regret (given by Equation (2)) achieved by any algorithm
for the optimal link rate selection problem. We note that
this lower bound is established without any unimodality
assumption as in [1] or any assumptions on the number
of channel states or rates as in [3] (see Section V).

4) We provide numerical results to establish the superiority
of CoTS over the current state-of-the-art and to show
that it achieves the theoretical lower bound (see Section
VI).

II. EXISTING ALGORITHMS

In this section we discuss some existing work on the optimal
link rate selection problem, before moving on to the next
section where we present CoTS.

Several link rate selection algorithms (also known as rate
adaptation algorithms) relying on sampling-based approaches
have been proposed in the literature (for example, see [7], [8]
and [9]). At any time slot, these methods rely on the history
of outcomes for transmission at different available rates to
determine the optimal rate to transmit at. These algorithms
primarily use well-engineered heuristics to strike a balance
between exploration and exploitation.

Another class of algorithms which can potentially be used
are the ones which rely on measurements quantifying the
quality of the channel (for example, see [10], [11] and [12]).
If the measurements obtained are accurate then these methods
can perform really well, but in several practical scenarios that
arise in modern time-varying wireless systems, it is costly
to obtain reliable measurements. Hence, the viability of such
measurement-based algorithms is unclear.

Our aim is to use ideas from the stochastic optimization
field (similar to [1] and [3]) to tackle the exploration vs.



Algorithm 1 KL-R-UCB algorithm
for t = 1, 2, . . . , n : transmit at rate rt.
for t = n+ 1, n+ 2, . . . :

1) Compute the set I = arg maxi qi(t).
2) Transmit at rate ri(t) where i(t) ∈ I.

end for

exploitation trade-off in a theoretically principled and optimal
manner, rather than tackling it heuristically. To this end, in [1],
the authors present a KL-UCB (a variant of the classical UCB
algorithm, see [13] and [14]) inspired algorithm called KL-R-
UCB (see Algorithm 1). In KL-R-UCB, at each time slot t,
the algorithm computes an index qi(t),∀ri as follows:

qi(t) = max{q ∈ [0, ri] : ni(t)D(
µ̂i(t)

ri
,
q

ri
)

≤ log(t) + c log log(t)}

where ni(t) denotes the number of times rate ri has been
transmitted in t time slots, µ̂i(t) denotes the empirical average
of all the outcomes of those transmissions and D(x, y) de-
notes the KL divergence between two Bernoulli distributions
parametrized by x and y. It is shown in [1] that KL-R-UCB
achieves logarithmic regret although it does not exploit the
structure in Θ. Making an additional assumption of unimodal-
ity of expected throughput, i.e., r1θ1 ≤ r2θ2 ≤ ... < ri∗θi∗ >
ri∗+1θi∗+1 ≥ ... ≥ rnθn, authors in [1] present another KL-
UCB inspired algorithm called G-ORS (also see [6] for a
similar Thompson sampling inspired algorithm) which is very
different from KL-R-UCB and is asymptotically optimal.

In [3], the authors take inspiration from Thompson sam-
pling (see [15] and [16]) and present the Modified Thompson
Sampling (MTS) algorithm. At any time slot t, MTS maintains
independent beta priors for every individual component of
θ, then samples a vector λ(t) from the product of these
priors and transmits at the rate optimal for the sampled vector
(see Algorithm 2). Finally, depending on the outcome, it
does a Bayesian update to the prior corresponding to the
component of θ having the same index as that of the rate
at which the transmission was made. Since MTS considers
independent beta priors for every component of θ, the set of
valid parameters it explores is [0, 1]n instead of Θ = {x ∈
[0, 1]n : x1 ≥ x2 ≥ ... ≥ xn}. It is shown in [3] that MTS
also achieves logarithmic regret, similar to KL-R-UCB, since
it also does not exploit the fact that the components of θ are
non-increasing.

From the above discussion, we observe that there are two
major disadvantages associated with the current state-of-the-
art algorithms for the optimal link rate selection problem:

1) The current state-of-the-art algorithms such as KL-R-
UCB and MTS do not exploit the basic structure in the
set Θ, i.e., they do not take advantage of the fact that
the probability of success is a non-increasing function of

1Beta(a, b), known as the beta distribution is a continuous probability distri-
bution with pdf: fa,b(x) =

xa−1(1−x)b−1

B(a,b)
, x ∈ [0, 1], B(a, b) =

Γ(a)Γ(b)
Γ(a+b)

.

