Group-Fair Online Allocation in Continuous Time

Anonymous Author(s) Affiliation Address email

Abstract

1	The theory of discrete-time online learning has been successfully applied in many
2	problems that involve sequential decision-making under uncertainty. However,
3	in many applications including contractual hiring in online freelancing platforms
4	and server allocation in cloud computing systems, the outcome of each action
5	is observed only after a random and action-dependent time. Furthermore, as a
6	consequence of certain ethical and economic concerns, the controller may impose
7	deadlines on the completion of each task, and require fairness across different
8	groups in the allocation of total time budget B . In order to address these ap-
9	plications, we consider continuous-time online learning problem with fairness
10	considerations, and present a novel framework based on continuous-time utility
11	maximization. We show that this formulation recovers reward-maximizing, max-
12	min fair and proportionally fair allocation rules across different groups as special
13	cases. We characterize the optimal offline policy, which allocates the total time be-
14	tween different actions in an optimally fair way (as defined by the utility function),
15	and impose deadlines to maximize time-efficiency. In the absence of any statistical
16	knowledge, we propose a novel online learning algorithm based on dual ascent
17	optimization for time averages, and prove that it achieves $\tilde{O}(B^{-1/2})$ regret bound.

18 1 Introduction

With the prevalence automated decision methods and machine learning methods, it is important to 19 analyze the impact of learning and evaluate models not only with respect to traditional objectives 20 such as reward or model accuracy, but also to account for the impact on individuals that interact with 21 the system. Indeed, there are many studies highlighting algorithmic discrimination due to problems 22 in the machine learning pipeline: imbalance in data [1], learnt representations [2, 3], choice of model 23 proxies [4], demographic group-dependent difference in error rates of the learned models [5, 6, 7], 24 to name a few. With rising ethical and legal concerns, addressing such issues has become urgent, 25 specially as these impact critical societal decisions involving job opportunities and hiring. In 2014, it 26 was estimated that 25% of the total workforce in the US was involved in some form of freelancing, 27 and this number was predicted to grow to 40% by 2020 [8]. In reality, this percentage might be 28 much higher, due to COVID-19 restrictions leading to increased work-from-home and changes in 29 job opportunities [9, 10]. In online platforms however, there has been a strong evidence of bias 30 observed in number of user reviews and user ratings¹ on completing jobs with significant correlations 31 with race, gender, location of work and length of profiles² [11]. Motivated by these problems in 32

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

¹The mean (median) normalized rating score for White workers was 0.98 (1), while it is 0.97 (1) for Black workers on TASKRABBIT. The mean (median) rating of White workers was found to be 3.3 (4.8), 3.0 (4.6) for Black workers, 3.3 (4.8) for Asian workers, 3.6 (4.8) for workers with a picture that does not depict a person, and 1.7 (0.0) for workers with no image on FIVERR [11].

²Mean (median) number of reviews: for women 33 (11), 59 (15) for men on TASKRABBIT. Mean (median) number of reviews: for Black workers was found to be 65 (4), 104 (6) for White workers, 101 (8) for Asian workers, 94 (10) for non-human pictures and 18 (0) for users with no image on FIVERR [11].

Figure 1: Freelancer profiles on UPWORK with their past performance and corresponding reviews for "fixed-price" contracts. Contractors can access these profiles and allocate fixed-timed contracts with deadlines.

online contractual hiring, we study a theoretical framework for sequential resource allocation to 33 workers, where the controller (decision maker) can enforce deadlines for each task's completion. Our 34 key contribution is to quantify impact of reward maximization in terms of equality of opportunity 35 for jobs and develop algorithms that can achieve a meaningful trade-off between these via online 36 utility maximization. The challenge is to maximize total reward within a given time budget, while 37 accounting for random completion times by workers from different groups and fairness in allocation. 38 Formally, we consider K groups of individuals who can be hired sequentially for each task, i.e., 39 40 at any point, exactly one individual can be hired. If an individual from group $k \in [K]$ is chosen for the n-th task and given a contractual deadline t by the controller, he/she generates a random 41 *reward* of $R_{k,n}$ if the task is completed by (random) time $X_{k,n}$ within deadline t. If the task is 42 not completed by the deadline, the reward obtained by the controller is zero and the time until the 43 deadline is wasted (i.e., yields 0 reward for the controller). Completion times and reward distributions 44 45 are assumed group-dependent and i.i.d. across tasks. The objective of the controller is to maximize utility (trade-off between total reward and fair allocation) in the offline (known distributions) and 46 47 online settings (unknown distributions) under a budget constraint on time. As we will show in this paper, controlled deadlines set are essential for optimal time-efficiency under the budget constraint. 48 The ethical problems we are concerned with involve the rate of jobs allocated to different demographic 49 groups and the deadlines imposed on these under reward maximization regimes [11]. Our sequential 50 framework would also apply to other settings, for e.g., comparative clinical trials with varying 51 follow-up durations as well as to server allocation in cloud computing where jobs are drawn from 52 different application groups and must commit computational resources until a specific amount of time 53 due to service level agreements (Section 2). We will often focus on the first application involving 54 online contractual hiring, since fairness concerns are most naturally motivated in this domain. 55

