
Comparison of Decentralized and Centralized Update Paradigms
for Remote Tracking of Distributed Dynamic Sources

Abstract—In this work, we perform a comparative study
of centralized and decentralized update strategies for the basic
remote tracking problem of many distributed users/devices with
randomly evolving states. Our goal is to reveal the impact
of the fundamentally different tradeoffs that exist between
information accuracy and communication cost under these two
update paradigms. In one extreme, decentralized updates are
triggered by distributed users/transmitters based on exact local
state-information, but also at a higher cost due to the need for
uncoordinated multi-user communication. In the other extreme,
centralized updates are triggered by the common tracker/receiver
based on estimated global state-information, but also at a lower cost
due to the capability of coordinated multi-user communication.
We use a generic superlinear function to model the communi-
cation cost with respect to the number of simultaneous updates
for multiple sources. We characterize the conditions under which
transmitter-driven decentralized update policies outperform their
receiver-driven centralized counterparts for symmetric sources,
and vice versa. Further, we extend the results to a scenario
where system parameters are unknown and develop learning-
based update policies that asymptotically achieve the minimum
cost levels attained by the optimal policies.

I. INTRODUCTION

In recent years, there has been a growing number of appli-
cations requiring real-time updates of system status, especially
in cyber-physical systems such as smart homes and buildings
or health-care monitoring systems [1]. In such systems, each
sensor samples and transmits time-varying information to a
controller (or a monitor), and the controller makes system
decisions based on the collected information from multiple
sources. Although it is ideal to maintain the controller up-
to-date all the way, this is often impractical due to limited
resources of communication networks.

To address this challenge, Age of Information (AoI) has
been introduced and utilized as a performance metric mea-
suring the freshness of information [2], defined as the time
elapsed since a new packet is generated at a source. In the
single-source single-destination scenario, the optimal update
rate to minimize AoI with random transmission time has been
studied in [3]. In the multiple-source single-destination sce-
nario, a scheduling problem under communication constraints
has been studied in [4], [5]. In [4], at most one source can
transmit a packet via a channel, where a packet is dropped
with some probability. In [5], a channel is modeled as a FIFO
queue with random service time.

Related to the AoI optimization problem, there have been
studies on remote estimation problem of the system status [6]–
[17], where the freshness of information is measured not in
the age metric but directly in the estimation error, i.e., the
absolute difference between the state information at the source

and the destination. It has been observed that a sampling
strategy that minimizes the AoI does not always minimize the
estimation error [6], [7], where sampling problems of Wiener
process and Ornstein-Uhoenbeck process with a channel mod-
eled as FIFO queue are studied, respectively. In [8], remote
estimation problems with a packet-drop channel for both finite
state Markov source and First-order autoregressive source
are investigated, where a channel state changes over time
horizon following finite-state Markov chain, and the packet-
drop probability depends on a channel state and the power
level for transmission. In [9], the Automatic Repeat reQuest
(ARQ)-based remote estimation framework are studied for the
linear time-invariant (LTI) system, where a sensor’s observa-
tion is noisy and a channel’s gain changes over time follow-
ing finite-state Markov chain. In this domain, several works
have tackled the scheduling problem under communication
constraints [10]–[13]. In [10], [11], the minimization problem
of Mean Squared Error (MSE) of an estimator (or monitor)
is considered when the number of transmissions over finite-
time horizon is constrained. The scheduling problem with per-
transmission communication cost has been studied in [11]–
[13]. Each transmission is accompanied with communication
cost and the objective is to schedule transmissions to optimize
the MSE of an estimator and the communication cost of a
transmitter over finite-time horizon [11], [12] or over infinite-
time horizon [13].

Extending a single-source single-destination scenario in-
vestigated in [6]–[13], a multiple-source single-destination
scenario has been investigated in [14]–[17]. In [14], [15], each
source is modeled as a LTI system and, at each time slot, at
most m out of n transmitters can update the remote monitor.
The scheduling decision is made by a centralized controller
(or the receiver). In [16], the scheduling decision is made by
each distributed sensor/transmitter sensing a LTI system, and
at most one transmitter can update the monitor. In contrast
to [14], [15] where the objective is to minimize the estimation
error covariance, the objective of [16] is to minimize the
transmission power consumption that can stabilize the system.

In contrast to the aforementioned works , we investigate
a remote estimation problem with communication cost that
couples the simultaneous updates, where multiple sources
update an estimator. We consider sources with simple random
walk and assume a perfect channel, i.e, noiseless and no
packet drop, as in [13], [17]. Different from [17], we consider
shared communication channels (i.e., communication cost is
correlated between sources).

Our contributions can be summarized as follows.
• We formulate the remote estimation problem in shared



Fig. 1: System model.

communication channels, where the estimator remotely
tracks the time-varying state of multiple sources. We
demonstrate, with an example, that the (communication)
cost associated with coordination between distributed
transmitters increases super-linearly with respect to the
number of transmitters.

• We study the information update policies that make
decisions of when and which source information should
be transmitted to the estimator. The update decisions can
be triggered either by the distributed transmitters based on
exact local state-information or by the receiver based on
estimated global state-information assuming that system
parameters are known a priori.

• We extend the results to a scenario where system pa-
rameters are unknown, and develop learning-based up-
date policies employing the Upper Confidence Bound
(UCB) technique from the (stochastic) Multi-Armed Ban-
dit (MAB) literature [18]. Through numerical simula-
tions, we show that our learning-based update policies
asymptotically achieve the minimum cost levels.

