
Group-Fair Online Allocation in Continuous Time

Anonymous Author(s)
Affiliation
Address
email

Abstract

The theory of discrete-time online learning has been successfully applied in many1

problems that involve sequential decision-making under uncertainty. However,2

in many applications including contractual hiring in online freelancing platforms3

and server allocation in cloud computing systems, the outcome of each action4

is observed only after a random and action-dependent time. Furthermore, as a5

consequence of certain ethical and economic concerns, the controller may impose6

deadlines on the completion of each task, and require fairness across different7

groups in the allocation of total time budget B. In order to address these ap-8

plications, we consider continuous-time online learning problem with fairness9

considerations, and present a novel framework based on continuous-time utility10

maximization. We show that this formulation recovers reward-maximizing, max-11

min fair and proportionally fair allocation rules across different groups as special12

cases. We characterize the optimal offline policy, which allocates the total time be-13

tween different actions in an optimally fair way (as defined by the utility function),14

and impose deadlines to maximize time-efficiency. In the absence of any statistical15

knowledge, we propose a novel online learning algorithm based on dual ascent16

optimization for time averages, and prove that it achieves Õ(B−1/2) regret bound.17

1 Introduction18

With the prevalence automated decision methods and machine learning methods, it is important to19

analyze the impact of learning and evaluate models not only with respect to traditional objectives20

such as reward or model accuracy, but also to account for the impact on individuals that interact with21

the system. Indeed, there are many studies highlighting algorithmic discrimination due to problems22

in the machine learning pipeline: imbalance in data [1], learnt representations [2, 3], choice of model23

proxies [4], demographic group-dependent difference in error rates of the learned models [5, 6, 7],24

to name a few. With rising ethical and legal concerns, addressing such issues has become urgent,25

specially as these impact critical societal decisions involving job opportunities and hiring. In 2014, it26

was estimated that 25% of the total workforce in the US was involved in some form of freelancing,27

and this number was predicted to grow to 40% by 2020 [8]. In reality, this percentage might be28

much higher, due to COVID-19 restrictions leading to increased work-from-home and changes in29

job opportunities [9, 10]. In online platforms however, there has been a strong evidence of bias30

observed in number of user reviews and user ratings1 on completing jobs with significant correlations31

with race, gender, location of work and length of profiles2 [11]. Motivated by these problems in32

1The mean (median) normalized rating score for White workers was 0.98 (1), while it is 0.97 (1) for Black
workers on TASKRABBIT. The mean (median) rating of White workers was found to be 3.3 (4.8), 3.0 (4.6) for
Black workers, 3.3 (4.8) for Asian workers, 3.6 (4.8) for workers with a picture that does not depict a person,
and 1.7 (0.0) for workers with no image on FIVERR [11].

2Mean (median) number of reviews: for women 33 (11), 59 (15) for men on TASKRABBIT. Mean (median)
number of reviews: for Black workers was found to be 65 (4), 104 (6) for White workers, 101 (8) for Asian
workers, 94 (10) for non-human pictures and 18 (0) for users with no image on FIVERR [11].
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Figure 1: Freelancer profiles on UPWORK with their past performance and corresponding reviews for “fixed-
price" contracts. Contractors can access these profiles and allocate fixed-timed contracts with deadlines.

online contractual hiring, we study a theoretical framework for sequential resource allocation to33

workers, where the controller (decision maker) can enforce deadlines for each task’s completion. Our34

key contribution is to quantify impact of reward maximization in terms of equality of opportunity35

for jobs and develop algorithms that can achieve a meaningful trade-off between these via online36

utility maximization. The challenge is to maximize total reward within a given time budget, while37

accounting for random completion times by workers from different groups and fairness in allocation.38