Given a time budget constraint B and the diverse random nature of completion time and reward pairs, 56 the main question we consider is how to decide distribution of tasks and deadlines between different 57 groups of people. Two potential extreme allocations are: (i) Reward-maximizing task allocation: The 58 controller assigns all tasks to the most rewarding group to maximize the total reward within the given 59 time budget. The other groups do not get any chance to receive tasks. (ii) Proportional task allocation: 60 The controller completely ignores the reward distributions, and attempts to give equal time share 61 to each group. In other words, each group receives a fraction of the tasks inversely proportional 62 to their mean completion times. There is clearly a trade-off between the reward maximization and 63 equal time-share considerations in continuous-time sequential task allocation, and well-chosen utility 64 functions [12] can be helpful in modeling this in a unified way. In this paper, we consider a very 65 general class of utility functions, which recovers broadly used fairness criteria such as proportional 66 fairness, max-min fairness, reward maximization among many others [13, 14, 12]. The controller 67 can determine her priorities in terms of notions of fairness and model the task allocation problem by 68 choosing the utility function accordingly. 69

⁷⁰ The main contributions of this paper are summarized as follows:

Incorporation of random completion time dynamics and fairness in allocation: In discrete-time online learning models, each action is assumed to take a unit completion time, thus the random and diverse nature of task completion times, as required in many fundamental real-life applications, is ignored. In this work, we incorporate this aspect and develop a sequential learning framework in continuous time using tools from the theory of renewal processes and stochastic control. We show how controlled deadlines improve the time-efficiency in continuous-time

decision processes. Moreover, this is the first work, to the best of our knowledge, that analyzes
 fair distribution policies in online contractual hiring.

 Characterization of Approximately Optimal Offline Policies: As a consequence of the random and controlled task completion times, the optimal policy for fair resource allocation is PSPACEhard akin to unbounded stochastic knapsack problems. For tractability in design and analysis, we propose an approximation to the optimal offline policy based on Lagrange duality and renewal theory, and prove that it is asymptotically optimal. These approximate policies allocate tasks independently with respect to a fixed probability distribution.

3. Online learning for utility maximization: For utility maximization in an online setting with full 85 information feedback, we develop a novel and low-computational-complexity online learning 86 algorithm based on dynamic stochastic optimization methods for time averages, and show that 87 it achieves $\tilde{O}(B^{-1/2})$ regret for a time budget B. The optimal offline control policy in this 88 paper is time-dependent, randomized and attempts to optimize time averages unlike the reward 89 maximization problems in discrete-time problems. Despite these, the online learning algorithm 90 we developed adapts to the randomness in completion time-reward pairs, and achieves optimal 91 performance with vanishing regret at a fast rate. 92

Related Work: The problem of fair resource allocation via utility maximization has been widely 93 considered in economics and network management [15, 16, 17, 18]. The utility maximization 94 approach to fair resource allocation in these papers predominantly deals with discrete-time systems, 95 therefore the randomness and diversity in task completion times is completely ignored. Furthermore, 96 97 these works either assume perfect knowledge of rewards and completion times prior to decisionmaking, or they assume the knowledge of statistics, therefore they do not incorporate online learning. 98 The only continuous-time utility maximization approach to fair resource allocation is [19], which 99 assumes the knowledge of first-order statistics. 100

101 Online learning under budget constraints has been considered under the scope of bandits with 102 knapsacks [20, 21, 22]. In the classical bandits with knapsacks model, the objective is to maximize expected total reward under knapsack constraints in a stochastic setting. In [23], an interrupt 103 mechanism is employed to incorporate the continuous-time dynamics into the budget-constrained 104 online learning model. Note that these works focus solely on reward maximization, therefore 105 they do not address the fair resource allocation problem. The bandits with knapsacks setting was 106 extended to concave rewards and convex constraints in [24], which assumes bounded cost and reward, 107 and the deadline mechanism is not involved in decision-making, thus optimal time-efficiency in 108 continuous time is not achieved. Our paper deviates from this line of work as it proposes a versatile 109 and comprehensive framework for fairness, and incorporates continuous-time dynamics into the 110 decision-making for time-efficiency. We include an extended discussion of related work in Appendix 111 A. 112

113 2 Online Learning Framework for Group Fairness

We consider the sequential and fair allocation of tasks to individuals from different groups, whose completion times and rewards randomly vary. This goal differs significantly from traditional online learning models that aim to maximize the expected total reward with unit completion times. Under this traditional setting, the controller's goal is to find and persistently select the reward-maximizing groups to allocate its tasks. As a consequence, the reward-maximization objective leads to the starvation of suboptimal groups, which causes unfairness amongst the groups with different statistical characteristics. Next, we provide a few motivating examples with group fairness requirements:

 Contractual Hiring in Online Freelancing Platforms: Online freelancing sites like UPWORK 121 host contractual workers (freelancers) that can be hired by "contractors" who require specific tasks 122 to be completed. Each freelancer has a profile and performance on past tasks that can be learned by 123 the contractors via ratings and reviews (see, typical profile in Figure 1). Fixed-timed contracts are 124 popular on UPWORK, wherein contractors enforce a deadline by which the task must be completed 125 otherwise the contract is terminated (i.e., there is no payment). Contractors can browse profiles 126 and post a job to a selected set of freelancers with a deadline. However, there is a large literature 127 documenting bias in online rating systems, which in turn impact job opportunities disparately 128 [11, 25, 26], thus making it critical to develop theory of online learning for such settings. 129

Server Allocation in Cloud Computing: An important application of our framework is online 130 • learning for fair resource allocation in cloud computing systems. In a very basic setting, a single 131 server is sequentially allocated to tasks from one of K user groups, which exhibit similar execution 132 time statistics and priority levels within each group. In many practical scenarios, the execution time 133 of a task is unknown at the time decision [27, 28], and exhibits a power-law behavior [29], which 134 necessitates a deadline mechanism for optimal time-efficiency [23]. In this setting, the objective of 135 the controller is to allocate the server in an optimally fair way across the groups in a given time 136 interval [0, B], depending on the completion time statistics and priority levels. Our work proposes 137 a versatile framework to model fairness for this problem based on the concept of continuous-time 138 utility maximization, and develops online learning algorithms to achieve the optimal performance 139 with low regret in the absence of any statistical knowledge. 140

More examples can be found in other domains, including multi-user wireless communication over fading channels (e.g., see [23]), comparative clinical trials with optimal follow-up duration (e.g., see [30, 31]), whereby the goal is to fairly share the limited resources between groups of users.