The rest of paper is organized as follows. In Section II,
we describe the system model and formulate the problem.
In Sections III and IV, we study information update policies
triggered by the distributed transmitters and by the receiver,
respectively, when system parameters are known. In Section V,
we compare the performance of the proposed update policies
and extend them to the scenarios where the system parameters
are unknown. In Section VI, we verify our analysis results
through numerical simulations. In Section VII, we conclude
our work.

II. SYSTEM MODEL

We present our system model with n information sources
(e.g., sensors) and one remote estimator (e.g., sink or collec-
tor), where the estimator remotely tracks the time-varying state
of the sources through shared wireless channels, as shown in
Fig. 1. We describe the cost models of information mismatch
and update communication, and then formulate our problem.
We use the terms of sensor and transmitter, interchangeably,
and similarly for the terms of estimator and receiver.

A. Value of Information

We consider a time-slotted system. At each time t, the
state of each source changes following a random walk pro-
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Fig. 2: Average energy consumed for successful update with
respect to the number N of simultaneous transmissions, when
each transmitter attempts with probability q.

cess. Specifically, let wi(t) be an independent and identically
distributed (i.i.d) random process with distribution as

wi(t) =


1, with probability pi,
0, with probability 1− 2pi,

−1, with probability pi,
(1)

for some pi ∈ [0, 0.5]. The parameter pi is known to the
receiver1. This simple non-biased, scalar-valued model not
only captures the essential aspect of the problem, but also can
be converted to a biased case by adding a constant drift. Let
xi(t) denote the state of source i at the beginning of time t,
which is a random walk process associated with wi(t) as

xi(t+ 1) = xi(t) + wi(t), for t ≥ 0,

with initial state xi(0).
Let ui(t) ∈ {0, 1} denote an update decision of transmitter

i in time t, where ui(t) = 1 implies that transmitter i updates
the receiver at time t. At the end of time slot t−1, the update
decision ui(t) can be made either in a decentralized manner
by each transmitter or in a centralized manner by the receiver,
based on their own observations up to time t−1. The detailed
explanation will be made in Section II-D. Then the estimated
state of source i at the receiver at time t, denoted by x̂i(t),
evolves as

x̂i(t) =

{
xi(t), when ui(t) = 1,

x̂i(t− 1), when ui(t) = 0.

Let εi(t) denote the information mismatch (or error) between
xi(t) and x̂i(t), i.e., εi(t) = |xi(t) − x̂i(t)|. Let f(ε) be a
penalty function, which increases with respect to the error ε.
In this paper, we consider the mean squared error (MSE):

f(εi(t)) = |xi(t)− x̂i(t)|2.

1Later in section V-B, we will address the case when the parameter is
unknown and has to be learned.



B. Cost of Communication

Let Nt denote the number of transmitters that take the
update action simultaneously during time slot t, i.e., Nt =∑n
i=1 ui(t). We assume that the communication cost ct is

a function of Nt, which may represent energy consumption,
protocol overhead, delay, etc. In particular, we pay attention to
the cost associated with coordination between the transmitters,
since multiple distributed transmitters should communicate
over shared channels.

In order to understand the property of the cost function,
suppose that N transmitters access the shared channels as
Slotted ALOHA: each time slot t is divided into mini-slots, in
which N transmitters independently transmit an update packet
with an identical probability q. At a mini-slot, if a transmission
is successful (i.e., there is only one transmitter who attempts
in the mini-slot), the corresponding transmitter receives an
ACK by the end of the mini-slot, and stops transmitting
in the subsequent mini-slots (by the end of the time slot).
With a larger number of transmitters, the level of contention
increases and there is a higher chance of collision, which
occurs when multiple transmitters attempt their transmission
at the same mini-slot. Once a collision occurs, no transmission
is successful in the mini-slot. This implies that, on average, a
transmitter makes more attempts in a time slot for a successful
transmission as N increases. Suppose that a transmission
consumes a unit energy (or power). Then average energy cost
for a successful transmission, that can be considered as the
communication cost per an update of a source, will increase
with N . As an example, we simulate 50 transmitters with the
Slotted ALOHA protocol, and measure average update cost of
N sources when a transmission consumes 1 unit of energy.
The results with different values of N and q are shown in
Fig. 2, where q = g(N) implies that we use the best q given
N that is empirically found. We can observe that the setting of
fixed q results in an exponential increase of average cost with
N . The minimum cost can be achieved when q is properly set
according to N .

Based on the observation, we model the total update cost
as a function of Nt, the number of simultaneous transmission
at time slot t, in the following exponential form:

ct = cN1+ε
t , (2)

for some constant c > 0 and nonlinearity coefficient ε ≥ 0.
We will discuss later about the nonlinearity coefficient of the
policies with centralized or decentralized update paradigm.

C. Problem formulation

Considering the aforementioned costs, the per-source cost
associated with source i at each time t, under policy π, can
be written as

Cπi,ε(c, t) = ui(t)cN
ε
t + (1− ui(t))f(εi(t)).

Suppose that x(0) = x̂(0). Our objective is to find an update
policy π that minimizes the expected average cost over infinite
time horizon:

minimize gπ(n, c, ε),

where

gπ(n, c, ε) = E

[
lim
s→∞

1

sn

s∑
t=1

n∑
i=1

Cπi,ε(c, t)

]
.

In this work, we focus on the case of symmetric transmitters
with pi = p for all i.

