
Achieving Freshness in Single/Multi-User Caching
of Dynamic Content over the Wireless Edge

Bahman Abolhassani1, John Tadrous2, Atilla Eryilmaz1
1,2 Department of Electrical and Computer Engineering

1 The Ohio State University, Columbus, 43210. Email: abolhassani.2@osu.edu, eryilmaz.2@osu.edu
2 Gonzaga University, Spokane, WA 99202. Email: tadrous@gonzaga.edu

Abstract—Existing content caching mechanisms are predom-
inantly geared towards easy-access of content that is static
once created. However, numerous applications, such as news
and dynamic sources with time-varying states, generate ‘dy-
namic’ content where new updates replace previous versions.
This motivates us in this work to study the freshness-driven
caching algorithm for dynamic content, which accounts for the
changing nature of data content. In particular, we provide new
models and analyses of the average operational cost both for
the single-user and multi-user scenarios. In both scenarios, we
characterize the performance of the optimal solution and de-
velop algorithms to select the content and the update rate that
the user(s) must employ to have low-cost access to fresh content.
Moreover, our work reveals new and easy-to-calculate key
metrics for quantifying the caching value of dynamic content in
terms of their refresh rates, popularity, number of users in the
multi-user group, and the fetching and update costs associated
with the optimal decisions. We compare the proposed freshness-
driven caching strategies with benchmark caching strategies
like cache the most popular content. Results demonstrate that
freshness-driven caching strategies considerably enhance the
utilization of the edge caches with possibly orders-of-magnitude
cost reduction. Furthermore, our investigations reveals that
multi-user scenario, benefiting from the multicasting property
of wireless service to update the cache content, can be cost
effective compared to single user caching, as the number of
users increases.

Index Terms—Wireless Content Distribution, Caching, Dy-
namic Content.

I. INTRODUCTION

With the wide availability of content delivery networks,
many applications utilize edge cache at end-users to deliver
dynamic contents, reducing the network latency and system
congestion during the peak-traffic time. By caching a large
number of dynamic contents in the edge caches, the average
response time can be reduced, benefiting from higher cache
hit rates. However higher hit rates come at the expense of a
less fresh content, resulting in higher overall system cost.

Numerous works study the content delivery in caching
systems and effective strategies have been proposed. In [1],
[2] and [3], authors study the benefits of caching with the
focus being mainly on exploiting the history or statistics of
the user demand. These works are based on the promise that
the content stored in the cache will ultimately be used. An

This work was supported primarily by the ONR Grant N00014-19-1-
2621, and in part by the NSF grants: CNS-NeTS-1514260, CNS-NeTS-
1717045, CMMISMOR-1562065, CNS-ICN-WEN-1719371, and CNS-
SpecEES-18243; and the DTRA grant HDTRA1-18-1-0050.

important factor that may greatly affect the caching decision
is the content generation dynamics. However, these studies
fail to take into consideration the possibility of content
refreshment which renders the current version of the cached
content less relevant or possibly obsolete. These types of
dynamic contents include news and social network updates
where the users prefer to have the most fresh version of
the content while also making sure that the total cost of the
network remains low.

As the data gets updated in data sources, currently cached
version becomes out of date or stale since users are interested
in the latest version of data [4]. Most caching policies,
however, do not consider the content generation dynamics
and focus alternatively on the content popularity. It turns
out that the content generation rate plays a crucial role in
deciding which data to be cached and with what rate should
the cached data be updated to account for the dynamically
varying content at the data source. In [5], Candan, et al. pro-
pose a framework which enables dynamic content caching
for database-driven e-commerce sites by intelligently inval-
idating dynamically generated web pages in the caches. In
[6], authors mention that great benefits can be reached by
incorporating the freshness in caching but do not investigate
the case due to complexity of it. In [7], authors propose
a dynamic cache management policy based on the history
of requests and age of the content to update the existing
content of the cache. They show that the optimal policy for
minimizing the number of missed requests is to keep the
packets that have the highest instantaneous request value in
the cache. In [8], authors study a least recently used (LRU)
policy for cache management in a web browser but they
suggest that finding a good caching policy that is conscious
of document size and delay may be difficult. In [9], Chen
et al. propose LA2U and LAUD policies to implement the
update rate in caching. LA2U computes the access-to-update
ratio for the cached data items, and evicts the one with
the smallest ratio. Notably, LA2U is equivalent to least
frequently used (LFU), in the absence of content updates.
LAUD works in the same way as LA2U except that LAUD
uses popularity-to-update differences rather than access-to-
update ratios to decide which items to cache. In [10], Akon
et al., present OUR as a cache replacement scheme which
uses both update rates and content popularities to achieve
superior-guaranteed performance. They define a performance

factor (PF) for each data item. If the newly requested item
has a higher PF than that of any cached item, the item with
the lowest PF is evicted, and the new item is stored in the
cache. Otherwise, the requested item is not cached. However,
having a closed form metric that also consider the freshness
and can be used to sort the items and achieve a close to
optimal solution is not fully investigated.