Motivated by these examples, next we introduce an online learning framework that expands the 144 traditional setting substantially to incorporate group fairness characteristics into its formulation. 145 Suppose that there are $K \ge 1$ groups of individuals that are available for serving tasks with different 146 (and unknown) statistics. Specifically, if an individual from group $k \in [K] = \{1, 2, \dots, K\}$ is 147 chosen for the *n*-th task, he/she takes $X_{k,n}$ units of *completion time* for successful completion, and 148 a reward of $R_{k,n}(t) = \overline{R}_{k,n} \mathbb{I}\{X_{k,n} \leq t\}$ is obtained t time units after the initiation where $\overline{R}_{k,n}$ is a positive random variable and $R_{k,n}(t) \in [0, R_{max}(t)]$ a.s. for some finite constant $R_{max}(t) > 0$. 149 150 Thus, the random reward $\overline{R}_{k,n}$ is gathered only if the task is completed. For example, in the 151 server allocation application, a group-k task of random size $\overline{R}_{k,n}$ yields a reward (throughput) 152 $R_{k,n}(t) = \overline{R}_{k,n} \mathbb{I}\{X_{k,n} \leq t\}$ only upon successful completion. We assume that $(X_{k,n}, R_{k,n}(t))$ 153 is independent and identically distributed (iid) over n, and independent across different groups k. 154 Note that the completion time $X_{k,n}$ and reward $\overline{R}_{k,n}$ can be correlated, for example, in the server 155 allocation example, the completion time $X_{k,n}$ and size $\overline{R}_{k,n}$ of a task are positively correlated [32]. We assume that each task has a positive completion time, i.e., $X_{k,n} > 0$ almost surely for all k, n. 156 157

Before the *n*-th task begins, the controller makes two decisions: the group $G_n \in [K]$ of the individual that will be assigned the task, and a deadline $T_n \in \mathbb{T}$, where $\mathbb{T} \subset \mathbb{R}_+$ is the decision set. If the task is not completed by the selected deadline, the service is interrupted without collecting any reward. In many applications, the deadlines are chosen within a discrete set (e.g., days/months in contractual hiring or time-slots in server allocation), thus we assume a finite decision set $\mathbb{T} = \{t_1, t_2, \ldots, t_L\}$ with $t_l < \infty$ for all l in this paper. The sequential task allocation continues until a given time budget B > 0 is exceeded, therefore, the completion time of a task is as important as the reward.

To describe this process mathematically, let $\mathcal{H}_{k,n-1}$ denote the available feedback for group k, and $\mathcal{H}_{n-1} = \bigcup_{k \in [K]} \mathcal{H}_{k,n-1}$ denote the history before making a decision for task n. For a given time budget B > 0, a *causal policy* $\pi = \{\pi_1, \pi_2, \ldots\}$ sequentially makes two decisions $\pi_n = (G_n, T_n) \in$ $[K] \times \mathbb{T}$ for each task n based on the history \mathcal{H}_{k-1} , where G_n is the chosen group and T_n is the assigned deadline. Under a policy π , the number of initiated tasks is the following *first-passage time*:

$$N^{\pi}(B) = \inf \left\{ n : \sum_{i=1}^{n} \min\{X_{G_i,i}, T_i\} > B \right\},\tag{1}$$

which is a random and controlled stopping time. Moreover, the *reward rate* of any user type k is:

$$\overline{r}_k^{\pi}(B) = \mathbb{E}\Big[\frac{1}{B}\sum_{n=1}^{N_{\pi}(B)} \mathbb{I}\{G_n = k\}R_{k,n}(T_n)\Big], \text{ under policy } \pi.$$
(2)

171 If $R_{k,n}(t) = \mathbb{I}\{X_{k,n} \le t\}$, i.e., each task completion yields a unit reward, then $\overline{r}_k^{\pi}(B)$ simply denotes 172 the task completion rate (i.e., throughput) of group k individuals in the time interval [0, B].

Note that designing strategies that aim to maximize the total reward rate in (2) will lead to the persistent selection of the group with the highest reward rate at the cost of starvation of all the rest (see [23]). In order to address group fairness considerations, we propose a continuous-time online learning framework based on the utility maximization concept that is used effectively in the fair

resource allocation domain (e.g., see [16]). Specifically, for a given continuously-differentiable, concave and monotonically increasing utility function $U_k : \mathbb{R} \to \mathbb{R}$, we let the utility of group k under a policy π be given by $U_k(\bar{r}_k^{\pi}(B))$. Then, the total utility under a policy π is defined as:

$$U^{\pi}(B) = \sum_{k=1}^{K} U_k(\overline{r}_k^{\pi}(B)), \text{ for time interval } [0, B].$$

The optimum utility over a class of policies Π , and the regret for a given $\pi \in \Pi$ are, respectively:

$$\mathsf{OPT}_{\Pi}(B) = \max_{\pi \in \Pi} \sum_{k=1}^{K} U_k(\bar{r}_k^{\pi}(B)) \quad \text{and} \quad \mathsf{REG}_{\Pi}^{\pi}(B) = \mathsf{OPT}_{\Pi}(B) - U^{\pi}(B), \text{ for } B > 0.$$
(3)

174 Note that, due to the monotonically increasing and concave nature of utility functions, allocating the

tasks always to the most rewarding group is not a good choice, because the same amount of time

could yield a higher utility for another group because of the diminishing return property of concave functions. A particularly important set of utility functions is captured by the α -fair class, given next.