D. Decentralized and Centralized Update Paradigms

We organize our investigation under two fundamentally
different paradigms: that of decentralized and centralized
update policies. These can also be named transmitter-driven
(TD) and receiver-driven (RD) paradigms, respectively, since
the update decisions are triggered by each transmitter under
the former one, while the update decisions are triggered by
the receiver under the latter one. Also, they can be named
event-driven and time-driven paradigms, respectively, since the
former one triggers an update when the error since the last
update becomes high enough, while the latter one triggers an
update when the time since the last update is long enough.

Under a TD policy, each transmitter independently makes
individual decision with the knowledge of its error εi(t), but
without the knowledge of the other’s actions, e.g., the number
Nt of transmitters in time slot t. On the other hand, under
a RD policy, the receiver can decide on the update actions
collectively (thus the set of transmitters at time slot t is under
control), but it does not know current errors εi(t). Intuitively
when the update cost ct is relatively small (i.e., Nt and ε are
relatively small), the error cost f(εi(t)) dominates the update
cost cN ε

t and thus a TD policy may outperform a RD policy.
However, when the update cost ct is sufficiently large, the
update cost starts dominating the error cost, and thus a RD
policy will outperform a TD policy.

We consider two different types of TD policies based on
their level of coordination: one type is for transmitters with
only local information of p and c (called as TD-L policy), and
the other type is for transmitters with global information of n
and ε as well as the local information of p and c (called as
TD-G policy). The information and control available for each
policy is summarized in Table I.

Let εs and εr denote the nonlinearity coefficient for the TD
update policy and the RD update policy, respectively. Note
that the TD policy often aims for distributed operations while
the RD policy is by nature centralized. Since, in general, the
coordination in a distributed system is often more costly than a
centralized counterpart, it is reasonable to assume εs ≥ εr ≥ 0.
The objective of this work is to study TD and RD policies to
minimize the expected average cost over infinite horizon and to
compare their performance given the number n of transmitters
and the nonliearity parameters εs and εr.

III. DECENTRALIZED UPDATE PARADIGM

We first investigate the behavior of TD policy, under which
each transmitter decides distributedly at each time slot whether
it updates the receiver or not.



TABLE I: Information and control available to the policies.

Policy TD-L TD-G RD
local parms. p, c p, c p, c
global parms. − n, εs n, εr
error εi(t) εi(t) −
controller transmitter i transmitter i receiver
control var. ui(t) ui(t) u1(t), . . . , un(t)

In a single source system with constant per-transmission
cost, it has been shown in [13] that an optimal update policy
is of threshold type in the forms of

u∗(t) =

{
0, if ε(t) + w(t) < γ,

1, if ε(t) + w(t) ≥ γ,
(3)

with some threshold γ > 0, where we omit subscript i for
notational convenience. Then, given constant per-transmission
update cost c̄, it was shown that the expected average cost
h(c̄) over infinite time horizon can be obtained as

h(c̄) = 2
γ2

(
c̄p+

∑γ−1
i=1 f(i)(γ − i)

)
, (4)

and, for the MSE f(ε) = ε2, the optimal threshold that
minimizes (4) is γ∗ = b 4

√
12pc̄c or d 4

√
12pc̄e.

Inspired by these results, we consider a TD policy where
each transmitter updates the receiver with a threshold γi. Then
the number Nt of simultaneous transmissions at time slot t is
a random variable, and thus the per-transmission cost is also
a random variable from (2). To characterize the performance
of the TD policy, we study asymptotic behavior of Nt, which
will lead to our understanding of the expected average cost
gTD(n, c, εs).

Note that since each transmitter independently updates the
receiver, we can consider the error εi(t) for transmitter i as
an independent renewal process because it is reset to 0 upon
every update. An inter-renewal distribution is called arithmetic
if inter-renewal intervals are integer multiples of some real
number, and the span of an arithmetic distribution is defined
as the largest number ρ such that this property holds. Then, the
following theorem provides an asymptotic behavior of renewal
probabilities.

Theorem 3.1 (Theorem 4.6.2 in [19]): If an inter-renewal
distribution is arithmetic with span ρ, then

limt→∞ P(Renewal at tρ) = ρ
E[T ] ,

where T denote the inter-renewal interval.
The renewal process εi(t) is arithmetic with span ρ = 1 since
inter-renewal intervals can be γ, γ + 1, γ + 2, . . . . Also, the
expectation of the inter-renewal interval under the threshold-
type update policy with a threshold γ is known as E[T ] =
γ2

2p [13]. Hence, we can obtain that limt→∞ P(Renewal at t) =

limt→∞ P(u(t) = 1) = 1
E[T ] = 2p

γ2 .
Combined with the independence of the renewal processes,

Theorem 3.1 can be used to characterize the asymptotic
behavior of Nt.

Lemma 3.1: When n independent (symmetric) transmitters
update the receiver with the same threshold γ, the number

Nt of simultaneous transmissions at time slot t converges in
distribution to a Binomial distribution with parameters n and
2p
γ2 , i.e.,

limt→∞Nt ∼ B
(
n, 2p

γ2

)
,

where B(·, ·) denotes the Binomial distribution.
Lemma 3.1 can be shown using the independence of the
transmitters’ decision ui(t) and Theorem 3.1. We refer to
Appendix A for the proof.