In this paper, we focus on the design of new caching
strategies in the presence of dynamically changing data
content and provide a design framework and performance
analysis of relevant efficient caching strategies. With dy-
namically changing data content, the older content versions
lose their value at different rates. A freshness-driven caching
paradigm must account for these dynamics so as to optimally
balance the costs of caching a content and the costs of
serving the content non-fresh.

In particular, we propose a freshness-driven caching al-
gorithm for dynamic content, which accounts for the update
rate of data content both for the single-user and multi-user
cases and provide an analysis of the average operational cost
for both cases. We aim to reveal the gains of freshness-
driven caching compared to other basic caching strategies.
Our contributions, along with the organization of the paper,
are as follows.

• In Section II, we present a tractable caching model for
serving dynamic content over wireless broadcast channels.
• In Section III, for a database of N data items with an

arbitrary popularity distribution that serves a single user
with a limited cache space, we propose a suboptimal
caching algorithm, Algorithm 1, that gives the cache
checking and update rate together with the set of items
to be cached in order to minimize the average system
cost. We prove that our proposed algorithm optimally
minimizes the average cost for any given cache check and
update rate, and always outperforms the traditional cache
the most popular items strategy, even with optimized cach
check and update rates.
• In Section IV, by distributing the cache capacity among

multiple local users, we develop an optimal caching algo-
rithm, Algorithm 2, that reveals the potential benefits of
the multicasting property in wireless networks for optimal
caching. We show that our proposed algorithm always
minimizes the aggregate average cost of the system.
Finally, we conclude the work in Section V.

II. SYSTEM MODEL

Consider the network setup shown in Fig. 1, with a
database hosting a set N of N data items and serving M
users. Each data item n ∈ N is dynamically refreshed with
a content refresh being sufficient for the user to consume
without the need for older content from the same data
item. Content refreshes arrive to data item n according to a
Poisson process with rate λn ≥ 0. We consider the vector
λ = (λn)Nn=1 as the collection of the data items refresh
rates.

𝛌𝟏

𝛌𝐧

.

.

.

𝜷

𝜷

(𝒑𝟏, … , 𝒑𝒏)

(𝒑𝟏, … , 𝒑𝒏) Data Base

Refresh rate

.

.

.

.

.

.

User cache

Popularity Distribution

Request arrival rate

Fig. 1: Caching with freshness dynamics.

Each user m generates requests according to a Poisson
process with rate β ≥ 0. A generated request from any
user targets data item n with probability pn. That is, the
vector p = (pn)Nn=1 captures the popularity profile of the
data items. Users are equipped with a limited-storage cache
that can hold K different items.

When a user generates a request to a data item that is
found in the cache of that user, the request is fulfilled
immediately from that user’s cache under a “freshness cost”.
The freshness cost is incurred due to the fact that the cached
content may not be the most fresh version. We associate a
freshness cost with such events which increases linearly with
the age of the cached content. In particular, we define the age
of a cached content from item n as the number of refreshes
that item n has received in the database and not reflected on
the content in the cache. If the user, thus, consumes a content
from the cache with age k, the user will incur a freshness
cost of k · C0, where C0 ≥ 0 is a constant showing the
freshness cost per stale version. If the requested data is not
in the cache, the user has to fetch the data from the database
and incur a constant fetching cost of Cf ≥ 0.

In this paper, we will study the caching strategies to
minimize the overall system cost in presence of dynamically
refreshing content which adversely impacts the caching
utility. We will investigate which items to cache and how
many items to cache for the single-user and multi-user
scenarios.

Single-user scenario concerns a user with a limited cache
space that keeps local copies of the dynamic content for
local-access. If the requested item is in the local cache, it is
directly served with the possible age-cost described above.
In order to prevent the age-cost from dominating the overall
cost, the local cache needs to check for updates of stored
content at appropriate rates. Therefore, in this scenario the
questions of interest are which data items are worth storing
and at what rate their updates must be checked to minimize
the overall cost. We will address this question in Section III.

Multi-user scenario, in contrast, concerns the distributed
caching setting whereby each user receives its independent
requests for the dynamic content for local consumption. The
key new component in this case is the broadcast nature of the
wireless medium whereby transmissions of content made to
one user can be received and used to opportunistically update
content in other users’ cache at no additional transmission
cost. This multicasting property non-trivially couples the
decisions across the distributed cache space for optimal
caching solution. In Section IV, we undertake this interesting

setting to provide optimal distributed allocation strategy for
minimum overall cost.