Algorithm 2 Modified Thompson sampling algorithm
for each rate ri, i = 1, 2, ..., n, set si = 0 and fi = 0.
for t = 1, 2, . . . :

1) For every rate ri, draw λi(t) ∼ Beta(si + 1, fi + 1). 1

2) Compute i(t) = arg maxi riλi(t). Transmit at rate ri(t).
3) Observe the random transmission outcome X(t).
4) (Prior Update) If X(t) = 1, set si(t) = si(t) + 1. Else if

X(t) = 0, set fi(t) = fi(t) + 1.
end for

the rate of transmission. If an algorithm can exploit this
structure in the problem, it can potentially outperform
both KL-R-UCB and MTS.

2) Additional constraints or structure in the set Θ (such as
unimodality of the expected throughput) are not handled
easily by the current state-of-the-art algorithms. In fact,
even for unimodality, there is a completely different
set of algorithms. If an algorithm can handle additional
constraints more generally, it will be useful in a much
wider set of applications and environments.

In the next section, we will present CoTS which overcomes the
above mentioned disadvantages. CoTS uses the basic structure
in Θ to its advantage and at the same time is amenable to
several additional constraints in Θ that one might want to
incorporate.

III. COTS: CONSTRAINED THOMPSON SAMPLING

The reason why KL-R-UCB and MTS do not perform
optimally is because they do not exploit the basic structure in
the set Θ. Moreover, with additional structure in the set such as
unimodality, the performance of these algorithms deteriorates
further and one has to come up with different algorithms
which are optimal. In the context of these observations, we
now present CoTS (see Algorithm 3) and the intuition behind
it.

A. Intuition

The idea behind CoTS is intuitive and simple. At each
time slot t, we maintain independent beta priors for each
component of θ, similar to MTS. But instead of simply
sampling from the product of these priors (as in MTS), we
sample from a distribution which is proportional to the product
of these priors when the value being sampled, say λ, belongs
to Θ and is 0 otherwise. Mathematically, we sample from a
distribution with the following p.d.f:

pt(λ) ∝ 1{λ ∈ Θ}
n∏
i=1

Beta(si(t) + 1, fi(t) + 1)(λi).

where λ = (λ1, λ2, ..., λn) ∈ [0, 1]n, and si(t) and fi(t) are
the number of successful and failed transmissions respectively
until the beginning of the time slot t, for the rate ri. This
simple modification allows us to exploit the structure in the
set Θ by assigning non-zero probability only to the parameters
which belong to the set Θ.



Algorithm 3 Constrained Thompson sampling algorithm
for each rate ri, i = 1, 2, ..., n, set si = 0 and fi = 0.
for t = 1, 2, . . . :

1) Draw λ(t) ∼ 1{λ(t) ∈ Θ}×
∏n
i=1Beta(si + 1, fi + 1).

2) Compute i(t) = arg maxi riλi(t). Transmit at rate ri(t).
3) Observe the random transmission outcome X(t).
4) (Prior Update) If X(t) = 1, set si(t) = si(t) + 1. Else if

X(t) = 0, set fi(t) = fi(t) + 1.
end for

In [3], the authors state that the reason one has to treat
different components of θ independently is that it is diffi-
cult to come up with an easy-to-update prior for Thompson
sampling that incorporates the non-increasing property of the
components of θ (or any other structure such as unimodality).
In CoTS, we still maintain different beta priors for each
component of θ to keep the updates simple, but in order
to exploit the structure in the set Θ, we restrict the joint
distribution to have non-zero weight only for valid parameters
in the set Θ. At any time slot t, let the rate selected for
transmission be ri(t) and let the outcome of transmission be
X(t). Then, the prior pt+1(λ) after the Bayesian update will
be:

pt+1(λ) ∝ 1{λ ∈ Θ}
n∏
i=1

Beta(si(t) + 1, fi(t) + 1)(λi)

× λX(t)
i(t) (1− λi(t))1−X(t),

Simplifying the above expression, we get:

pt+1(λ) ∝ 1{λ ∈ Θ}
∏
i 6=i(t)

Beta(si(t) + 1, fi(t) + 1)(λi)

× Beta(si(t)(t) + 1 +X(t), fi(t)(t) + 1 + (1−X(t))).
(4)

Hence, to update the prior distribution, we need to simply
update the number of successes or failures corresponding to
the beta prior of the component of θ with the same index
as that of the rate transmitted (Step 4 in Algorithm 3).
Thus, maintaining different beta priors for every component
of θ allows CoTS to have easy prior updates (similar to
MTS), whereas the restriction imposed on the joint distribution
allows it to exploit the structure in Θ. Observe that CoTS is
essentially an exact Thompson sampling algorithm, whereas
MTS is not. Therefore, a different prior distribution can also
be used in place of the prior distribution used by CoTS as
long as its Bayesian update is easy and exact.