Definition 1 (α -Fair Allocation). For any given $\alpha > 0$ and weight $w_k > 0$, let $U_k(x) = w_k \frac{x^{1-\alpha}}{1-\alpha}$, for all k. Resource allocation by using these utility functions is called α -fair resource allocation.

This class is attractive since it includes as special cases proportional fairness, minimum potential
 delay fairness, reward maximization and max-min fairness [12].

182 3 Approximation of the Optimal Offline Policy

Note that a simpler version of the sequential maximization problem in (3) with linear utility functions over all causal policies is called an unbounded knapsack problem, and it is PSPACE-hard even in the case of known statistics [33, 20]. Therefore, the optimal causal policy for the problem in (3) has a very high computational complexity even in the offline setting, which makes it intractable for online learning. For tractability in design and analysis, we consider a class of simple policies that allocate tasks in an i.i.d. randomized way according to a fixed probability distribution over groups, and show its efficiency in this section.

Definition 2 (Stationary Randomized Policies). Let P be a fixed probability distribution over $[K] \times \mathbb{T}$. A stationary randomized policy (SRP) $\pi = \pi(P)$ makes a randomized decision independently according to P for every task until the time budget B is depleted. In other words, under the SRP $\pi(P)$, we have $\mathbb{P}(\pi_n = (k, t)) = P(k, t), \forall n \leq N_{\pi}(B)$, for all $(k, t) \in [K] \times \mathbb{T}$. We denote the class of all stationary randomized policies as Π_S .

Proposition 1 (Asymptotic optimality of SRP). *There exists a probability distribution* P^* *such that the stationary randomized policy* $\pi(P^*)$ *is asymptotically optimal over all causal policies as* $B \to \infty$.

The proof of Proposition 1 can be found in Appendix B. In the following, we characterize the total utility under $\pi(P)$ by providing tight bounds.

Proposition 2. Let P be any given probability distribution over $[K] \times \mathbb{T}$. Then, the reward per unit time for group k under the stationary randomized policy $\pi(P)$ is as follows:

$$\rho_k(P) = \frac{\sum_{t \in \mathbb{T}} P(k, t) \mathbb{E}[R_{k,1}(t)]}{\sum_{(i,t) \in [K] \times \mathbb{T}} P(i, t) \mathbb{E}[\min\{X_{i,1}, t\}]}, \forall k \in [K].$$

Consequently, the total utility under the stationary randomized policy $\pi(P)$ is bounded as follows:

$$\sum_{k \in [K]} U_k \Big(\rho_k(P) \Big) \le \sum_{k \in [K]} U_k \big(\overline{r}_k^{\pi(P)}(B) \big) \le \sum_{k \in [K]} U_k \Big(\rho_k(P) \Big) + O\Big(\frac{1}{B} \Big).$$

200

We include the complete proof of Proposition 2 in Appendix B. The key idea is that under an SRP, the total reward of a group k is a regenerative process. Then, by using the theory of stopped random walks for regenerative processes, the reward per unit time under $\pi(P)$ is found as $\rho_k(P)$, and the upper bound for the total utility is found by using Lorden's inequality [34] and concavity of U_k .

Proposition 2 emphasizes the significance of the reward per unit time $\rho_k(P)$. In conjunction with 205

Proposition 1, this suggests that using a probability distribution that maximizes the limiting total 206 utility would be an effective offline approximation. 207

Definition 3 (Optimal Stationary Randomized Policy). Let P^* be a probability distribution defined 208 as $P^* \in \arg \max_P \sum_{k \in [K]} U_k(\rho_k(P))$. Then, the optimal SRP π^* makes a selection independently 209

for every task according to
$$P^*$$
: $\mathbb{P}\left(\pi_n^* = (k,t)\right) = P^*(k,t)$ for all $(k,t) \in [K] \times \mathbb{T}$ and $n \leq N_{\pi}(B)$.

An interesting question regarding P^{\star} is the choice of deadline policy for each group. The following 211 proposition characterizes the optimal deadline policy under π^* , and yields a significant simplification 212 in finding the optimal policy by reducing the size of the search space. 213

Proposition 3 (Optimal Deadline Policy). For any k, the optimal probability distribution P^* makes 214 a deterministic deadline decision for group k, that is, $|\{t \in \mathbb{T} : P^*(k,t) > 0\}| \leq 1$. For any k, we 215 denote $t_k^* \in \mathbb{T}$ as the (unique) optimal deadline for group k such that $P^*(k, t_k^*) > 0$. 216

The detailed proof of Prop. 3 can be found in Appendix C. As we will see later, we can explicitly 217 218 characterize the optimal deadline for a broad class of utility functions used for the so-called α -fair allocations. In the following, we use Prop. 2 to characterize the performance of the optimal SRP. 219