In both the single and multi-user cases, we prove the op-
timality characteristics of our proposed caching and update
strategies, and compare their gains over natural benchmarks
that do not account for the dynamic nature of the content. In
Section IV, we also compare the optimal solutions for the
single and multi-user scenarios for equal request rates and
equal total cache spaces in order to reveal the benefits of
distributed caching over common caching that emerge due
to the dynamic nature of the content.

III. OPTIMAL CACHING AND UPDATING FOR DYNAMIC
CONTENT: SINGLE-USER SCENARIO

In this scenario, the user requests are served individually
and no other user can benefit from such a service. Therefore,
we drop the dependence on the user index m, i.e., the user
generates requests with a rate of β. The cache size at the
user is K data items. To avoid excessive freshness cost, the
user employs a cache check and update mechanism through
which the user generates random cache check and update
requests to check the items in the cache and update them
from the database if they have been already refreshed in
the database. We assume that the cache check and update
requests are generated according to a Poisson process with
rate µ ≥ 0. Each checking request costs an amount Cch ≥ 0
which accounts for the communication overhead with the
database. If the content in the cache is found to be not the
most updated version, then the user will fetch the most fresh
version from the database at an additional caching cost of
Cca ≥ 0 which accounts for the resource consumption to
deliver the fresh content to the user’s cache. As discussed
earlier, if an older content with age k is served from cache,
the user will incur a freshness cost of k ·C0, where C0 ≥ 0 is
a constant. If the requested data is not in the cache, the user
has to urgently fetch the data from the back-end database at
a higher fetching cost of Cf ≥ 0. The checking, caching and
urgent fetching costs are constants and satisfy the relation
Cch ≤ Cca ≤ Cf .

A. Problem Formulation

Let IK ⊆ N be the set of items that are stored in the
user cache and let µ be the checking rate of cache content
for the freshness. Note that K is the caching capacity of
the user and due to the high refresh rate, the user may not
necessarily fill the cache. As such |IK | ≤ K.

Lemma 1: Let CSIK (µ) be the average system cost in the
Single-user scenario as the user caches the set of items IK
and checks the cache freshness with the Poisson process of
rate of µ. Then:

CSIK (µ) = βCf + |IK |µCch + µCca
∑
i∈IK

λi
λi + µ

+β
∑
i∈IK

pi

(
λiC0

µ
− Cf

)
,

(1)

Proof. Let {Πi
µ(t), t ≥ 0},∀i ∈ IK be the Markov process

describing the freshness age of cached item i at time t under
a given checking rate µ. The evolution of this process is
shown in Fig. 2.

𝟎 𝟏 𝟐

𝝁

𝝁

𝝁

𝝀𝒊 𝝀𝒊 𝝀𝒊

Fig. 2: Markov chain diagram for freshness {Πi
µ(t), t ≥ 0}

under checking rate µ.

As it can be seen in Fig. 2, every arriving content update to
the item i in the database that occurs with rate λi increases
the age of that item in the cache by one. Checking and
updating the cache content will occur with rate µ and
upon occurrence, it will move the system back to state
zero, the most fresh version. We are interested in the limit
of Πi

µ(t)
d−−−→

t→∞
Π̄i
µ, i.e., the steady state distribution of

Πi
µ(t). Let πik(µ) = P (Π̄i

µ = k), k ∈ {0, 1, 2, . . .} be the
probability of item i ∈ IK having the age of k under the
checking rate µ, then:

πik(µ) = πi0(µ)

(
λi

λi + µ

)k
,∀k ∈ {0, 1, 2, . . .}. (2)

Setting
∑∞
k=0 π

i
k(µ) = 1, gives πi0(µ) = µ

λi+µ
. Hence, the

average age of any item i ∈ IK in the cache is given by:

E[Π̄i
µ] =

∞∑
k=0

kπik(µ) =
λi
µ
. (3)

The average system cost in the Single-user scenario as
the user caches the set of items IK and checks the cache
freshness with rate µ comprises four main terms as follows:

CSIK (µ) = |IK |µCch + βCf

(
1−

∑
i∈IK

pi

)
+µCca

∑
i∈IK

(
1− πi0(µ)

)
+ βC0

∑
i∈IK

piE[Π̄i
µ].

(4)

The first term in Equation (4) shows the average checking
cost for a cache capacity of K that caches the set of items
IK and updates the cache content with the rate of µ and
each checking process has a cost of Cch. The second term in
Equation (4) shows the average fetching cost for a cache set
of IK and the request arrival rate of β as a function of miss
rate β(1−

∑
i∈IK). For any arrival request, 1−

∑
i∈IK pi is

the probability that the requested content is not in the cache,
so the content should be fetched from the database which
incurs the cost of Cf .