Formally, we consider K groups of individuals who can be hired sequentially for each task, i.e.,39

at any point, exactly one individual can be hired. If an individual from group k ∈ [K] is chosen40

for the n-th task and given a contractual deadline t by the controller, he/she generates a random41

reward of Rk,n if the task is completed by (random) time Xk,n within deadline t. If the task is42

not completed by the deadline, the reward obtained by the controller is zero and the time until the43

deadline is wasted (i.e., yields 0 reward for the controller). Completion times and reward distributions44

are assumed group-dependent and i.i.d. across tasks. The objective of the controller is to maximize45

utility (trade-off between total reward and fair allocation) in the offline (known distributions) and46

online settings (unknown distributions) under a budget constraint on time. As we will show in this47

paper, controlled deadlines set are essential for optimal time-efficiency under the budget constraint.48

The ethical problems we are concerned with involve the rate of jobs allocated to different demographic49

groups and the deadlines imposed on these under reward maximization regimes [11]. Our sequential50

framework would also apply to other settings, for e.g., comparative clinical trials with varying51

follow-up durations as well as to server allocation in cloud computing where jobs are drawn from52

different application groups and must commit computational resources until a specific amount of time53

due to service level agreements (Section 2). We will often focus on the first application involving54

online contractual hiring, since fairness concerns are most naturally motivated in this domain.55

Given a time budget constraint B and the diverse random nature of completion time and reward pairs,56

the main question we consider is how to decide distribution of tasks and deadlines between different57

groups of people. Two potential extreme allocations are: (i) Reward-maximizing task allocation: The58

controller assigns all tasks to the most rewarding group to maximize the total reward within the given59

time budget. The other groups do not get any chance to receive tasks. (ii) Proportional task allocation:60

The controller completely ignores the reward distributions, and attempts to give equal time share61

to each group. In other words, each group receives a fraction of the tasks inversely proportional62

to their mean completion times. There is clearly a trade-off between the reward maximization and63

equal time-share considerations in continuous-time sequential task allocation, and well-chosen utility64

functions [12] can be helpful in modeling this in a unified way. In this paper, we consider a very65

general class of utility functions, which recovers broadly used fairness criteria such as proportional66

fairness, max-min fairness, reward maximization among many others [13, 14, 12]. The controller67

can determine her priorities in terms of notions of fairness and model the task allocation problem by68

choosing the utility function accordingly.69

The main contributions of this paper are summarized as follows:70

1. Incorporation of random completion time dynamics and fairness in allocation: In discrete-71

time online learning models, each action is assumed to take a unit completion time, thus the72

random and diverse nature of task completion times, as required in many fundamental real-life73

applications, is ignored. In this work, we incorporate this aspect and develop a sequential learning74

framework in continuous time using tools from the theory of renewal processes and stochastic75

control. We show how controlled deadlines improve the time-efficiency in continuous-time76
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decision processes. Moreover, this is the first work, to the best of our knowledge, that analyzes77

fair distribution policies in online contractual hiring.78

2. Characterization of Approximately Optimal Offline Policies: As a consequence of the random79

and controlled task completion times, the optimal policy for fair resource allocation is PSPACE-80

hard akin to unbounded stochastic knapsack problems. For tractability in design and analysis, we81

propose an approximation to the optimal offline policy based on Lagrange duality and renewal82

theory, and prove that it is asymptotically optimal. These approximate policies allocate tasks83

independently with respect to a fixed probability distribution.84

3. Online learning for utility maximization: For utility maximization in an online setting with full85

information feedback, we develop a novel and low-computational-complexity online learning86

algorithm based on dynamic stochastic optimization methods for time averages, and show that87

it achieves Õ(B−1/2) regret for a time budget B. The optimal offline control policy in this88

paper is time-dependent, randomized and attempts to optimize time averages unlike the reward89

maximization problems in discrete-time problems. Despite these, the online learning algorithm90

we developed adapts to the randomness in completion time-reward pairs, and achieves optimal91

performance with vanishing regret at a fast rate.92

Related Work: The problem of fair resource allocation via utility maximization has been widely93

considered in economics and network management [15, 16, 17, 18]. The utility maximization94

approach to fair resource allocation in these papers predominantly deals with discrete-time systems,95

therefore the randomness and diversity in task completion times is completely ignored. Furthermore,96

these works either assume perfect knowledge of rewards and completion times prior to decision-97

making, or they assume the knowledge of statistics, therefore they do not incorporate online learning.98