Also, note that CoTS is general in the sense that the set
Θ can have any additional structure on top of the basic
property of non-increasing components (such as unimodality)
and the algorithm will still work. The indicator function in
the joint prior distribution can incorporate any structure in the
set Θ, while keeping the prior updates simple as shown in
Equation (4). Therefore, CoTS allows us to overcome both
the disadvantages associated with the current state-of-the-art
algorithms discussed in the previous section.

B. Efficient Implementation

In this subsection, we will discuss some efficient ways of
implementing CoTS. Since the prior update step is straight-
forward, the main focus for improving the efficiency lies on
Step 1, i.e., sampling λ(t) from the prior distribution.

1) Rejection Sampling: One straightforward way to im-
plement CoTS is to use rejection sampling, i.e., sample
λ(t) ∼

∏n
i=1Beta(si + 1, fi + 1) and reject the samples

until λ(t) ∈ Θ. The main advantage of rejection sampling
is that it is easy to implement. Also, rejection sampling is
general in the sense that as long as the operation of checking
whether a sampled value lies in Θ can be done efficiently,
it does not require any other problem-dependent alterations.
But the main disadvantage of rejection sampling is that it can
be really slow. For example, if the probability of obtaining a
valid parameter λ(t) ∈ Θ when sampling from the distribution∏n
i=1Beta(si + 1, fi + 1) is x, then the expected number of

times in which one samples a valid parameter is 1
x . Thus,

if x is really small, the expected sampling time is really
large. Therefore, we need to have a faster sampling method,
especially in the cases where the progress of the algorithm
will result in x taking small values.

2) Sequential Inverse Transform Sampling (SITS): For
the basic structure in Θ, as well as for unimodality, we
present a technique to speed up the sampling step for CoTS,
called Sequential Inverse Transform Sampling (SITS). The
idea behind SITS is to sample different components of λ(t)
sequentially (instead of all at once and then rejecting), while
simultaneously ensuring that the sampled components satisfy
the structure in Θ. For example, consider the basic non-
increasing components structure in Θ. We observe that the
prior distribution at time t can be written as:

pt(λ) ∝
n∏
i=1

1{λi−1 ≥ λi}Beta(si + 1, fi + 1)

where λ0 = 1. Therefore, to sample fast, we can simply
sample λ1(t) from Beta(s1+1, f1+1), then sample λ2(t) from
Beta(s2+1, f2+1) while restricting it to be less than λ1(t) and
so on. To sample a random variable Z from Beta(x, y) quickly
while restricting it to lie between interval [a, b] (instead of
interval [0, 1]), we can use inverse transform sampling (see
[17]) as follows:

1) Let F denote the cumulative distribution function of
Beta(x, y). Let α0 = F (a) and α1 = F (b).

2) Sample a random variable U uniformly from the interval
[α0, α1], i.e., U ∼ U(α0, α1).

3) Z = F−1(U) is the required random variable.

The above technique speeds up the sampling process and
unlike rejection sampling, makes the sampling time indepen-
dent of the probability of sampling a valid parameter from∏n
i=1Beta(si + 1, fi + 1). For the case of unimodality, a

similar procedure can be followed except that now for every
component being sampled, we simply need to ensure that
it continues to maintain unimodality along with the non-



increasing property. Since the basic ideas are the same, we
will skip the details for using SITS with unimodality.

Remark 1. One of the main reasons that the authors in [3]
assumed independence across different rates to design MTS is
that, without this assumption, exact Thompson sampling was
deemed to be computationally infeasible. Therefore, one of
the key contributions of this paper is the design of an efficient
exact Thompson sampling algorithm in the implementation
of CoTS using SITS. Also, note that the computational and
storage complexity of CoTS (exploiting the basic structure of
non-increasing components) is linear in the number of rates,
same as that of KL-R-UCB and MTS.