Let g̃TD(γ, i) denote the expected average cost of a TD
policy of source i with threshold γ, and let N = limt→∞Nt.
Replacing c̄ in (4) with the per-transmission cost, and from
Lemma 3.1, it can be obtained as

g̃TD(γ, i) =
∑n
k=1 P (N = k | ui(t) = 1)h(ckεs)

=
∑n−1
k=0 P

(
k;n− 1, 2p

γ2

)
h(c(k + 1)εs),

= E[h(c(K + 1)εs)], (5)

where P(k;n, q) is the probability that N = k when
N ∼ B(n, q), and K is a random variable that follows
B
(
n− 1, 2p

γ2

)
. Due to the symmetry, this holds for all i, and

we can write g̃TD(γ, i) = g̃TD(γ) for all i.
For the TD policies with local information (TD-L), each

transmitter i optimizes its threshold γ agnostic about other
transmitters, which results in γ∗L = b 4

√
12pcc or d 4

√
12pce that

leads to the expected average cost

gTD-L(n, c, εs) = g̃TD(γ∗L).

On the other hand, for the TD policies with global information
(TD-G), the transmitters can minimize (5) by further optimiz-
ing their threshold γ with respect to n and εs, which results
in the expected average cost

gTD-G(n, c, εs) = minγ≥0 g̃TD(γ).

IV. CENTRALIZED UPDATE PARADIGM

In contrast to the TD policy where each transmitter can trace
the error, the RD policy cannot access the error information.
Thus, the receiver should make a decision based on estimation
of the current error for each source. Due to the renewal
property of the error, this results in time-periodic updates.

A. Expected Error

We first study how the expected error between a source
and the estimator evolves over time. We omit subscript i
for notational convenience. Let s denote the time elapsed
since a transmitter updates the receiver. Then, there are 2s+1
possible error states of the source (i.e., x − x̂ ∈ [−s, s]). Let
es = [es(−s), ..., es(0), ..., es(s)] denote the expected error
vector when the receiver is not updated by the transmitter for
s consecutive time slots, where es(k) is the probability that the
error between the receiver and the source is k (i.e., x−x̂ = k).
According to (1), the expected error evolves by Bayes rule as

es(k) = es−1(k)(1−2p)+(es−1(k−1)+es−1(k+1))p, (6)



for k ∈ {−s, ..., s}, where es−1(−s − 1) = es−1(−s) =
es−1(s) = es−1(s+ 1) = 0.

Let ξ(s) denote the expected error cost when the receiver
has not been updated from the source for s consecutive time
slots, i.e.,

ξ(s) =
∑s
k=−s es(k)f(|k|). (7)

In order to obtain the expected error cost ξ(s), the receiver
needs to update the expected error es(k) for k ∈ {−s, .., s}
every time slot, and the memory for storing the expected error
increases linearly with respect to s. However, in the special
case of the mean squared error penalty function f(ε) = ε2, the
expected error cost ξ(s) can be obtained without computing
es as the following.

Lemma 4.1: If f(ε) = ε2, the expected error cost after s
consecutive time slots since the last update is

ξ(s) = 2ps, for s ≥ 1.

Lemma 4.1 can be shown by induction. We refer to Ap-
pendix B for the proof.

B. Single-transmitter Scenario

As a first step, we obtain an optimal solution to single-
transmitter problem with the MSE penalty function. We first
describe a discrete-time Markov Decision Process (MDP),
whose state at time slot t is represented by s. For each state,
the receiver has two possible actions: update u = 1 or not
update u = 0. If u = 0, then the state evolves to s + 1. If
u = 1, the state evolves to 1. If the per-transmission cost
is c̄, the expected cost under state s and action u is given
as uc̄ + (1 − u)ξ(s). Then, we have the following Bellman
equation:

φ(s) = min{ξ(s) + φ(s+ 1)− λ, c̄+ φ(1)− λ}, (8)

where ξ(s) = 2ps, φ(·) denotes the cost-to-go function, and λ
denotes the minimum expected average cost over infinite time
horizon [20].

We show in Lemma 4.2 that an optimal policy that solves
(8) is also of threshold type.

Lemma 4.2: There exists a threshold policy that solves the
Bellman optimal equations (8). Specifically, given constant
update cost c̄, the policy has a real-valued time threshold τ∗(c̄)
such that

u∗(s) =

{
0, if s < τ∗(c̄),

1, if s ≥ τ∗(c̄).
(9)

Lemma 4.2 can be shown [13] using the fact that ξ(s) is
increasing in s when f(ε) = ε2. We refer to Appendix C.
Note that unlike the optimal TD policy (3), the optimal RD
policy has a time threshold with periodic updates.

Given time threshold τ , the expected average cost gRD(τ)
under the RD update policy is given by

gRD(τ) = 1
τ

(
c̄+

∑τ−1
s=1 ξ(s)

)
. (10)

For f(ε) = ε2, we have ξ(s) = 2ps and thus gRD(τ) = c̄/τ +
p(τ−1), which is convex in τ > 0. Thus, by solving dgRD

dτ = 0,

we can obtain a closed-form expression of an optimal time
threshold that solves (8): τ∗(c̄) = b

√
c̄/pc or d

√
c̄/pe.

Note that, under the TD policy with a single transmitter,
we have the expected update interval E[T ] =

√
3c̄/p. That

is, the RD policy updates the receiver more frequently than
the TD policy on average. This is because the controller does
not use the error ε(t) and thus it compensates for the lack of
information by updating more frequently.

C. Multi-transmitter Scenario

Now, suppose that n (symmetric) transmitters update the
receiver. Unlike the TD policy where each transmitter in-
dependently updates the receiver and thus the number of
simultaneous transmissions at a given time is random, an RD
policy can control the number of simultaneous transmissions
so that the communication cost is not too high. Since we are
considering symmetric transmitters with pi = p for all i, the
update periods (i.e, the time thresholds) are the same for all
transmitters.