The only continuous-time utility maximization approach to fair resource allocation is [19], which99

assumes the knowledge of first-order statistics.100

Online learning under budget constraints has been considered under the scope of bandits with101

knapsacks [20, 21, 22]. In the classical bandits with knapsacks model, the objective is to maximize102

expected total reward under knapsack constraints in a stochastic setting. In [23], an interrupt103

mechanism is employed to incorporate the continuous-time dynamics into the budget-constrained104

online learning model. Note that these works focus solely on reward maximization, therefore105

they do not address the fair resource allocation problem. The bandits with knapsacks setting was106

extended to concave rewards and convex constraints in [24], which assumes bounded cost and reward,107

and the deadline mechanism is not involved in decision-making, thus optimal time-efficiency in108

continuous time is not achieved. Our paper deviates from this line of work as it proposes a versatile109

and comprehensive framework for fairness, and incorporates continuous-time dynamics into the110

decision-making for time-efficiency. We include an extended discussion of related work in Appendix111

A.112

2 Online Learning Framework for Group Fairness113

We consider the sequential and fair allocation of tasks to individuals from different groups, whose114

completion times and rewards randomly vary. This goal differs significantly from traditional online115

learning models that aim to maximize the expected total reward with unit completion times. Under116

this traditional setting, the controller’s goal is to find and persistently select the reward-maximizing117

groups to allocate its tasks. As a consequence, the reward-maximization objective leads to the118

starvation of suboptimal groups, which causes unfairness amongst the groups with different statistical119

characteristics. Next, we provide a few motivating examples with group fairness requirements:120

• Contractual Hiring in Online Freelancing Platforms: Online freelancing sites like UPWORK121

host contractual workers (freelancers) that can be hired by “contractors" who require specific tasks122

to be completed. Each freelancer has a profile and performance on past tasks that can be learned by123

the contractors via ratings and reviews (see, typical profile in Figure 1). Fixed-timed contracts are124

popular on UPWORK, wherein contractors enforce a deadline by which the task must be completed125

otherwise the contract is terminated (i.e., there is no payment). Contractors can browse profiles126

and post a job to a selected set of freelancers with a deadline. However, there is a large literature127

documenting bias in online rating systems, which in turn impact job opportunities disparately128

[11, 25, 26], thus making it critical to develop theory of online learning for such settings.129
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• Server Allocation in Cloud Computing: An important application of our framework is online130

learning for fair resource allocation in cloud computing systems. In a very basic setting, a single131

server is sequentially allocated to tasks from one of K user groups, which exhibit similar execution132

time statistics and priority levels within each group. In many practical scenarios, the execution time133

of a task is unknown at the time decision [27, 28], and exhibits a power-law behavior [29], which134

necessitates a deadline mechanism for optimal time-efficiency [23]. In this setting, the objective of135

the controller is to allocate the server in an optimally fair way across the groups in a given time136

interval [0, B], depending on the completion time statistics and priority levels. Our work proposes137

a versatile framework to model fairness for this problem based on the concept of continuous-time138

utility maximization, and develops online learning algorithms to achieve the optimal performance139

with low regret in the absence of any statistical knowledge.140

More examples can be found in other domains, including multi-user wireless communication over141

fading channels (e.g., see [23]), comparative clinical trials with optimal follow-up duration (e.g., see142

[30, 31]), whereby the goal is to fairly share the limited resources between groups of users.143

Motivated by these examples, next we introduce an online learning framework that expands the144

traditional setting substantially to incorporate group fairness characteristics into its formulation.145