IV. UPPER BOUND

In this section, we present theoretical guarantees for the
performance of CoTS in terms of a high probability large-
horizon upper bound on the number of times transmissions
at sub-optimal rates are made. We utilize the results obtained
in [16] to this end. As in [16], we make some simplifying
assumptions to make the analysis tractable. In particular, we
assume that the possible values for Θ lie in a discrete set. We
state the assumptions more precisely next.

Let πt denote the prior at the beginning of time slot t. We
make the following assumptions:

Assumption 1 (Finitely many transmission rates). |R| <∞.
Assumption 2 (Finite Θ and non-zero initial probability on
θ). |Θ| <∞, i.e, Θ = {ζ(1), ζ(2), ..., ζ(L)}. Moreover, θ ∈ Θ
and π1(θ) > 0.
Assumption 3 (Strictly decreasing probability of success).
For all ζ ∈ Θ, ζ1 > ζ2 > ... > ζn.
Assumption 4 (Unique optimal rate) The optimal transmission
rate is unique, i.e., ri∗θi∗ > riθi,∀i 6= i∗ . Under the above
assumptions, we have the following result:

Theorem 1. Let Ni(T ) denote the number of times a trans-
mission at rate ri is made until time slot t. Under Assumptions
1-4, a high probability large-horizon upper bound holds for
CoTS as follows. For any δ, ε ∈ (0, 1), ∃ T ∗ ≥ 0, such that ∀
T ≥ T ∗, with probability at least 1− δ, we have:

R′(T ) =
∑
i 6=i∗

Ni(T ) ≤
(

1 + ε

1− ε

)∑
i6=i∗

log T

D(θi,
ri∗θi∗
ri

)
+ C

where C = C(δ, ε,R,Θ, π) is a problem-dependent constant
independent of T and D(x, y) denotes the KL divergence
between two Bernoulli distributions parametrized by x and
y respectively.

Proof. Our upper bound analysis uses the main result from
[16], which gives a high probability large-horizon upper bound
for the number of times a sub-optimal action is played by
exact Thompson sampling for a complex online problem. As
discussed in the previous section, CoTS is an exact Thompson
sampling algorithm for the optimal link rate selection problem
and hence the main result from [16] can be used to quantify
its performance.

We note that the optimal link rate selection problem is
a special case of the general complex online problem setup
outlined in [16]. The set of actionsA we have is essentially the
set of transmission rates, i.e. A = R. Also, the observation
space is Y = {0, r1, r2, ..., rn}, i.e., Y is the sample space
for the possible rewards in terms of throughput. The reward
function h : Y → R is the identity function, i.e., reward
z = h(y) = y. Let l(y; i, θ) denote the probability of
observing y ∈ Y when a transmission at rate ri is made,
with the underlying rate success vector θ. For all y ∈ Y , we
have l(y; i, θ) as follows:

l(y; i, θ) =

{
θi, if y = ri,

1− θi, if y = 0.

Hence, the optimal link rate selection problem is a special case
of the general complex online problems considered in [16].
Therefore, the above observation, along with Assumptions 1-
4 and the fact that CoTS is an exact Thompson sampling
algorithm imply that we can use Theorem 1 from [16] to
quantify the performance of CoTS.

Using Theorem 1 from [16], ∀ T ≥ T ∗, for any δ, ε ∈
(0, 1), with probability at least 1− δ,∑

i 6=i∗
Ni(T ) ≤ B(log T ) + C ′(δ, ε,R,Θ, π), (5)

where C ′(δ, ε,R,Θ, π) is a problem dependent constant and
B(log T ) is given as follows:

B(log T ) :=

max

n−1∑
i=1

zi(ai)

s. t. zi ∈ Zn−1+ × {0}, ai ∈ R \ {ri∗},
zk � zi, zk(ai) = zi(ai), k ≥ i,
∀1 ≤ j, i ≤ n− 1 :

min
λ∈Sai (θ)

n−1∑
k=1

zi(ak)D(θk, λk) ≥ 1 + ε

1− ε
log T

min
λ∈Sai (θ)

n−1∑
k=1

(zi(ak)− 1{k=j})D(θk, λk) <
1 + ε

1− ε
log T

(6)

where Sai(θ) is the set of λ ∈ Θ which are indistinguishable
from θ when ri∗ is transmitted and for which ai is the optimal
rate of transmission, i.e.:

Sai(θ) , {λ ∈ Θ : D(θi∗ , λi∗) = 0 and arg max
rk

rkλk = ai}

The interpretation of the optimization problem given by (6)
is as follows: {ak}n−1k=1 is the sequence in which the sub-
optimal rates are eliminated by CoTS, i.e., first the rate a1
is eliminated, then the rate a2 is eliminated and so on. zi is
the vector storing the number of times transmissions at sub-
optimal rates have been made, until the time slot when rate ai
is eliminated. Once a rate is eliminated, it is not transmitted
again.