The third term in Equation (4) shows the average caching
cost for a cache set of IK and checking rate of µ. For a
given µ, πi0(µ),∀i ∈ IK is the probability that item i in
the cache is the most updated version, i.e., has age 0. So
1−πi0(µ) is the probability that item i existing in the cache
is not fresh. For every checking process that happens with
rate µ, if the content in the cache is not fresh, we cache the

most updated version from the database and put it in the
user cache which incurs the cost of Cca.

The fourth term in Equation (4) shows the average fresh-
ness cost for a cache set of IK and checking rate of µ. For
each item i ∈ IK existing in the cache, the arrival request
will be served from the cache. The arrival request of item i is
βpi and since the item with age k incurs the cost of k.C0, so
the average cost of freshness will be C0E[Π̄i

µ] which E[Π̄i
µ]

is the average age of cached item i given in (3).
Replacing the results of Equations (2) and (3) in the cost

function given in Equation (4) completes the proof.
The cost minimization problem for the single-user sce-

nario would thus be:
min

µ≥0,IK⊆N
CSIK (µ). (5)

A traditional (suboptimal) approach to tackle the caching
problem (5) is to cache the first K most popular items.

Definition 1 (Cache the Most Popular): Define the IpK ⊆
N to be the set of K most popular items. That is,

IpK := {i ∈ N : |IpK | = K, pi ≥ pn∀i ∈ IpK , n ∈ N\I
p
K} .

Then the cache the most popular strategy will assign the
cached set of items as IK = IpK and optimizes the cache
check and update rate as µ = µp, where

µp := arg min
µ≥0

CSIpK
(µ) .

Since the cost in (1) is convex over µ, such µp exists.
The cache most popular strategy does not consider the

content refresh rate, and the associated freshness costs.
Hence it is a suboptimal strategy. We then note that, the
optimization (5) is computationally formidable to solve as it
necessitates a discrete search process which involves finding
the jointly optimal subset of items to be cached from a large
database of N items and the best cache check and update
rate. We, therefore, investigate the design of suboptimal,
yet simpler caching strategies that account for the dynamic
content refreshing and lead to more performance merits than
the traditional cache most popular strategy.

B. Proposed Algorithm

We propose an algorithm, Algorithm 1, with a selected
set of cached items ÎK and a cached check and update
rate µ̂, based on the refreshing rate of λ and other system
parameters to minimize the expected system cost.

In particular, and as used in Algorithm 1, for item i, we
define the metric δS(λi, pi, µ) = δSi (µ) as follows:

δSi (µ) := µCch +
µλi
λi + µ

Cca + βpi

[
C0
λi
µ
− Cf

]
,∀i ∈ N

to capture the marginal cost of adding the item i to the cache
for a given µ.

Our proposed algorithm sorts the items based on δSi (µ)
and starts filling the cache with items that have the least
δSi (µ) and keeps adding until either all the items with
negative δSi (µ) are placed in the cache or the cache becomes

Algorithm 1 Single-user caching strategy

Input: P = (p1, ..., pN), λ = (λ1, ..., λN), µp, IpK
Initialization : ÎK = ∅, IOldK = IpK

1: Set µ̂ = µp
2: Compute δSi (µ̂) = µ̂Cch + µ̂λi

λi+µ̂
Cca +

βpi

[
C0

λi

µ̂ − Cf
]
,∀i ∈ N

3: Update ÎK as follows:

ÎK = {i ∈ N : |ÎK | ≤ K, δSi (µ̂) < 0,

δSi (µ̂) ≤ δSn (µ̂),∀i ∈ ÎK , n ∈ N\ÎK}.

4: while ÎK 6= IOldK do
5: IOldK = ÎK
6: µ̂ = arg min

µ≥0
CSÎK

(µ)

7: Update δSi (µ̂) from step 2.
8: Update ÎK from step 3.
9: end while

10: return µ̂, ÎK .

full, i.e., K items have been already cached. Then for
the new set of cached items, the algorithm computes the
corresponding optimal cache check and update rate µ̂ and
modifies the values of δSi (µ̂) based on new µ̂.

Notice that all data items with positive δSi (µ) can only
increase the average cost if cached. The metric δSi (µ) reveals
the effect of refresh rate alongside the popularity on gains
that can be achieved by caching an item. For example, if an
item has a high probability of being requested and a high
refresh rate, the high refresh rate will increase the values
of δSi (µ) and therefore renders that item less likely to be
cached even if there is available cache storage.