Suppose that there are K ≥ 1 groups of individuals that are available for serving tasks with different146

(and unknown) statistics. Specifically, if an individual from group k ∈ [K] = {1, 2, . . . ,K} is147

chosen for the n-th task, he/she takes Xk,n units of completion time for successful completion, and148

a reward of Rk,n(t) = Rk,nI{Xk,n ≤ t} is obtained t time units after the initiation where Rk,n is149

a positive random variable and Rk,n(t) ∈ [0, Rmax(t)] a.s. for some finite constant Rmax(t) > 0.150

Thus, the random reward Rk,n is gathered only if the task is completed. For example, in the151

server allocation application, a group-k task of random size Rk,n yields a reward (throughput)152

Rk,n(t) = Rk,nI{Xk,n ≤ t} only upon successful completion. We assume that (Xk,n, Rk,n(t))153

is independent and identically distributed (iid) over n, and independent across different groups k.154

Note that the completion time Xk,n and reward Rk,n can be correlated, for example, in the server155

allocation example, the completion time Xk,n and size Rk,n of a task are positively correlated [32].156

We assume that each task has a positive completion time, i.e., Xk,n > 0 almost surely for all k, n.157

Before the n-th task begins, the controller makes two decisions: the group Gn ∈ [K] of the individual158

that will be assigned the task, and a deadline Tn ∈ T, where T ⊂ R+ is the decision set. If the task is159

not completed by the selected deadline, the service is interrupted without collecting any reward. In160

many applications, the deadlines are chosen within a discrete set (e.g., days/months in contractual161

hiring or time-slots in server allocation), thus we assume a finite decision set T = {t1, t2, . . . , tL}162

with tl <∞ for all l in this paper. The sequential task allocation continues until a given time budget163

B > 0 is exceeded, therefore, the completion time of a task is as important as the reward.164

To describe this process mathematically, letHk,n−1 denote the available feedback for group k, and165

Hn−1 = ∪k∈[K]Hk,n−1 denote the history before making a decision for task n. For a given time166

budget B > 0, a causal policy π = {π1, π2, . . .} sequentially makes two decisions πn = (Gn, Tn) ∈167

[K] × T for each task n based on the history Hk−1, where Gn is the chosen group and Tn is the168

assigned deadline. Under a policy π, the number of initiated tasks is the following first-passage time:169

Nπ(B) = inf
{
n :

n∑
i=1

min{XGi,i, Ti} > B
}
, (1)

which is a random and controlled stopping time. Moreover, the reward rate of any user type k is:170

rπk (B) = E
[ 1

B

Nπ(B)∑
n=1

I{Gn = k}Rk,n(Tn)
]
, under policy π. (2)

IfRk,n(t) = I{Xk,n ≤ t}, i.e., each task completion yields a unit reward, then rπk (B) simply denotes171

the task completion rate (i.e., throughput) of group k individuals in the time interval [0, B].172

Note that designing strategies that aim to maximize the total reward rate in (2) will lead to the
persistent selection of the group with the highest reward rate at the cost of starvation of all the rest
(see [23]). In order to address group fairness considerations, we propose a continuous-time online
learning framework based on the utility maximization concept that is used effectively in the fair
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resource allocation domain (e.g., see [16]). Specifically, for a given continuously-differentiable,
concave and monotonically increasing utility function Uk : R → R, we let the utility of group k
under a policy π be given by Uk

(
rπk (B)

)
. Then, the total utility under a policy π is defined as:

Uπ(B) =

K∑
k=1

Uk
(
rπk (B)

)
, for time interval [0, B].