Let h(i) denote the index of the rate ai in the set R, i.e.,
ai = rh(i). Now, we will show that regardless of the sequence
in which the rates are eliminated, for a rate ai = rh(i), any fea-
sible zi should satisfy zi(ai) ≤

(
1+ε
1−ε
)

log T

D(θh(i),
ri∗θi∗
rh(i)

)
+1. Let’s

assume on the contrary that zi(ai) >
(
1+ε
1−ε
)

log T

D(θh(i),
ri∗θi∗
rh(i)

)
+1.

We will show that zi cannot a feasible point of the optimiza-
tion problem (6) because it violates the last constraint. For
any λ ∈ Sai(θ), λi∗ = θi∗ and λh(i) ≥ ri∗θi∗

rh(i)
> θh(i). We

have, for j = i:
n−1∑
k=1

(zi(ak)− 1{k=i})D(θk, λk)

≥ (zi(ai)− 1)D(θh(i),
ri∗θi∗

rh(i)
)

>
(1 + ε

1− ε
)

log T

The first inequality follows from the non-negativity
of zi(ak),∀k and the fact that D(x, y) ≥ 0,∀x, y.
The second inequality follows from the assumption
zi(ai) >

(
1+ε
1−ε
)

log T

D(θh(i),
ri∗θi∗
rh(i)

)
+ 1. Therefore,

zi(ai) >
(
1+ε
1−ε
)

log T

D(θh(i),
ri∗θi∗
rh(i)

)
+ 1 cannot be a feasible

point of (6) as it violates the last constraint. Hence,
zi(ai) ≤

(
1+ε
1−ε
)

log T

D(θh(i),
ri∗θi∗
rh(i)

)
+ 1. Therefore,

n−1∑
i=1

zi(ai) ≤
(1 + ε

1− ε
)∑
i 6=i∗

log T

D(θi,
ri∗θi∗
ri

)
+ n− 1

Combining the above inequality with (5) and (6), we get the
result.

V. LOWER BOUND

In [3], the authors prove a lower bound for the optimal
link rate selection problem using a Lai and Robbins style
of analysis (see [18]), but only in the special case of three
channel states and rate r1 = 0. In this section, we obtain
a general lower bound for the problem, i.e., a lower bound
obtained without any assumptions on the number of channel
states or the rates.

In order to obtain the general lower bound, we will trans-
form the optimal link rate selection problem setup into a
controlled Markov chain framework (similar to [1]) and use
results from [19] (quantifying the performance of efficient
adaptive decision rules in a controlled Markov chain setup).
The result is the following:

Theorem 2. Let P = {i1, i1+1, ..., i∗, ..., n} denote the set of
indices such that for any i ∈ P , ri ≥ ri∗θi∗ . Let P ′ = P\{i∗}.
Then, for the n-rates optimal link rate selection problem, the
lower bound on expected regret (asymptotically) is given by:

lim
T→∞

E[R(T )]

log T
≥
∑
i

ci∆i, i 6= i∗,

where ∆i = ri∗θi∗ − riθi. The constants ci are defined as
follows:

∀ i ∈ {1, 2, ..., i∗ − 1}, the constants ci are the solution to
the following linear program:

min

i∗−1∑
i=1

ci(ri∗θi∗ − riθi),

s. t.
i∑
l=1

cl1{θl ≤
ri∗θi∗

ri
}D(θl,

ri∗θi∗

ri
) ≥ 1,∀i ∈ P ′,

ci ≥ 0,∀i.

(7)

∀ i ∈ {i∗ + 1, i∗ + 2, ..., n}, the constants ci are the solution
to the following linear program:

min

n∑
i=i∗+1

ci(ri∗θi∗ − riθi),

s. t.
i∑

l=i∗+1

cl1{θl ≤
ri∗θi∗

ri
}D(θl,

ri∗θi∗

ri
) ≥ 1,∀i,

ci ≥ 0,∀i.