Let τn,εr denote the update period. The receiver can opti-
mize τn,εr by taking into account n and εr, and control the
transmissions by assigning a time slot to each transmitter.
• When n ≤ τn,εr , an optimal policy lets each transmitter i

update at time slot t such that (t mod τn,εr ) = i and
there is at most one transmission at each time slot2. There
are τ0 = τn,εr −n idle (i.e., no-update) time slots within
the update period τn,εr .

• When n > τn,εr , an optimal policy lets each transmitter i
update at time slot t such that (t mod τn,εr ) = (i
mod τn,εr ). Then, at each time slot, there are d n

τn,εr
e

transmissions or d n
τn,εr
e − 1 transmissions. Let kn,εr =

d n
τn,εr
e, and let τ0 denote the number of time slots where

d n
τn,εr
e − 1 transmitters update the receiver within an

update period τn,εr . The structure of an optimal RD
policy given n and τn,εr is shown by Fig.3. Each slot on
the x-axis represents one time slot, and each bin on the y-
axis represents one transmission opportunity. The number
in each bin is the index of transmitters of {1,2,. . . ,n}.
Note that each of the first (τn,εr − τ0) time slots on a
period has kn,εr simultaneous transmissions, and yields
the total cost of c(kn,εr )

εr . Each of the rest τ0 time slots
has kn,εr −1 simultaneous transmissions, and the cost of
c(kn,εr − 1)εr .

Let g̃RD(τn,εr ) denote the expected average cost given τn,εr ,
which is given by

g̃RD(τ) = k(τ−τ0)
nτ (ckεr + p(τ − 1)τ)

+ (k−1)τ0
nτ+ (c(k − 1)εr + p(τ − 1)τ)

= c
nτ ((τ − τ0)k1+εr + τ0(k − 1)1+εr ) + p(τ − 1), (11)

where we omit subscripts n and εr for notational convenience
(i.e., k = kn,εr . Note that τ = τn,εr ) and k = dn/τe and

2This policy is optimal in the sense that there is no other policy that can
make communication cost smaller, given n and τn,εr . Note that the expected
cost associated with error is determined by a threshold τn,εr .



Fig. 3: Time slot and channel allocation of the RD policy.

τ0 = kτ − n. The expected average cost, gRD(n, c, εr), under
the RD policy is given by

gRD(n, c, εr) = minτ≥1 g̃RD(τ). (12)

V. PERFORMANCE COMPARISON OF DECENTRALIZED AND
CENTRALIZED UPDATE PARADIGMS

In this section, we compare the performance of the two TD
policies and the RD policy. Furthermore, we will extend our
design to a scenario where system parameters are unknown.

A. TD-L Policy vs. TD-G Policy vs. RD Policy

We first consider the single-transmitter case of n = 1,
in which TD-L is equivalent to TD-G. If c < 2p, then the
optimal policy is to update at every time slot and we have
gTD(1, c, εs) = gRD(1, c, εr) = c. Suppose that c ≥ 2p. Then,
from (10) with τ =

√
c/p and (4) with γ = 4

√
12pc, we have

gRD(1, c, εr) = 2
√
pc− p ≥ 2√

3

√
pc− 1

6
= gTD(1, c, εs),

where gTD = gTD-L = gTD-G and the inequality comes from
that c ≥ 2p.

Not only this confirms the expected superiority of TD
updates to RD updates for the single-transmitter case, but
also reveals that the performance improvement is a function
of system parameters p and c. Note that when εs = εr = 0,
each transmitter pays the same per-transmitter cost c regardless
of the number of simultaneous transmissions. Hence, we have
gRD(n, c, 0) = gRD(1, c, εr) ≥ gTD(1, c, εs) = gTD(n, c, 0), i.e.,
TD policies always outperforms RD policy.

Now, we consider when εr > 0, εs > 0 and n � 1.
Theorem 5.1 shows the asymptotic behavior of gTD-L, gTD-G
and gRD, under the assumption that c ≥ 2p.

Theorem 5.1: Under TD-L and TD-G policies, we have the
asymptotic lower bounds such that

gTD-L(n, c, εs) = Ω(nεs),

and
gTD-G(n, c, εs) = Ω

(
n

εs
εs+2

)
,

respectively, for εs > 0. Under RD policy, we have an
asymptotic upper bound such that

gRD(n, c, εr) = O
(
n

εr
εr+2

)
for εr > 0.
We refer to Appendix D for the detailed proof.

Since gRD(1, c, εr) ≥ gTD-L(1, c, εs) = gTD-G(1, c, εs) for
any εs and εr, Theorem 5.1 implies that there is a crossing
point where RD policy starts to outperform TD-L policy for
εs ≥ εr > 0 and TD-G policy for εs > εr > 0. In other words,
changing the strategy depending on parameters n, εs and εr
for some given p and c improves the system performance. In
particular, when the value of information dominates the cost of
communication, i.e., when n and εs − εr are relatively small,
it is better to use TD policies. On the other hands, when the
cost of communication dominates the value of information, it
is better to use RD policy.

B. Learning-based update policy
In this subsection, we consider scenarios where system

parameters p, c, and εs (or εr) are unknown. We assume that
the upper bounds of thresholds γ and τ are given for TD
and RD policies, respectively. In the following, we develop
learning-based TD and RD policies employing the Multi-
Armed Bandit (MAB) technique by considering each possible
threshold as an arm3.