The optimum utility over a class of policies Π, and the regret for a given π ∈ Π are, respectively:173

OPTΠ(B) = max
π∈Π

K∑
k=1

Uk
(
rπk (B)

)
and REGπΠ(B) = OPTΠ(B)− Uπ(B), for B > 0. (3)

Note that, due to the monotonically increasing and concave nature of utility functions, allocating the174

tasks always to the most rewarding group is not a good choice, because the same amount of time175

could yield a higher utility for another group because of the diminishing return property of concave176

functions. A particularly important set of utility functions is captured by the α-fair class, given next.177

Definition 1 (α-Fair Allocation). For any given α > 0 and weight wk > 0, let Uk(x) = wk
x1−α

1−α ,178

for all k. Resource allocation by using these utility functions is called α-fair resource allocation.179

This class is attractive since it includes as special cases proportional fairness, minimum potential180

delay fairness, reward maximization and max-min fairness [12].181

3 Approximation of the Optimal Offline Policy182

Note that a simpler version of the sequential maximization problem in (3) with linear utility functions183

over all causal policies is called an unbounded knapsack problem, and it is PSPACE-hard even in the184

case of known statistics [33, 20]. Therefore, the optimal causal policy for the problem in (3) has a185

very high computational complexity even in the offline setting, which makes it intractable for online186

learning. For tractability in design and analysis, we consider a class of simple policies that allocate187

tasks in an i.i.d. randomized way according to a fixed probability distribution over groups, and show188

its efficiency in this section.189

Definition 2 (Stationary Randomized Policies). Let P be a fixed probability distribution over [K]×T.190

A stationary randomized policy (SRP) π = π(P ) makes a randomized decision independently191

according to P for every task until the time budget B is depleted. In other words, under the SRP192

π(P ), we have P
(
πn = (k, t)

)
= P (k, t), ∀n ≤ Nπ(B), for all (k, t) ∈ [K] × T. We denote the193

class of all stationary randomized policies as ΠS .194

Proposition 1 (Asymptotic optimality of SRP). There exists a probability distribution P ? such that195

the stationary randomized policy π(P ?) is asymptotically optimal over all causal policies asB →∞.196

197

The proof of Proposition 1 can be found in Appendix B. In the following, we characterize the total198

utility under π(P ) by providing tight bounds.199

Proposition 2. Let P be any given probability distribution over [K]× T. Then, the reward per unit
time for group k under the stationary randomized policy π(P ) is as follows:

ρk(P ) =

∑
t∈T P (k, t)E[Rk,1(t)]∑

(i,t)∈[K]×T P (i, t)E[min{Xi,1, t}]
,∀k ∈ [K].

Consequently, the total utility under the stationary randomized policy π(P ) is bounded as follows:∑
k∈[K]

Uk

(
ρk(P )

)
≤
∑
k∈[K]

Uk
(
r
π(P )
k (B)

)
≤
∑
k∈[K]

Uk

(
ρk(P )

)
+O

( 1

B

)
.

200

We include the complete proof of Proposition 2 in Appendix B. The key idea is that under an SRP,201

the total reward of a group k is a regenerative process. Then, by using the theory of stopped random202

walks for regenerative processes, the reward per unit time under π(P ) is found as ρk(P ), and the203

upper bound for the total utility is found by using Lorden’s inequality [34] and concavity of Uk.204
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Proposition 2 emphasizes the significance of the reward per unit time ρk(P ). In conjunction with205

Proposition 1, this suggests that using a probability distribution that maximizes the limiting total206

utility would be an effective offline approximation.207

Definition 3 (Optimal Stationary Randomized Policy). Let P ? be a probability distribution defined208

as P ? ∈ arg maxP
∑
k∈[K] Uk

(
ρk(P )

)
. Then, the optimal SRP π? makes a selection independently209

for every task according to P ?: P
(
π?n = (k, t)

)
= P ?(k, t) for all (k, t) ∈ [K]×T and n ≤ Nπ(B).210

An interesting question regarding P ? is the choice of deadline policy for each group. The following211

proposition characterizes the optimal deadline policy under π?, and yields a significant simplification212

in finding the optimal policy by reducing the size of the search space.213

Proposition 3 (Optimal Deadline Policy). For any k, the optimal probability distribution P ? makes214

a deterministic deadline decision for group k, that is, |{t ∈ T : P ?(k, t) > 0}| ≤ 1. For any k, we215

denote tk∗ ∈ T as the (unique) optimal deadline for group k such that P ?(k, t∗k) > 0.216