(8)

where D(x, y) denotes the KL divergence between two
Bernoulli distributions parametrized by x and y respectively.

Proof. Our lower bound analysis uses results obtained in [19]
which quantify the performance of efficient adaptive decision
rules in a controlled Markov chain framework. In order to use
these results, we need to transform our problem to a controlled
Markov chain framework. We use the same transformation as
used in [1]. For the ease of readability of users already familiar
with the aforementioned references, we will reproduce the
transformation from [1] and use similar notation as found in
[19] and [1].

Consider a controlled Markov chain (Xt)t≥0 on a finite
state space S = {0, r1, r2, ..., rn} with control laws given by
the set U = {1, 2, ..., n}. The control laws are independent
of the state of the Markov chain and correspond to the index
of the rate of transmission selected, i.e., if the control law
i is selected, the same control (selecting rate ri) is applied
regardless of the state of the Markov chain. Let the transition
probability for going from any state x ∈ S to any state y ∈ S
be denoted by p(x, y; i, θ), where i is the control law selected
and θ ∈ Θ is the unknown underlying vector parametrizing
the transition probabilities (θ corresponds to the transmission
rate success probability vector in the original optimal link rate
selection problem). For all x, y ∈ S, consider p(x, y; i, θ) as
follows:

p(x, y; i, θ) = p(y; i, θ) =

{
θi, if y = ri,

1− θi, if y = 0.

Let the immediate reward r(x, i) be equal to riθi. Note that
for any control law i, its immediate reward r(x, i) is equal
to its expected reward and is independent of the state x.
Finding efficient adaptive sequential decision making rules in
the above controlled Markov chain framework is equivalent
to solving the optimal link rate selection problem. Hence,



the above construction makes the optimal link rate selection
problem amenable to results in [19].

Now, consider a fixed θ ∈ Θ. We define the set B(θ) to
be the set of all bad parameters λ ∈ Θ such that when i∗ is
the control law chosen, λ is indistinguishable from θ, but i∗

is not the optimal control law under λ:

B(θ) = {λ ∈ Θ : λi∗ = θi∗ and max
i
riλi > ri∗λi∗}.

Consider sets Bi(θ), i = 1, 2, ..., n, defined as follows:

Bi(θ) = {λ ∈ B(θ) : riλi > ri∗λi∗}.

Note that B(θ) =
⋃
iBi(θ). Also, note that if ri < ri∗θi∗ ,

Bi(θ) = φ. Let P = {i : ri ≥ ri∗θi∗}. Since r1 < r2 <
... < rn, P = {i1, ..., n}, where i1 ≤ i∗ is the smallest index
satisfying ri1 ≥ ri∗θi∗ . Define P ′ = P \ {i∗}.

Using Theorem 1 in [19], we know that c̄ = (c1, c2, ...,
ci∗−1, ci∗+1, ..., cn), i.e., the vector of constants (in our theo-
rem statement) for the lower bound solve the following linear
program:

min
∑
i

ci(ri∗θi∗ − riθi),

subject to inf
λ∈Bi(θ)

∑
l 6=i∗

clD(θl, λl) ≥ 1,∀i ∈ P ′,

ci ≥ 0,∀i.

(9)

where D(θl, λl) denotes the KL-divergence between Bernoulli
distributions parametrized by the θl and λl. Now, all that
remains to prove is that the above linear program is equivalent
to the two linear programs in the theorem statement.

In order to decouple and simplify the above LP, we will
focus on simplifying the first constraint. Without loss of
generality, consider i > i∗. Note that i ∈ P ′. Now, we observe
the following:

1) Since λ ∈ Bi(θ), we know that λi∗ri∗ = θi∗ri∗ and
also λi >

{
λi∗ri∗
ri

= θi∗ri∗
ri

}
> θi. Since λ1 ≥ λ2 ≥

... ≥ λn, therefore, for any λ ∈ Bi(θ):∑
l 6=i∗

clD(θl, λl) ≥
i∑

l=i∗+1

cl1{θl ≤
ri∗θi∗

ri
}D(θl,

ri∗θi∗

ri
).