Learning-based TD policy4: Let sj denote the time at which
the jth update occurs with s0 = 0. Let ∆j := sj+1−sj denote
the jth update interval. In the learning-based algorithm, an up-
date interval is a round for learning, where we apply the Upper
Confidence Bound (UCB) technique [18]. At the beginning of
the jth interval, we select threshold γj and terminate the round
when the error gets larger than the threshold according to (3).
At the end of the interval, the average cost r̂j during interval
j can be written as

r̂j = 1
∆j

(∑sj+1

t=sj+1 ε
2(t) + c (

∑n
i=1 ui(sj+1))

εs
)
.

For each threshold γ ∈ [0, γ], we store the empirical average
cost and the number of selections up to now as r̂(γ) and η(γ),
respectively.

We run the following procedure independently for each
transmitter i (subscript i is omitted for brevity). For the first
γ+1 update intervals, the transmitter selects γ ∈ [0, γ] exactly
once. For each interval j > γ̂ + 1, it decides an action
according to the following procedure.
• At the beginning of the jth update interval:

1) For each γ, I(γ)← r̂(γ)
maxγ′ r̂(γ

′) −
√

2 log(j)
η(γ) .

3Since time and state space are discrete, we can employ the finite-armed
Multi-Armed Bandits.

4Each transmitter follows the proposed procedure independently, thus we
omit subscripts indicating the indices of transmitters.



Fig. 4: Example of varying thresholds: Transmitter 1 marked with the circle has the same update intervals with the given
thresholds.

2) γj ← arg minγ I(γ).
• When an update occurs and the interval ends:

1) η(γj)← η(γj) + 1.
2) r̂(γj)← r̂(γj)

(
1− 1

η(γj)

)
+

r̂j
η(γj)

.

Note that, for each possible threshold γ, the empirical
average cost r̂(γ) can be greater than 1. Thus, when the UCB
index I(γ) is calculated, we normalize the empirical costs with
the maximum value among them so that the values lie between
0 and 1.

Learning-based RD policy: Now, we develop the learning-
based RD policy by employing the UCB technique. The
receiver learns an optimal threshold τ∗ among the possible
threshold τ ∈ [1, τ ]. Let τj denote the threshold of the jth

interval. Since it is a time threshold, the jth interval has
exactly τj time slots. At the beginning of the jth interval, the
receiver collectively decides when source i will be updated in
the interval as shown in Fig. 3. There is a problem though.
Since the threshold changes across two consecutive intervals,
in the perspective of individual source i, the update interval
becomes somewhat arbitrary. For example, in Fig. 4, the
update interval of source 4 is (t0 + 12) − (t0 + 4) = 8 and
(t0 + 16)− (t0 + 12) = 5 when τj changes from 10 to 2 and
4. Thus, for the purpose of learning an optimal threshold, the
receiver traces the empirical average cost of transmitter 1 only,
since transmitter 1 has consistent update interval with τj .

As in the learning-based TD policy, the average cost during
interval j is written as (13) replacing εs with εr. In the RD
policy, the update interval ∆j equals τj . Let r̂(τ) and η(τ)
denote the empirical average cost (of transmitter 1) for τ and
the number of selections for τ , respectively. The learning-
based RD policy is operated as in the learning-based TD policy
by replacing γ with τ .

We verify the performance of learning-based TD and RD
policies through simulations in Section VI.

VI. SIMULATION RESULTS

In this section, we compare the performance of TD-L,
TD-G and RD policies through simulations. Throughout the
simulations, we use p = 0.3 and c = 50.

It is obvious that TD-G policy outperforms TD-L policy for
all εs ≥ 0 since TD-G policy uses more information than TD-L
policy, and thus we do not compare between TD-L and TD-G
policies. For numerical simulations, we use thresholds γ∗L =
b 4
√

12pcc or d 4
√

12pce for TD-L policy, γ∗G that minimizes (5)
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Fig. 5: Performance comparison between TD-L and RD poli-
cies.

for TD-G policy, and τ∗ that minimizes (12) for RD policy5.
Based on the given threshold, each transmitter either updates
the receiver (ui(t) = 1) or not (ui(t) = 0) at every time slot
t. Then, the average cost C(t) at time slot t is

C(t) :=
1

tn

t∑
s=1

n∑
i=1

(
ε2
i (t) + ui(t) · c

(
n∑
i=1

ui(t)

)ε)
,

where ε = εs for TD-L and TD-G policies and ε = εr for RD
policy.

We first compare TD-L and RD policies. We run simulations
for T = 104 time slots, and the results are averaged over
50 repetitions. Fig. 5(a) shows the average cost C(T ) at
time T when εs = εr = 2. We observe that for a relatively
small n, TD-L policy outperforms RD policy. However, as
n increases, the gap becomes close to zero and eventually
RD policy outperforms TD-L policy. We call the point (the
number of transmitters) where RD policy starts to outperform
TD-L policy as a crossing point. In Fig. 5(a), the crossing
point is at 14. Fig. 5(b) shows the crossing point with respect
to εs and εr. As expected, for relatively large n and εs, the
communication cost of distributed updates dominates the value
of (state) information, and the value of information dominates
the update cost for small n and εs.

Now, we compare TD-G and RD policies. Note that, ac-
cording to Theorem 5.1, the existence of a crossing point
between TD-G and RD policies can be guaranteed only for
εs > εr > 0 Fig. 6 shows the ratio of the average cost
of RD policy to that of TD-G policy when εs = εr = ε.
The ratio greater than 1 implies TD-G policy outperforms

5Thresholds γ∗G and τ∗ can be found using numerical search methods.
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Fig. 7: Performance of the learning-based policies.