Proposition 4 (Optimal Total Utility). For any group k, let $t_k^* \in \mathbb{T}$ be the (unique) optimal deadline 220 by Prop. 3; $r_k^* = \mathbb{E}[R_{k,1}(t_k^*)]/\mathbb{E}[\min\{X_{k,1}, t_k^*\}]$ be the reward per processing time for group k; and 221

$$\varphi_k = \frac{P^{\star}(k, t_k^*) \cdot \mathbb{E}[\min\{X_{k,1}, t_k^*\}]}{\sum_{j \in [K]} P^{\star}(j, t_j^*) \cdot \mathbb{E}[\min\{X_{j,1}, t_j^*\}]},$$
(4)

be the fraction of time budget allocated to group k under $\pi(P^*)$. Then, for any SRP $\pi(P)$, the total 222 utility is bounded as $\sum_{k} U_k \left(\rho_k(P) \right) \leq \sum_{k} U_k \left((U'_k)^{-1} \left(\frac{\lambda}{r_k^*} \right) \right)$, where the upper bound is achieved by the probability distribution that satisfies $\varphi_k = \frac{1}{r_k^*} (U'_k)^{-1} \left(\frac{\lambda}{r_k^*} \right)$ for λ such that $\sum_k \varphi_k = 1$. 223 224

The proof of Proposition 4 follows from Lagrange duality and Prop. 3, and can be found in Appendix 225 D. Note that the above analysis is very general in the sense that it holds for any set of utility functions 226 $\{U_k : \mathbb{R} \to \mathbb{R} : k \in [K]\}$ that are continuously differentiable and concave. In the following, we 227 apply the results to the class of α -fair allocations (cf. Definition 1) and discuss their implications. 228 **Proposition 5** (α -Fair Resource Allocation in Continuous Time). For any group k, the optimal 229

deadline is $t_k^* = \arg \max_{t \in \mathbb{T}} \frac{\mathbb{E}[R_{k,1}(t)]}{\mathbb{E}[\min\{X_{k,1},t\}]}$. Also, let $r_k^* = \max_{t \in \mathbb{T}} \frac{\mathbb{E}[R_{k,1}(t)]}{\mathbb{E}[\min\{X_{k,1},t\}]}$ be the reward 230 per processing time and $\mu_k = \mathbb{E}[\min\{X_{k,1}, t_k^*\}]$ be the mean processing time for group k. Then, for 231

any $\alpha > 0$, we have the following results for α -fair utility functions: 232

$$\max_{P} U^{\pi(P)}(B) = \frac{1}{1-\alpha} \Big(\sum_{k \in [K]} (r_k^*)^{\frac{1}{\alpha}-1} w_k^{\frac{1}{\alpha}} \Big)^{\alpha},$$
(5)

where the optimum probability distribution P_k^* and the optimum fraction of time budget φ_k allocated to group k are, respectively, given by:

$$P^{\star}(k,t) = \mathbb{I}\{t = t_k^*\} \frac{w_k^{\frac{1}{\alpha}}(r_k^*)^{\frac{1}{\alpha}-1}/\mu_k}{\sum_{j \in [K]} w_j^{\frac{1}{\alpha}}(r_j^*)^{\frac{1}{\alpha}-1}/\mu_j}, \quad \varphi_k = \frac{(r_k^*)^{\frac{1}{\alpha}-1}w_k^{\frac{1}{\alpha}}}{\sum_{j \in [K]}(r_j^*)^{\frac{1}{\alpha}-1}w_j^{\frac{1}{\alpha}}}, \forall k \in [K].$$

233

To gain a clear understanding of the notion of α -fairness, we consider the following special cases. 234

Corollary 1. For any given set of parameters $\{w_k > 0 : k \in [K]\}$, we have the following results for 235 continuous-time α -fair resource allocation problem for various $\alpha > 0$ values. 236

(i) **Proportional fairness:** In this case, we have $\lim_{\alpha \to 1} U_k(x) = w_k \log(x)$ for all k. Let $\mu_k =$ 237 238

 $\mathbb{E}[\min\{X_{k,1}, t_k^*\}] \text{ be the mean processing time for group } k. Then, the optimum utility is achieved by the probability distribution <math>P^*(k, t) = \mathbb{I}\{t = t_k^*\} \frac{w_k/\mu_k}{\sum_{j \in [K]} w_j/\mu_j}, \ (k, t) \in [K] \times \mathbb{T}, \text{ thus we}$ 239

240 have
$$\varphi_k = \frac{w_k}{\sum_{j \in [K]} w_j}$$
 for all k and $\mathsf{OPT}_{\Pi_S}(B) = \sum_k \log\left(\frac{r_k^* w_k}{\sum_{k' \in [K]} w_{k'}}\right) + O(\frac{1}{B})$

241 (ii) **Reward maximization:** If $\alpha = 0$, we have $U_k(x) = \omega_k x$ for all k. Let $k^* = \arg \max_{k \in [K]} w_k r_k^*$ 242 be the group with highest weighted reward rate. Then, the optimal probability distribution is 243 $P^*(k,t) = \mathbb{I}\{k = k^*, t = t_k^*\}$, for all (k,t). Thus, $\mathsf{OPT}_{\Pi_S}(B) = \max_{k \in [K]} w_k r_k^* + O(1/B)$.