2) Consider λ(ε) ∈ Bi(θ) such that λl(ε) = θl,∀l ∈
{1, 2, ..., i∗} ∪ {i + 1, i + 2, ..., n}, λi(ε) = ri∗θi∗

ri
+ ε

and λl(ε) = 1{θl ≤ ri∗θi∗
ri
}{ ri∗θi∗ri

+ ε} + 1{θl >
ri∗θi∗
ri
}θl,∀l ∈ {i∗+1, i∗+2, ..., i−1}. It can be easily

verified that λ(ε) ∈ Bi(θ). Now, using λ(ε), we get:∑
l 6=i∗

clD(θl,λl(ε))

=

i∑
l=i∗+1

cl1{θl ≤
ri∗θi∗

ri
}D(θl,

ri∗θi∗

ri
+ ε).

Therefore:

lim
ε→0

∑
l 6=i∗

clD(θl,λl(ε))

=

i∑
l=i∗+1

cl1{θl ≤
ri∗θi∗

ri
}D(θl,

ri∗θi∗

ri
).

From the above facts, we can conclude that for i > i∗, the
first constraint in the LP given by Equation (9) is equivalent
to:

i∑
l=i∗+1

cl1{θl ≤
ri∗θi∗

ri
}D(θl,

ri∗θi∗

ri
) ≥ 1. (10)

Similarly, for i ∈ P ′ such that i < i∗, we can show that the
first constraint in the LP given by Equation (9) is equivalent
to:

i∑
l=1

cl1{θl ≤
ri∗θi∗

ri
}D(θl,

ri∗θi∗

ri
) ≥ 1. (11)

Using Equations (10), (11) in the LP given by Equation (9),
we get the following simplified LP:

min
∑
i

ci(ri∗θi∗ − riθi),

s. t.
i∑
l=1

cl1{θl ≤
ri∗θi∗

ri
}D(θl,

ri∗θi∗

ri
) ≥ 1,∀i ∈ P ′, i < i∗,

i∑
l=i∗+1

cl1{θl ≤
ri∗θi∗

ri
}D(θl,

ri∗θi∗

ri
) ≥ 1,∀i > i∗,

ci ≥ 0,∀i.
The above LP can be very straightforwardly decoupled into
two LPs as in the theorem statement, giving us the final result.

VI. SIMULATION RESULTS

In this section, we present simulation results comparing
the performance of CoTS with the current state-of-the-art
algorithms. For the optimal link rate selection problem with
the basic non-increasing components structure, KL-R-UCB
(see [1]) and MTS (see [3]) are the current state-of-the-
art algorithms. With the additional constraint of unimodality
known, G-ORS has been shown (see [1]) to be asymptotically
optimal.

We consider the same experimental setup as in [1], i.e., a
single-link 802.11g system with eight available rates from 6
to 54 Mbit/s (also see [7]). The eight rates are as follows (in
Mbit/s): r1 = 6, r2 = 9, r3 = 12, r4 = 18, r5 = 24, r6 =
36, r7 = 48 and r8 = 54. We implement all the algorithms in
three different scenarios (different values of θ) as used in [7]:
gradual, steep and lossy. For all these scenarios, we implement
and compare KL-R-UCB, MTS and CoTS (without exploiting
unimodality) for the case when only the basic structure in
Θ is known. We also implement and compare G-ORS and
CoTS (exploiting unimodality), for the case when additional
structure of unimodality is known.

A. Gradual

In the gradual case, we consider rate success probabil-
ity vector θ = (0.95, 0.90, 0.80, 0.65, 0.45, 0.25, 0.15, 0.10).
Therefore, the vector of expected throughput ξ, i.e., ξi = riθi,
is: ξ = (5.7, 8.1, 9.6, 11.7, 10.8, 9., 7.2, 5.4). The defining
property of the gradual case is that the optimal rate is the



highest rate with the probability of success greater than 0.5.
Figure 1a compares the performance of KL-R-UCB, MTS and
CoTS (without exploiting unimodality) for the gradual case.
CoTS outperforms both KL-R-UCB and MTS. Another point
worth noting is that CoTS and MTS outperform KL-R-UCB
by a significant margin. Figure 1b compares the performance
of G-ORS and CoTS (exploiting unimodality) for the gradual
case. Here again, CoTS outperforms G-ORS. The lower bound
constant for the gradual case obtained from Theorem 2 is
526.19, whereas until t = 10000, CoTS achieves a constant
of 154.78. Although this might seem illogical, we note that
the lower bound is asymptotic. It is interesting to note that
while it may take a long time to achieve the lower bound,
the performance is even better than the lower bound in finite
time. This is a feature we have observed in many simulations.