RD policy. As a specific example, when ε = 1, from (15)
and (17), we can analytically show that limn→∞

gRD
gTD-G

≥
limn→∞

(4/482/3+481/3/6)(p2cn)1/3−1/6
(p(2c/p)1/3+c(p/2c)2/3)n1/3 ≈ 2.08, which agrees

with the simulation result. This implies that when transmitters
have global information, i.e., n and εs, they can adjust their
threshold reflecting the distribution of Nt and this leads to
significant improvement of the performance of TD-L policy.

Now, we evaluate the learning-based TD and RD policies,
where system parameters p, c, εs and εr are unknown to both
transmitters and the receiver, and n is known to the receiver
but not to the transmitters. Only the range of possible values
of each parameter is known, and thus each transmitter and
the receiver have the set of possible thresholds γ ∈ [0, γ] and
τ ∈ [1, τ ], respectively. We set p = 0.3, c = 50, εs = 2,
εr = 1 and n = 50, and assume that γ = 10 and τ = 30,
respectively. We run simulations for T = 3× 107 time slots.

Fig. 7(a) shows the performance of the learning-based
TD policy, which is compared to TD-L and TD-G policies
that operate with known system parameters. As shown in
Fig. 7(a), the average cost of the learning-based TD policy
rapidly approaches that of TD-G policy, which implies that the
learning-based TD policies find the global optimal threshold
γ∗G. Fig. 7(b) shows the performance of the learning-based
RD policy, which is also compared to RD policy with known
parameters. It verifies that the learning-based RD policy finds
the optimal threshold τ∗ of RD policy. These findings confirm
that the findings of our work can be effectively translated into
the learning environment where system parameters as well as
value and cost functions are unknown.

VII. CONCLUSION

We investigated decentralized (transmitter-driven) and cen-
tralized (receiver-driven) update paradigms, where a receiver
is updated from multiple sources of which states evolve
according to a simple random walk process. In particular,
we considered a scenario where each update is accompanied
by communication cost, and we modeled communication cost
as a superlinear function of the number of simultaneous
transmissions at a given time since the transmitters commu-
nicate over shared channels. When the cost associated with
the information mismatch (error) is the mean squared error,
we obtained the expected average cost for the transmitter-
driven and receiver-driven policies, and compared them for
different number of transmitters. From the comparison, we
provided insights into the tradeoff between the value of fresh
information and the cost of distributed communication in the
remote tracking of large-scale distributed systems. We also
developed learning-based policies that asymptotically achieve
the minimum costs attained by the optimal policies when the
system parameters are unknown. Finally, through numerical
simulations, we verified the performance of the proposed
policies. Theoretical analysis of the performance of learning-
based update policies is an interesting future work in con-
sideration that each transmitter has different update periods.
Another interesting future work is to study the case when each
transmitter has different dynamics.

APPENDIX

A. Proof of Lemma 3.1

By the independence of the transmitters’ decision ui(t) and
Theorem 3.1, we have

limt→∞ P(Nt = k) = limt→∞ P (
∑n
i=1 ui(t) = k)

= limt→∞
(
n
k

)
P(u(t) = 1)kP(u(t) = 0)n−k

=
(
n
k

) (
1

E[T ]

)k (
1− 1

E[T ]

)n−k
,

where E[T ] is the expectation of the inter-renewal interval
under the threshold-type update policy with a threshold γ,
which is 2p

γ2 [13].

B. Proof of Lemma 4.1

We prove Lemma 4.1 by induction. For τ = 0, we
have e0(0) = 1 and ξ(0) = 0. For τ = 1, we have
e1 = [e1(−1), e1(0), e1(1)] = [p, 1 − 2p, p] and ξ(1) = 2p.
Now assume the induction hypothesis that

ξ(τ − 1) =

τ−1∑
k=−τ+1

k2eτ−1(k) = 2p(τ − 1) for τ ≥ 2. (13)



From (6) and (7), we have

ξ(τ) =
∑τ
k=−τ k

2eτ (k)

= (1− 2p)
∑τ−1
k=−τ+1 k

2eτ−1(k)

+ p
∑τ−2
k=−τ k

2eτ−1(k + 1) + p
∑τ
k=−τ+2 k

2eτ−1(k − 1)

= ξ(τ − 1)

+ eτ−1(−τ + 1)(pτ2 + p(τ − 2)2 − 2p(τ − 1)2)

+ · · ·+ eτ−1(0)2p

+ eτ−1(τ − 1)(p(τ − 2)2 + pτ2 − 2p(τ − 1)2).

Since eτ−1(0) = 1 −
∑τ−1
k=1 eτ−1(−k) −

∑τ−1
k=1 eτ−1(k), we

have ξ(τ) = 2pτ .

C. Proof of Lemma 4.2

From (8), let A(s) = ξ(s) + A(s + 1) − λ and B(s) =
c+ φ(1)− λ. Then, an optimal action is to update if B(s) <
A(s) and not to update if B(s) ≥ A(s). Note that B(0) =
c + φ(1) − λ > ξ(0) + φ(1) − λ = A(0) since ξ(0) = 0
and c > 0. Thus, u = 0 is an optimal action for s = 0.
Note that B(s) = c+ φ(1)− λ is a constant, and A(s) is an
increasing-then-decreasing function or a decreasing function
since A(s+ 1)−A(s) = λ− 2ps.

We show that there exists τ such that A(s) ≤ B(s) for
s ≤ τ and A(τ + 1) > B(τ + 1) by contradiction. Suppose
that such τ does not exist, which implies that A(s) ≤ B(s)
for all s and thus u = 0 for all s. Then, the expected cost goes
infinity since ξ(s) = 2ps. If we take an update policy such
that u = 1 for all s, then the expected cost c, which leads to
a contradiction. Hence, there exist s such that A(s) > B(s)
and, for τ = min{s : A(s) > B(s)}, we have the claim since
A(s) is increasing-then-decreasing.