The detailed proof of Prop. 3 can be found in Appendix C. As we will see later, we can explicitly217

characterize the optimal deadline for a broad class of utility functions used for the so-called α-fair218

allocations. In the following, we use Prop. 2 to characterize the performance of the optimal SRP.219

Proposition 4 (Optimal Total Utility). For any group k, let t∗k ∈ T be the (unique) optimal deadline220

by Prop. 3; r∗k = E[Rk,1(t∗k)]/E[min{Xk,1, t
∗
k}] be the reward per processing time for group k; and221

ϕk =
P ?(k, t∗k) · E[min{Xk,1, t

∗
k}]∑

j∈[K] P
?(j, t∗j ) · E[min{Xj,1, t∗j}]

, (4)

be the fraction of time budget allocated to group k under π(P ?). Then, for any SRP π(P ), the total222

utility is bounded as
∑
k Uk

(
ρk(P )

)
≤
∑
k Uk

(
(U ′k)−1

(
λ
r∗k

))
, where the upper bound is achieved223

by the probability distribution that satisfies ϕk = 1
r∗k

(U ′k)−1
(
λ
r∗k

)
for λ such that

∑
k ϕk = 1.224

The proof of Proposition 4 follows from Lagrange duality and Prop. 3, and can be found in Appendix225

D. Note that the above analysis is very general in the sense that it holds for any set of utility functions226

{Uk : R → R : k ∈ [K]} that are continuously differentiable and concave. In the following, we227

apply the results to the class of α-fair allocations (cf. Definition 1) and discuss their implications.228

Proposition 5 (α-Fair Resource Allocation in Continuous Time). For any group k, the optimal229

deadline is t∗k = arg max
t∈T

E[Rk,1(t)]

E[min{Xk,1, t}]
. Also, let r∗k = maxt∈T

E[Rk,1(t)]
E[min{Xk,1,t}] be the reward230

per processing time and µk = E[min{Xk,1, t
∗
k}] be the mean processing time for group k. Then, for231

any α > 0, we have the following results for α-fair utility functions:232

max
P

Uπ(P )(B) =
1

1− α

( ∑
k∈[K]

(r∗k)
1
α−1w

1
α

k

)α
, (5)

where the optimum probability distribution P ∗k and the optimum fraction of time budget ϕk allocated
to group k are, respectively, given by:

P ?(k, t) = I{t = t∗k}
w

1
α

k (r∗k)
1
α−1/µk∑

j∈[K] w
1
α
j (r∗j )

1
α−1/µj

, ϕk =
(r∗k)

1
α−1w

1
α

k∑
j∈[K](r

∗
j )

1
α−1w

1
α
j

,∀k ∈ [K].

233

To gain a clear understanding of the notion of α-fairness, we consider the following special cases.234

Corollary 1. For any given set of parameters {wk > 0 : k ∈ [K]}, we have the following results for235

continuous-time α-fair resource allocation problem for various α > 0 values.236

(i) Proportional fairness: In this case, we have limα→1 Uk(x) = wk log(x) for all k. Let µk =237

E[min{Xk,1, t
∗
k}] be the mean processing time for group k. Then, the optimum utility is achieved238

by the probability distribution P ?(k, t) = I{t = t∗k}
wk/µk∑

j∈[K] wj/µj
, (k, t) ∈ [K] × T, thus we239

have ϕk = wk∑
j∈[K] wj

for all k and OPTΠS (B) =
∑
k log

(
r∗kwk∑

k′∈[K] wk′

)
+O( 1

B ).240
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(ii) Reward maximization: If α = 0, we have Uk(x) = ωkx for all k. Let k∗ = arg maxk∈[K] wkr
∗
k241

be the group with highest weighted reward rate. Then, the optimal probability distribution is242