C. Performance Analysis

In the following, we provide a proof of optimality for the
proposed algorithm under a given cache check and update
rate µ and show that it always outperforms the cache most
popular content strategy.

Proposition 1: For a given cache check and update rate
µ, Algorithm 1 minimizes the average cost in (1).
Proof. For a given µ and the set of items IK in the cache,
if we add any item i to the cache such that i /∈ IK , then we
can write the resulting cost as:

CSIK∪{i}(µ) = CSIK (µ) + δSi (µ) ∀i /∈ IK

By induction, if we set IK = {∅} and add the item i to the
cache, the cost will decrease by δSi (µ). If we keep adding
items i with δSi (µ) < 0, the average cost will continue to
decrease. Therefore:

CSIK (µ) = CS{∅}(µ) +
∑
i∈IK

δSi (µ)

Since the proposed algorithm at each step chooses the items
with minimum negative δSi (µ) for a given µ, it results in the
optimal solution.

Proposition 2: The proposed algorithm, Algorithm 1,
always outperforms the cache most popular strategy, i.e.,

CSÎK
(µ̂) ≤ CSIpK (µp)

Proof. We prove this by showing that in each iteration of
the proposed algorithm, the resulting average cost decreases.
Proposition 1, suggests that for a given µ, our algorithm
gives the optimal solution. At any given iteration t, we have:

CSÎK(t)
(µ̂(t)) ≥ CSÎK(t+1)

(µ̂(t)).

Since at each step we choose µ̂(t + 1) to minimize the
average cost for a given ÎK(t+1), in other words, µ(t+1) =
argmin

µ
CIK(t+1)(µ), we have:

CSÎK(t+1)
(µ̂(t)) ≥ CSÎK(t+1)

(µ̂(t+ 1)).

Combining the two equations gives:

CSÎK(t)
(µ̂(t)) ≥ CSÎK(t+1)

(µ̂(t+ 1)),

which shows at each iteration, the proposed algorithm re-
duces the cost. Since we start the algorithm with µ̂(1) = µp

and ÎK(1) = IpK , so the proposed algorithm always outper-
forms cache the most popular strategy.

We next investigate the efficiency of our algorithm com-
pared to cache the most popular strategy.

D. Numerical Investigation

We let the total number of data items be N = 106, data
items’ popularity be pn = c/nα with α = 1.2 and content
refresh rates be λn = λ/nz , for some z ≥ 0. We consider the
normalized costs of fetching, checking, caching and fresh-
ness to be Cf = 1, Cca = 0.1, Cch = 0.05, C0 = 0.025.

Setting the cache size K to be 500, we compare the
average cost achieved by the proposed algorithm, Algorithm
1, and the average cost of cache the most popular items
strategy under the same system variables declared above.
We adopt the percentage cost reduction of our proposed
algorithm to the cache the most popular strategy’s cost as
our performance metric. Such a metric is defined as:

Cost Reduction(%) = 100×
CSIpK

(µp)− CSÎK (µ̂)

CSIpK
(µp)

.

The percentage cost reduction is depicted in Fig. 3. The
figure shows substantial gains (between 50− 90% reduction
in the cost) compared to the predominant popularity-based
design, are achievable with our proposed preliminary design.
It also reveals that the gains become more substantial as the
refresh rate of different items becomes more non-uniform
(as the parameter z increases).

Note that adding cache capacity to users is not always an
effective way to reduce the average system cost, specially in
presence of highly dynamic content.

Fig. 3: Average cost reduction by the proposed algorithm
over the cache the most popular for the single-user scenario.

IV. OPTIMAL CACHING AND UPDATING FOR DYNAMIC
CONTENT: MULTI-USER SCENARIO

Consider the scenario shown in Fig. 1, with M users. To
gain a clear insight of the potential wireless multicasting
gain and how distributed caching can relate to the single-
user scenario with a cache of size K, we assume that each
user in the multi-user scenario has the capacity to cache only
one of the date items. However, the number of users is set
equal to the number of items that the user can cache in the
single-user scenario. That is, M = K. In other words, we
distribute the K caching capacity over the users with each
user can cache one item.

In this section, we investigate what items to be cached
and how should the cached items be replicated over the set
of users. In the multi-user scenario, due to the broadcast
capability of wireless service, it is not necessary to employ
a cache check and update mechanism as is the case in the
single-user scenario. Instead, users that have a certain item
in their cache can update it for free if another user that does
not have it, requests its most fresh version from the database.

Let r = (r1, ..., rN) be the vector of the number of times
each item has been cached among the K users. In other
words, ri is the number of replicas of item i that exist in
the users’ caches. Also recall that C0 is the freshness cost
per an age unit. As the age of a cached content increases, the
freshness cost grows linearly. The average cost of urgently
fetching a data item from the database is Cf and the the
freshness cost of consuming an item from the cache is k.C0

where k is the age of the cached content.