D. Proof of Theorem 5.1

We first show the asymptotic lower bound for TD policies.
The expected average cost g̃TD(γ) of TD policy given thresh-
old γ is, from (5), given by

g̃TD(γ) = 2
γ2

(
pcE [(K + 1)εs ] + γ2(γ2−1)

12

)
. (14)

TD-L policy: Let f(x) = (x + 1)εs and µ = E[K] =
2p(n−1)
γ2 . By expanding the Taylor series of f(K) around µ

by the second-order term, we have

f(K) = f(µ) + f ′(µ)(K − µ) + f ′′(α)(K−µ)2

2

for some α ∈ [0, n − 1]. By taking the expectation on both
sides, we have

E[(K + 1)εs ] = (µ+ 1)εs + E[f ′′(α)(K−µ)2]
2 .

If εs ≥ 1, then f(x) is convex and thus f ′′(x) ≥ 0 for all
x ∈ [0, n− 1]. Then, we have

E[(K + 1)εs ] ≥
(

2p(n−1)
γ2 + 1

)εs
, (15)

and thus E[(K + 1)εs ] = Ω(nεs) with γ∗L = b 4
√

12pcc or
d 4
√

12pce.

Now, suppose that 0 < εs < 1. By expanding the Taylor
series of f(K) around µ by the third-order term, we have

f(K) = f(µ) + f ′(µ)(K − µ)

+ f ′′(µ)(K−µ)2

2 + f(3)(α)(K−µ)3

6

for some α ∈ [0, n − 1]. By taking the expectation on both
sides, we have E[(K + 1)εs ] =

(µ+ 1)εs + f ′′(µ)Var(K)
2 + E[f(3)(α)(K−µ)3]

6 .

Note that f (3)(x) ≥ 0 for all x ∈ [0, n − 1] since f ′(x) =
εs(x+ 1)εs−1 is convex for εs ∈ (0, 1), and E[(K − µ)3] ≥ 0
since, for X ∼ B(m, q), E[(X−E[X])3] = mq(2q−1)(q−1)
and in our case q = 2p

γ2 < 0.5 since c ≥ 2p6 . Thus, we have

E[(K + 1)εs ] ≥
(

2p(n−1)
γ2 + 1

)εs
+ f ′′(µ)Var(K)

2 , (16)

where f ′′(x) = εs(εs − 1)(x + 1)εs−2, µ = 2p(n−1)
γ2 and

Var(K) = (n− 1)
(

2p
γ2

)(
1− 2p

γ2

)
, and thus E[(K + 1)εs ] =

Ω(nεs).
TD-G policy: If εs ≥ 1, by (14) and (15), we have

g̃TD(γ) ≥ 2
γ2

(
pc
(

2p(n−1)
γ2 + 1

)εs
+ γ2(γ2−1)

12

)
≥ 2pc(2p(n−1))εs

γ2εs+2 + γ2−1
6 = gTD(γ).

Since gTD(γ) is convex in γ, by solving dgTD-G
dγ = 0, we

have γ∗ = 2εs+4
√

6pc(2εs + 2)(2p(n− 1))εs , with which
we have gTD-G(n, c, εs) = Ω(n

εs
εs+2 ) since gTD(n, c, εs) =

minγ>0 g̃TD(γ) ≥ minγ>0 gTD(γ).
If 0 < εs < 1, by (14) and (16), we have

g̃TD(γ) ≥ γ2−1
6 + 2pc(2p(n−1))εs

γ2εs+2

(
1− (n−1)

32(µ+1)2

)
≥ γ2−1

6 + 2pc(2p(n−1))εs

γ2εs+2 (1− o(n)) ,

where o(n) = γ4

128p2(n−1) . Suppose that, for some δ ∈ (0, 1),
there exists an Nδ such that o(n) ≤ δ for all n ≥ Nδ . Then,
for n ≥ Nδ , we have

g̃TD(γ) ≥ γ2−1
6 + 2pc(2p(n−1))εs

γ2εs+2 (1− δ) = gTD(γ).

Then, by minimizing gTD(γ), we have an optimal threshold
γ∗ = 2εs+4

√
(1− δ)6pc(2εs + 2)(2p(n− 1))εs , with which

we have o(n) = O(n
εs−2
εs+2 ). Since εs ∈ (0, 1), the re-

sult accords with the assumption on o(n). Hence, we have
gTD-G(n, c, εs) = Ω(n

εs
εs+2 ).

RD policy: Under the RD policy, the expected average cost
g̃RD(τ) given by τ can be bounded, from (11), as

g̃RD(τ) ≤ ck1+εr

n + p(τ − 1) = gRD(τ), (17)

where k = dn/τe. Since gRD(n, c, εr) = minτ≥1 g̃RD(τ) ≤
minτ≥1 gRD(τ) ≤ gRD(τ ′) for any τ ′ ≥ 1, by letting τ ′ =
εr+2
√

(1 + εr)cnεr/p, we have gRD(n, c, εr) = O(n
εr
εr

+2).

6Note that, for X ∼ N (µ, σ2), the equality holds in (16) since E[(X −
E[X])3] = 0. Since a Binomial distribution, B(m, q), can be approximated
by a Gaussian distribution, N (mq,mq(1 − q)), for a sufficiently large m,
the gap in inequality (16) vanishes as the number n of transmitters increases.
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