P ?(k, t) = I{k = k∗, t = t∗k}, for all (k, t). Thus, OPTΠS (B) = maxk∈[K] wkr
∗
k +O(1/B).243

Remark 1. Note that optimal deadline t∗k for any group k is chosen so as to maximize the reward per244

processing time of group k. Under proportional fairness (α→ 1), the controller distributes the time245

budget proportional to group weights, i.e., ϕk = wk/
∑
j wk, which reduces to equal time-sharing246

under uniform weights. To achieve this, the controller allocates tasks with probability inversely247

proportional to the mean processing time µk. Under reward maximization (α = 0), the controller248

allocates the entire time budget B to a single group that yields the highest reward per processing time249

to maximize the expected total reward, i.e., ϕk = I{k = k∗}. As such, the trade-off between reward250

maximization and equal (i.e., reward-insensitive) time-sharing is modeled by α-fairness for any251

α ∈ [0, 1). Further, the α-fair utility maximization framework includes max-min fairness (α→∞)252

and minimum potential delay fairness (α = 2) as subcases.253

4 Online Learning for Utility Maximization (OLUM)254

In the previous section, we provided key results on the asymptotically optimal approximations to255

the offline utility maximization problem. In this section, we will build on these to attack the online256

learning problem for continuous-time fair allocation. In particular, we will propose a novel light-257

weight online learning algorithm for the fair resource allocation problem based on Lagrangian duality,258

and show that it achieves vanishing regret at rate Õ(B−1/2).259

Feedback model: We assume a delayed full-information feedback model where the completion time260

and reward of all groups for task n are revealed to the controller at stage n+ τ for some delay τ ≥ 1.261

This assumption holds approximately for our target applications. In freelancing platforms, there262

are often multiple contractors that hire freelancers for various tasks. It is often possible to get full263

information on various freelancers due to employment by other companies and their reviews can264

serve as the feedback for the controller. Competitions hosting websites like TOPCODER have also265

recently been catering to businesses who need fast-prototyping using freelancers. In their business266

model, a controller might invest in a few topcoders at a time, however, she can potentially get access267

to updated rankings (quality and time to complete tasks) via topcoder competitions over time. In268

server cations such as Amazon AWS and Microsoft Azure as well, although a controller might269

be optimizing operations on a local set of servers, they can request task performance data from a270

centralized server or a scheduler after a delay in time [35]. This feedback model already presents271

with technical challenges due to random completion times, as we discuss next.272

In order to design the online learning algorithm, let us define, for any (k, t) ∈ [K]× T, the empirical273

estimates of the mean completion time and reward after n stages, respectively, as274

µ̂k,n(t) =
1

n

n∑
i=1

min{t,Xk,i}, and θ̂k,n(t) =
1

n

n∑
i=1

Rk,i(t).

Definition 4 (OLUM Algorithm). For any k, let Qk,0 = 1 and Qk,i be defined recursively as follows:275

Qk,i+1 =
(
Qk,i + γk(i) min{XGi,i, Ti} −Rk,i(Ti)I{Gi = k}

)+

, i > 0 (6)

where the auxiliary variable γk(i) =
(
U ′k
)−1
(
Qk,i/V

)
, where V > 0 is a design choice. Then, for

the task n, the OLUM Algorithm, denoted by πOLUM, makes the following decision:

(Gn, Tn) ∈ arg max
(k,t)∈[K]×T

θ̂k,n−τ (t)Qk,n
µ̂k,n−τ (t)

.