Remark 1. Note that optimal deadline t_k^* for any group k is chosen so as to maximize the reward per 244 processing time of group k. Under proportional fairness ($\alpha \rightarrow 1$), the controller distributes the time 245 budget proportional to group weights, i.e., $\varphi_k = w_k / \sum_j w_k$, which reduces to equal time-sharing 246 under uniform weights. To achieve this, the controller allocates tasks with probability inversely 247 proportional to the mean processing time μ_k . Under reward maximization ($\alpha = 0$), the controller 248 allocates the entire time budget B to a single group that yields the highest reward per processing time 249 to maximize the expected total reward, i.e., $\varphi_k = \mathbb{I}\{k = k^*\}$. As such, the trade-off between reward 250 maximization and equal (i.e., reward-insensitive) time-sharing is modeled by α -fairness for any 251 $\alpha \in [0, 1)$. Further, the α -fair utility maximization framework includes max-min fairness ($\alpha \to \infty$) 252 253 and minimum potential delay fairness ($\alpha = 2$) as subcases.

4 Online Learning for Utility Maximization (OLUM)

In the previous section, we provided key results on the asymptotically optimal approximations to the offline utility maximization problem. In this section, we will build on these to attack the online learning problem for continuous-time fair allocation. In particular, we will propose a novel lightweight online learning algorithm for the fair resource allocation problem based on Lagrangian duality, and show that it achieves vanishing regret at rate $\tilde{O}(B^{-1/2})$.

Feedback model: We assume a delayed full-information feedback model where the completion time and reward of all groups for task n are revealed to the controller at stage $n + \tau$ for some delay $\tau \ge 1$.

This assumption holds approximately for our target applications. In freelancing platforms, there 262 are often multiple contractors that hire freelancers for various tasks. It is often possible to get full 263 information on various freelancers due to employment by other companies and their reviews can 264 265 serve as the feedback for the controller. Competitions hosting websites like TOPCODER have also recently been catering to businesses who need fast-prototyping using freelancers. In their business 266 model, a controller might invest in a few topcoders at a time, however, she can potentially get access 267 to updated rankings (quality and time to complete tasks) via topcoder competitions over time. In 268 server cations such as Amazon AWS and Microsoft Azure as well, although a controller might 269 be optimizing operations on a local set of servers, they can request task performance data from a 270 centralized server or a scheduler after a delay in time [35]. This feedback model already presents 271 with technical challenges due to random completion times, as we discuss next. 272

In order to design the online learning algorithm, let us define, for any $(k, t) \in [K] \times \mathbb{T}$, the empirical estimates of the mean completion time and reward after *n* stages, respectively, as

$$\widehat{\mu}_{k,n}(t) = \frac{1}{n} \sum_{i=1}^{n} \min\{t, X_{k,i}\}, \quad \text{and} \quad \widehat{\theta}_{k,n}(t) = \frac{1}{n} \sum_{i=1}^{n} R_{k,i}(t)$$

Definition 4 (OLUM Algorithm). For any k, let $Q_{k,0} = 1$ and $Q_{k,i}$ be defined recursively as follows:

$$Q_{k,i+1} = \left(Q_{k,i} + \gamma_k(i)\min\{X_{G_i,i}, T_i\} - R_{k,i}(T_i)\mathbb{I}\{G_i = k\}\right)^+, \quad i > 0$$
(6)

where the auxiliary variable $\gamma_k(i) = (U'_k)^{-1} (Q_{k,i}/V)$, where V > 0 is a design choice. Then, for the task n, the OLUM Algorithm, denoted by π^{OLUM} , makes the following decision:

$$(G_n, T_n) \in \underset{(k,t)\in[K]\times\mathbb{T}}{\operatorname{arg\,max}} \frac{\widehat{\theta}_{k,n-\tau}(t)Q_{k,n}}{\widehat{\mu}_{k,n-\tau}(t)}.$$

Upon observing the corresponding feedback, the controller updates $Q_{k,n+1}$ via (6).

Interpretation: The OLUM Algorithm aims to maximize the time-average reward weighted with $Q_{k,n}$ at each round. Note that for any $k \in [K]$, if the sequence $Q_{k,n}$ gets very big, then its reward rate is much smaller than the optimal value, thus the controller tends to select that group. In other words, the magnitude of $Q_{k,n}$ is a measure of the unfairness that group k has endured by stage n. The algorithm is designed so as to balance the weights $Q_{k,n}$ to maximize the total utility.

²⁸² In the following theorem, we prove regret bounds for the OLUM Algorithm.

Theorem 1 (Regret bounds for OLUM). For any V > 0 and constant delay τ , the regret under π^{OLUM} is bounded as $\operatorname{REG}_{\Pi_S} \pi^{\text{OLUM}}(B) = O\left(\sqrt{\frac{\log(B)}{B}} + \frac{V}{B} + \frac{1}{V}\right)$. By choosing $V = \Theta(\sqrt{B/\log(B)})$, we 283 284 $obtain \operatorname{Reg}_{\Pi_S} \pi^{\operatorname{olum}}(B) = O(\sqrt{\log(B)/B}) = \tilde{O}(1/\sqrt{B}).$ 285

The proof is based on PAC bounds and stochastic dual optimization, and can be found in Appendix E. 286

5 Simulations 287

We implemented the OLUM Algorithm on a fair resource allocation problem with K = 2 groups. 288 In the application domains that we considered in Section 2, the task completion times naturally 289 follow a power-law distribution. For example, in the server allocation example, empirical studies 290 indicate that the distribution of job execution times can be accurately approximated by a Pareto(1, 291 γ) distribution with exponent $\gamma \in (0,2)$ [36]. Similarly, for the contractual online hiring setting, 292 creativity of individuals has been shown to follow a Pareto(1, γ) distribution with exponent $\gamma > 1$, 293 where γ is dependent on the field of expertise [37]. Motivated by these applications, we consider the 294 following group statistics: 295