A. Problem Formulation

For K users, each equipped with one cache, let r =
(r1, ..., rN) be the vector of replication. Define the feasible
set of solutions as:

FK =

{
r = (r1, . . . , rN) |

n∑
i=1

ri ≤ K, ri ∈ {0, 1, 2 . . .}

}
.

Lemma 2: Let CM(β, r) be the average expected system
cost in the Multi-user scenario with K users and request
arrival rate of β under vector of replication r ∈ FK . Then:

CM(r) = KβCf +

N∑
i=1

ri

(
C0λi
K − ri

− βpiCf
)
. (6)

Proof. Let {Πi
ri(t), t ≥ 0}, ∀i ∈ N be the Markov

process describing the freshness age of cached item i at
time t under the number of replicas ri. The evolution of
this process is shown in Fig. 4. As discussed earlier, in

𝟎 𝟏 𝟐

𝜷𝒑𝒊(𝑲 − 𝒓𝒊)

𝜷𝒑𝒊(𝑲 − 𝒓𝒊)

𝜷𝒑𝒊(𝑲 − 𝒓𝒊)

𝝀𝒊 𝝀𝒊 𝝀𝒊

Fig. 4: Markov chain diagram for freshness {Πi
ri(t), t ≥ 0}

under the number of replicas ri.

the multi-user scenario, the broadcast capability of wireless
service acts as a natural update mechanism. In other words,
users update their cached content for free by overhearing
that content while being served to other users who do not
have it in their cache. For any item i in the cache, since
there are K users and ri of them have item i in their cache,
the service rate of item i is equal to βpi(K − ri). As it can
be seen in Fig. 4, every service of item i acts as an update
mechanism for the users that hold item i in their cache and
upon occurrence, the service of item i from the database will
move the system back to state zero, the most fresh version.
Every arriving content update to the item i in the database
that occurs with rate λi increases the age of that item in the
cache by one.

Letting Πi
ri(t)

d−−−→
t→∞

Π̄i
ri and using the steady state

distribution of Πi
ri(t) define πik(ri) = P (Π̄i

ri = k), k ∈
{0, 1, 2, . . .} be the probability of item i having the age of
k under the number of replicas ri, then the average age of
item i is given by:

E[Π̄i
ri] =

λi
βpi(K − ri)

. (7)

The average system cost in the Multi-user scenario as K
users cache according to the vector of replication r =
(r1, ..., rN) ∈ FK , comprises two main terms and is given
by:
CM(r) = βCf

(
K −

N∑
i=1

ripi

)
+βC0

n∑
i=1

piriE[Π̄i
ri]. (8)

The first term in Equation (8), shows the average fetching
cost for any r ∈ FK and request arrival rate β as a function
of miss rate β

(
K −

∑N
i=1 ripi

)
. For any of the K users, if

a requested item is in the user’s cache, it will be immediately
served from the cache with the freshness cost, otherwise it
will be fetched from the database and the urgent fetching
cost Cf is incurred. Since there are ri users that have item
i in their cache, the miss rate for item i is βri(1 − pi).
Summing over all the N items and remembering that r ∈
FK , gives the total miss rate as β

(
K −

∑N
i=1 ripi

)
.

The second term in Equation (8), shows the average
freshness cost for any r ∈ FK and request arrival rate of
β. For each item i in the cache, the arrival request rate
is βpi and since the item with age k incurs the cost of

Algorithm 2 Multi-user caching strategy

Input: p = (p1, ..., pN), λ = (λ1, ..., λN),K
Initialization : r∗i = 0 ∀i ∈ N

1: Calculate δMi (r∗i) = KC0λi

(K−r∗i)(K−r∗i−1)
− βpiCf ∀i ∈

N .
2: j = arg min

i∈N
δMi (r∗i)

3: while δMj (r∗j) < 0 and
∑N
i=1 r

∗
i < K do

4: r∗j = r∗j + 1
5: update δj(r∗j) from Step 1.
6: update j = arg min

i∈N
δMi (r∗i)

7: end while
8: return r∗ = (r∗1 , . . . , r

∗
N)

k · C0, so the average cost of freshness for item i will be
C0E[Π̄i

ri]. Since ri is the number of users having item i in
their cache, the total freshness cost incurred by item i is
given by βpiriC0E[Π̄i

ri]. Summing over all the items gives
the total freshness cost of the system. Substituting Equation
(7) in Equation (8) gives the average cost of system.