Upon observing the corresponding feedback, the controller updates Qk,n+1 via (6).276

Interpretation: The OLUM Algorithm aims to maximize the time-average reward weighted with Qk,n277

at each round. Note that for any k ∈ [K], if the sequence Qk,n gets very big, then its reward rate is278

much smaller than the optimal value, thus the controller tends to select that group. In other words, the279

magnitude of Qk,n is a measure of the unfairness that group k has endured by stage n. The algorithm280

is designed so as to balance the weights Qk,n to maximize the total utility.281

In the following theorem, we prove regret bounds for the OLUM Algorithm.282
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Theorem 1 (Regret bounds for OLUM). For any V > 0 and constant delay τ , the regret under πOLUM283

is bounded as REGΠS
πOLUM

(B) = O
(√

log(B)
B + V

B + 1
V

)
. By choosing V = Θ(

√
B/ log(B)), we284

obtain REGΠS
πOLUM

(B) = O(
√

log(B)/B) = Õ(1/
√
B).285

The proof is based on PAC bounds and stochastic dual optimization, and can be found in Appendix E.286

5 Simulations287

We implemented the OLUM Algorithm on a fair resource allocation problem with K = 2 groups.288

In the application domains that we considered in Section 2, the task completion times naturally289

follow a power-law distribution. For example, in the server allocation example, empirical studies290

indicate that the distribution of job execution times can be accurately approximated by a Pareto(1,291

γ) distribution with exponent γ ∈ (0, 2) [36]. Similarly, for the contractual online hiring setting,292

creativity of individuals has been shown to follow a Pareto(1, γ) distribution with exponent γ > 1,293

where γ is dependent on the field of expertise [37]. Motivated by these applications, we consider the294

following group statistics:295

• Group 1: Xk,n ∼ Pareto(1, 1.2) and Rk,n(t) = X0.6
k,n · I{Xk,n ≤ t}296

• Group 2: Xk,n ∼ Pareto(1, 1.4) and Rk,n(t) = X0.2
k,n · I{Xk,n ≤ t}297

The reward per processing time as a function of the deadline is shown in Figure 2. Note that the298

optimal deadline improves the reward per unit processing time. For this setting, we implemented the
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Figure 2: (Left) Reward per processing time for each group. (Right) Fraction of time budget assigned to
Group-2 individuals under the OLUM Algorithm for various fairness criteria.

299 OLUM Algorithm with parameter V = 20, and considered α-fair resource allocation problems with300

various α values. In Figure 2, we present the simulation results for ϕ2, i.e., the average fraction of301

time budget B allocated to Group-2 individuals, under the OLUM Algorithm. For these experiments,302

we chose wk = 1 for k = 1, 2 and ran the OLUM Algorithm for 1000 trials for each set. Note that the303

optimal reward per processing time of Group-1 individuals is higher than that of Group-2 individuals,304

thus Group-1 is chosen for reward maximization. Under proportional fairness, the time budget is305

equally distributed between Group-1 and Group-2 individuals. We observe from Figure 2 that the306

OLUM Algorithm converges to the optimal operating points very fast, which verifies the theoretical307

results we presented.308

6 Conclusion309

In this paper, we proposed a versatile and comprehensive framework for continuous-time online310

resource allocation with fairness considerations, and proposed a no-regret learning algorithm for311

this problem in a delayed full-information feedback model. Note that although the full-information312

feedback is available in many application scenarios, there are cases in which the controller does not313

have an access to full feedback, thus a mechanism that incorporates bandit feedback is required. The314

online learning framework introduced in this paper can be extended to bandit feedback. One way to315

achieve this might be to replace the empirical estimates with upper confidence bounds in the OLUM316

Algorithm, which makes the analysis even more complicated. We leave the design and analysis of317

bandit algorithms in this setting as a future work.318
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Broader Impact319

Our work develops the theory of fair online learning, specifically analyzing the impact of reward-320

maximizing allocation policies on opportunities for different groups of people. Our proposal analyzes321

the trade-offs across various allocation policies (ranging from profit maximizing to equal opportunity322

for all), thus highlighting the choice of objectives that the controllers should carefully consider. This323

work does not have any foreseeable negative ethical or societal impact.324
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