- Group 1: $X_{k,n} \sim \text{Pareto}(1, 1.2)$ and $R_{k,n}(t) = X_{k,n}^{0.6} \cdot \mathbb{I}\{X_{k,n} \le t\}$ Group 2: $X_{k,n} \sim \text{Pareto}(1, 1.4)$ and $R_{k,n}(t) = X_{k,n}^{0.2} \cdot \mathbb{I}\{X_{k,n} \le t\}$ 296 ٠
- 297 ٠
- The reward per processing time as a function of the deadline is shown in Figure 2. Note that the 298 optimal deadline improves the reward per unit processing time. For this setting, we implemented the

Figure 2: (Left) Reward per processing time for each group. (Right) Fraction of time budget assigned to Group-2 individuals under the OLUM Algorithm for various fairness criteria.

299 OLUM Algorithm with parameter V = 20, and considered α -fair resource allocation problems with 300 various α values. In Figure 2, we present the simulation results for φ_2 , i.e., the average fraction of 301 time budget B allocated to Group-2 individuals, under the OLUM Algorithm. For these experiments, 302 we chose $w_k = 1$ for k = 1, 2 and ran the OLUM Algorithm for 1000 trials for each set. Note that the 303 optimal reward per processing time of Group-1 individuals is higher than that of Group-2 individuals, 304 thus Group-1 is chosen for reward maximization. Under proportional fairness, the time budget is 305 equally distributed between Group-1 and Group-2 individuals. We observe from Figure 2 that the 306 OLUM Algorithm converges to the optimal operating points very fast, which verifies the theoretical 307 results we presented. 308

Conclusion 6 309

In this paper, we proposed a versatile and comprehensive framework for continuous-time online 310 resource allocation with fairness considerations, and proposed a no-regret learning algorithm for 311 this problem in a delayed full-information feedback model. Note that although the full-information 312 feedback is available in many application scenarios, there are cases in which the controller does not 313 have an access to full feedback, thus a mechanism that incorporates bandit feedback is required. The 314 online learning framework introduced in this paper can be extended to bandit feedback. One way to 315 achieve this might be to replace the empirical estimates with upper confidence bounds in the OLUM 316 Algorithm, which makes the analysis even more complicated. We leave the design and analysis of 317 bandit algorithms in this setting as a future work. 318

319 **Broader Impact**

Our work develops the theory of fair online learning, specifically analyzing the impact of rewardmaximizing allocation policies on opportunities for different groups of people. Our proposal analyzes the trade-offs across various allocation policies (ranging from profit maximizing to equal opportunity for all), thus highlighting the choice of objectives that the controllers should carefully consider. This work does not have any foreseeable negative ethical or societal impact.

325 **References**

- J. Zhao, T. Wang, M. Yatskar, V. Ordonez, and K.-W. Chang, "Men also like shopping: Reducing gender bias amplification using corpus-level constraints," <u>arXiv preprint arXiv:1707.09457</u>, 2017.
- [2] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai, "Man is to computer programmer as woman is to homemaker? debiasing word embeddings," in Advances in Neural Information Processing Systems, 2016, pp. 4349–4357.
- [3] A. Caliskan, J. J. Bryson, and A. Narayanan, "Semantics derived automatically from language corpora contain human-like biases," Science, vol. 356, no. 6334, pp. 183–186, 2017.
- [4] K. Lum and W. Isaac, "To predict and serve?" Significance, vol. 13, no. 5, pp. 14–19, 2016.
- [5] A. L. Washington, "How to argue with an algorithm: Lessons from the compas-propublica debate," Colo. Tech. LJ, vol. 17, p. 131, 2018.
- [6] J. Kleinberg, "Inherent trade-offs in algorithmic fairness," in <u>Abstracts of the 2018 ACM</u>
 <u>International Conference on Measurement and Modeling of Computer Systems</u>, 2018, pp. 40–40.
- [7] A. Chouldechova, "Fair prediction with disparate impact: A study of bias in recidivism prediction instruments," Big data, vol. 5, no. 2, pp. 153–163, 2017.
- [8] G. Laumeister, "The next big thing in e-commerce: Online labor marketplaces," <u>Forbes (Online)</u>, 2014.
- [9] H. Torry, "Coronavirus pandemic deepens labor divide between online, offline workers," <u>Wall</u>
 Street Journal, 2020.
- [10] A. Teeley, "There are 57 million u.s. independent professionals upwork wants them all to
 succeed," <u>Built In Chicago</u>, 2020.
- [11] A. Hannák, C. Wagner, D. Garcia, A. Mislove, M. Strohmaier, and C. Wilson, "Bias in online
 freelance marketplaces: Evidence from taskrabbit and fiverr," in <u>Proceedings of the 2017</u>
 <u>ACM Conference on Computer Supported Cooperative Work and Social Computing</u>, 2017, pp.
 1914–1933.
- R. Srikant and L. Ying, <u>Communication networks: an optimization, control, and stochastic</u> networks perspective. Cambridge University Press, 2013.
- [13] D. Bertsimas, V. F. Farias, and N. Trichakis, "On the efficiency-fairness trade-off," <u>Management</u>
 <u>Science</u>, vol. 58, no. 12, pp. 2234–2250, 2012.
- [14] K. Jain and V. V. Vazirani, "Eisenberg-gale markets: Algorithms and structural properties," in Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, 2007, pp. 364–373.
- [15] D. P. Palomar and M. Chiang, "A tutorial on decomposition methods for network utility
 maximization," <u>IEEE Journal on Selected Areas in Communications</u>, vol. 24, no. 8, pp. 1439– 1451, 2006.
- [16] A. Eryilmaz and R. Srikant, "Fair resource allocation in wireless networks using queue-length based scheduling and congestion control," <u>IEEE/ACM transactions on networking</u>, vol. 15,
 no. 6, pp. 1333–1344, 2007.
- [17] H. J. Kushner and P. A. Whiting, "Convergence of proportional-fair sharing algorithms under
 general conditions," <u>IEEE Transactions on Wireless Communications</u>, vol. 3, no. 4, pp. 1250–
 1259, 2004.