Our objective is thus to choose the content to be cached
at the users in order to minimize the average cost of system,
that is:

arg min
r∈FK

CM(r). (9)

The traditional cache the most popular strategy in this
context reduces to caching the K most popular items1 to
the users’ caches, one item per user cache.

Definition 2 (Cache the Most Popular): Define the IpK ⊆
N to be the set of K most popular items. Then cache the
most popular strategy for the K users, each with a unit
caching capacity, is given by:

rpi :=

{
1, i ∈ IpK ,
0, i ∈ N \ IpK ,

with rp := (rp1 , ..., r
p
N).

Such strategy does not consider the freshness of items, yet
we address the question of whether the system can achieve
better performance through lower cost.

B. Proposed Algorithm

We propose Algorithm 2 based on the data items refresh
rate λ to solve (9).

In particular, as it can be seen in Algorithm 2, for item i,
we define the metric δM(λi, pi, l) = δMi (l) as follows:

δMi (l) :=
KC0λi

(K − l)(K − l − 1)
− βpiCf ∀i ∈ N . (10)

The metric δMi (l) captures the marginal cost of adding
item i to the cache given that l of the users have already
cached item i. Our proposed algorithm, at each step, sorts the

1Note that caching the same item at all users (i.e., setting ri = K for
some i ∈ N , rj = 0 ,∀j 6= i) can only result in an infinite cost due
to the fact that the item cached will never be requested from the database
yielding a freshness cost that grows indefinitely.

items based on δMi (l), caches the item with the minimum
δMi (l) and iterates until either all the items with negative
δi(l) are cached or there no more users are available to cache
more items (i.e., no available cache storage). Complexity of
proposed algorithm is similar to the sort algorithm.

Notice that items with positive δMi (l) can only increase
the average cost if cached. Similar to single user-scenario,
δMi (l) reveals the effect of refresh rate alongside the popu-
larity on gains that can be achieved by caching an item.

C. Performance Analysis

In the following, we provide a proof of optimality for the
proposed caching algorithm by showing that r∗ satisfies all
the necessary conditions for optimality.

Theorem 1: Algorithm 2 solves the problem (9) optimally.
Proof. We start the proof by first discussing the necessary
conditions for the optimal solution.

Lemma 3 (Necessary conditions for optimality): Any
optimal solution r̄ = (r̄1, . . . , r̄N) to the problem defined
in Equation (9) must satisfy all the following conditions.

δMi (r̄i − 1) ≤ 0 ∀i ∈ N , with r̄i > 0, (11)

δMi (r̄i − 1) ≤ δMj (r̄j) ∀j 6= i, with r̄i > 0, (12)
n∑
i=1

r̄i = K or δMi (r̄i) > 0 ∀i ∈ N . (13)

Proof. We use contradictions to prove that all the three
conditions are necessary for the optimal solution.

To prove that Equation (11) is necessary for optimality, we
use contradiction. Assume that Equation (11) does not hold,
so there exists j ∈ N with r̄j > 0 such that δMj (r̄j−1) > 0.
Then construct r = r̄− ej , where r ∈ FK and we have that
CM(r) = CM(r̄)− δMj (r̄j − 1). Since δMj (r̄j − 1) > 0, so
CM(r) < CM(r̄) which contradicts the fact that r̄ was the
optimal solution.

To prove that Equation (12) is necessary for optimality,
assume that there exist i, j ∈ N such that δMi (r̄i − 1) >
δMj (r̄j). Then construct r = r̄− ei + ej , where r ∈ FK and
we have that CM(r) = CM(r̄)−δi(r̄i−1)+δj(r̄j). So there
exists r ∈ FK with CM(r) < CM(r̄) which contradicts the
fact that r̄ was the optimal solution.

To prove that Equation (12) is necessary for optimality,
assume that

∑N
i=1 r̄i < K and j ∈ N such that δMj (r̄j) < 0.

Construct r = r̄ − ej , where r ∈ FK and we have that
CM(r) = CM(r̄) + δMj (r̄j). Since δMj (r̄j) < 0, so there
exists r ∈ FK with CM(r) < CM(r̄) which contradicts the
fact that r̄ was the optimal solution.

Now we prove that any solution r ∈ FK to the opti-
mization problem defined in Equation (9) that satisfies all
the necessary conditions for optimality given in Lemma 3,
results in the same average cost.

Lemma 4: Any solution r ∈ FK satisfying the Equations
(11), (12) and (13) will result in the same average cost.
Proof. To prove the lemma, we show that for any r, r̄ ∈ FK
and arbitrary a = (a1, . . . , aN) such that r = r̄+a if both r

and r̄ satisfy the conditions of Lemma 3, then either a = 0
or CM(r) = CM(r̄). Assume a 6= 0, we consider two cases
separately.