(a) Plot comparing the performance of KL-R-UCB, MTS and
CoTS (without exploiting unimodality) on the gradual case.

(b) Plot comparing the performance of G-ORS and CoTS
(exploiting unimodality) on the gradual case.

Fig. 1. Performance of CoTS vs. state-of-the-art in 802.11g systems with
rate success probabilities characterized by the gradual case. Note that CoTS
outperforms the current state-of-the-art in both the cases, i.e., whether one
exploits unimodality or not.

B. Steep

In the steep case, we consider rate success probabil-
ity vector θ = (0.99, 0.98, 0.96, 0.93, 0.90, 0.10, 0.06, 0.04).

Therefore, the vector of expected throughput ξ is: ξ =
(5.94, 8.82, 11.52, 16.74, 21.6, 3.6, 2.88, 2.16). The defining
property of the steep case is that the success probability of
every rate is either really high or really low (either close
to 1 or close to 0). Figure 2a compares the performance of
KL-R-UCB, MTS and CoTS (without exploiting unimodality)
for the steep case. Similar to the gradual case, CoTS again
outperforms both KL-R-UCB and MTS. Also, CoTS and MTS
again outperform KL-R-UCB by a significant margin. Figure
2b compares the performance of G-ORS and CoTS (exploiting
unimodality) for the steep case. Here again, CoTS outperforms
G-ORS. The lower bound constant for the steep case obtained
from Theorem 2 is 45.56, whereas until t = 10000, CoTS
achieves a constant of 46.49. This shows that CoTS is almost
optimal.

(a) Plot comparing the performance of KL-R-UCB, MTS and
CoTS (without exploiting unimodality) on the steep case.

(b) Plot comparing the performance of G-ORS and CoTS
(exploiting unimodality) on the steep case.

Fig. 2. Performance of CoTS vs. state-of-the-art in 802.11g systems with
rate success probabilities characterized by the steep case. Note that CoTS
outperforms the current state-of-the-art in both the cases, i.e., whether one
exploits unimodality or not.

C. Lossy

In the lossy case, we consider rate success probabil-
ity vector θ = (0.90, 0.80, 0.70, 0.55, 0.45, 0.35, 0.20, 0.10).
Therefore, the vector of expected throughput ξ is: ξ =



(5.4, 7.2, 8.4, 9.9, 10.8, 12.6, 9.6, 5.4). The defining property
of the lossy case is that the optimal rate has a low success
probability, typically less than 0.5, i.e., the system loses sig-
nificant packets even at the optimal rate. Figure 3a compares
the performance of KL-R-UCB, MTS and CoTS (without
exploiting unimodality) for the lossy case. Similar to the
gradual and steep cases, CoTS again outperforms both KL-
R-UCB and MTS. Also, CoTS and MTS again outperform
KL-R-UCB by a significant margin. Figure 3b compares the
performance of G-ORS and CoTS (exploiting unimodality)
for the lossy case. Here again, CoTS outperforms G-ORS.
The lower bound constant for the lossy case obtained from
Theorem 2 is 401.41, whereas until t = 10000, CoTS achieves
a constant of 181.44. Again, the performance of CoTS is better
than the asymptotic lower bound in finite time.

(a) Plot comparing the performance of KL-R-UCB, MTS and
CoTS (without exploiting unimodality) on the lossy case.

(b) Plot comparing the performance of G-ORS and CoTS
(exploiting unimodality) on the lossy case.

Fig. 3. Performance of CoTS vs. state-of-the-art in 802.11g systems with
rate success probabilities characterized by the lossy case. Note that CoTS
outperforms the current state-of-the-art in both the cases, i.e., whether one
exploits unimodality or not.

VII. CONCLUSION

In this paper, we consider the optimal link rate selection
problem in time-varying wireless channels with unknown
channel statistics and limited channel state information. We

design an algorithm called CoTS which exploits the structure
in the problem efficiently and improves upon the current
state-of-the-art. We present theoretical upper bounds on its
performance and also prove a general lower bound for the
optimal link rate selection problem. To corroborate the theory,
we present numerical results comparing CoTS with the current
state-of-the-art and observe that it performs better across
variety of scenarios.
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