- [18] D. Kahneman and R. H. Thaler, "Anomalies: Utility maximization and experienced utility,"
 Journal of economic perspectives, vol. 20, no. 1, pp. 221–234, 2006.
- [19] M. J. Neely, "Dynamic optimization and learning for renewal systems," <u>IEEE Transactions on</u> Automatic Control, vol. 58, no. 1, pp. 32–46, 2012.
- [20] A. Badanidiyuru, R. Kleinberg, and A. Slivkins, "Bandits with knapsacks," Journal of the ACM
 (JACM), vol. 65, no. 3, pp. 1–55, 2018.
- [21] L. Tran-Thanh, A. Chapman, A. Rogers, and N. R. Jennings, "Knapsack based optimal policies
 for budget–limited multi–armed bandits," in <u>Twenty-Sixth AAAI Conference on Artificial</u>
 Intelligence, 2012.
- ³⁷⁷ [22] A. Slivkins, "Introduction to multi-armed bandits," arXiv preprint arXiv:1904.07272, 2019.
- S. Cayci, A. Eryilmaz, and R. Srikant, "Learning to control renewal processes with bandit feedback," <u>Proceedings of the ACM on Measurement and Analysis of Computing Systems</u>, vol. 3, no. 2, pp. 1–32, 2019.
- [24] S. Agrawal and N. R. Devanur, "Bandits with concave rewards and convex knapsacks," in
 Proceedings of the fifteenth ACM conference on Economics and computation, 2014, pp. 989– 1006.
- [25] A. Rosenblat, K. E. Levy, S. Barocas, and T. Hwang, "Discriminating tastes: Customer ratings as vehicles for bias," Available at SSRN 2858946, 2016.
- [26] A. Chakraborty, A. Hannak, A. J. Biega, and K. P. Gummadi, "Fair sharing for sharing economy platforms," 2017.
- [27] M. Harchol-Balter, "Task assignment with unknown duration," in <u>Proceedings 20th IEEE</u>
 International Conference on Distributed Computing Systems. IEEE, 2000, pp. 214–224.
- [28] R. Motwani, S. Phillips, and E. Torng, "Nonclairvoyant scheduling," <u>Theoretical computer</u> science, vol. 130, no. 1, pp. 17–47, 1994.
- [29] M. Harchol-Balter and A. B. Downey, "Exploiting process lifetime distributions for dynamic load balancing," <u>ACM Transactions on Computer Systems (TOCS)</u>, vol. 15, no. 3, pp. 253–285, 1997.
- [30] K. Kim and A. A. Tsiatis, "Study duration for clinical trials with survival response and early
 stopping rule," Biometrics, pp. 81–92, 1990.
- [31] P. F. Thall, R. Simon, and S. S. Ellenberg, "Two-stage selection and testing designs for comparative clinical trials," Biometrika, vol. 75, no. 2, pp. 303–310, 1988.
- [32] P. R. Jelenković and J. Tan, "Characterizing heavy-tailed distributions induced by retransmissions," Advances in Applied Probability, vol. 45, no. 1, pp. 106–138, 2013.
- [33] C. H. Papadimitriou and J. N. Tsitsiklis, "The complexity of optimal queuing network control,"
 Mathematics of Operations Research, vol. 24, no. 2, pp. 293–305, 1999.
- [34] S. Asmussen, <u>Applied probability and queues</u>. Springer Science & Business Media, 2008, vol. 51.
- [35] R. Zabolotnyi, P. Leitner, and S. Dustdar, "Profiling-based task scheduling for factory-worker
 applications in infrastructure-as-a-service clouds," in 2014 40th EUROMICRO Conference on
 Software Engineering and Advanced Applications. IEEE, 2014, pp. 119–126.
- [36] M. Harchol-Balter, "The effect of heavy-tailed job size distributions on computer system de sign." in Proc. of ASA-IMS Conf. on Applications of Heavy Tailed Distributions in Economics,
 Engineering and Statistics, 1999.
- [37] J. Kleinberg and M. Raghavan, "Selection problems in the presence of implicit bias," <u>arXiv</u>
 preprint arXiv:1801.03533, 2018.
- 413 [38] A. Gut, Stopped random walks. Springer, 2009.
- [39] M. Neely, <u>Stochastic network optimization with application to communication and queueing</u>
 systems. Morgan & Claypool Publishers, 2010.
- [40] S. Cayci, A. Eryilmaz, and R. Srikant, "Budget-constrained bandits over general cost and reward distributions," arXiv preprint arXiv:2003.00365, 2020.

- [41] M. J. Wainwright, <u>High-dimensional statistics: A non-asymptotic viewpoint</u>. Cambridge University Press, 2019, vol. 48.
- [42] [42] M. J. Neely, "Dynamic optimization and learning for renewal systems," <u>IEEE Transactions on</u> <u>Automatic Control</u>, vol. 58, no. 1, pp. 32–46, 2012.