Case 1: if δMi (r̄i) > 0 ∀i ∈ N , then if there exists j such
that aj > 0, we have that:

δMj (rj − 1) = δMj (r̄j + aj − 1) > δMj (r̄j)

So Equation (11) does not hold for r, which is a contradic-
tion. Hence ai ≤ 0 ∀i ∈ N . If ai = 0 ∀i then the problem
is solved, but if there exists j such that aj < 0, then we
have:

δMj (rj) = δMj (r̄j + aj) ≤ δj(r̄j − 1) ≤ 0. (14)

According to Equation (13),
∑n
i=1 ri = K should hold for r,

but
∑N
i=1 ri =

∑N
i=1 r̄i+

∑n
i=1 ai < K, since

∑N
i=1 r̄i ≤ K

and
∑N
i=1 ai < 0, which is a contradiction.

Case 2: If δMi (r̄i) > 0 does not hold for all i ∈ N , then
according to Equation (13),

∑N
i=1 r̄i = K should hold. Since∑N

i=1 ri =
∑N
i=1 r̄i +

∑N
i=1 ai ≤ K, then

∑N
i=1 ai ≤ 0. If

ai ≤ 0 for all i, then in order to have a 6= 0, there exists
j ∈ N with aj < 0 such that Equation (14) holds. Now, from
Equation (13),

∑N
i=1 ri = K should hold for r, but since∑N

i=1 ai < 0, it is not possible. So if there exists j ∈ N
with aj < 0, there must exist v ∈ N with av > 0 such
that

∑N
i=1 ai = 0 since we should have

∑N
i=1 ri = K as

shown before. Since r satisfies all the necessary conditions
of Lemma 3, Equation (12) holds for r over v and j.
δMv (r̄v) ≤ δMv (r̄v + av − 1) ≤ δMj (r̄j + aj) ≤ δMj (r̄j − 1).

Now if δMv (r̄v) < δMj (r̄j − 1), the condition of Equation
(12) does not hold for r̄ which is a contradiction and if
δMv (r̄v) = δj(r̄j − 1), construct the r = r̄ + ev − ej . Then
CM(r) = CM(r̄)+δMv (r̄v)−δMj (r̄j−1) = CM(r̄). which
completes the proof.

The solution reached by Algorithm 2 satisfies all the
necessary conditions in Lemma 3 and according to Lemma
4, such a solution is optimal.

It is worth noting that the cache allocation strategy for
the multi-user scenario supported with wireless multicasting
can lead to some users caching less popular items than
those cached at other users. Such a diversity in cached
iterms’ popularities empowers the need for requests from
the database which in turn brings the most recent version of
content to users for free, thanks to wireless multicasting.

Knowing that the proposed algorithm, Algorithm 2, gives
the optimal solution, we investigate its performance merits
compared to other basic caching strategies like cache the
most popular strategy.

D. Numerical Investigations

Using the same parameter values defined in Section III.D
with z = 1.2 and changing the number of users K, we set
the performance metric to be the percentage cost reduction
of our proposed algorithm, Algorithm 2, to cache the most
popular strategy’s cost. Define:

Cost Reduction(%) = 100× CM(rp)− CM(r∗)

CM(rp)
,

Fig. 5: Average cost reduction by the proposed algorithm
over the cache the most popular for the multi-user scenario.

The percentage cost reduction is depicted in Fig. 5. The fig-
ure shows considerable gains compared to the predominant
popularity-based design are achievable with our proposed
preliminary design. It also reveals that the gains become
more substantial as the number of users increases, reveling
that proposed algorithm, Algorithm 2, can more effectively
incorporate the broadcasting gain to reduce the cost. It also
reveals that the gain increases as the refresh rate of different
items decreases. Also as the refresh rate of different items
decreases, with less users we can achieve higher gains,
benefiting more from the multicasting gain.

We also compare the average cost of the single-user with
the multi-user scenario. Running the Algorithm 1 for the
single-user scenario and Algorithm 2 for the multi-user
scenario, with CSÎK

(µ̂) and CM(r∗)/K representing the
average cost per user for these two scenarios respectively.
Setting the performance metric to be the percentage cost
reduction per user for multi-user scenario compared to the
single-user scenario’s cost, we define:

Cost Reduction(%) = 100×
CSÎK

(µ̂)− CM(r∗)/K

CS
ÎK

(µ̂)
.

Fig. 6 shows the percentage cost reduction for different
caching costs of Cca. According to the figure, for small
cache size, single cache outperforms distributed caching in
the sense of average cost per user, but as the number of
users grows, the multi-user scenario, benefiting more through
the multicasting property, will outperform the single-user
scenario. In other words, through distributed caching aided
with multicast cache update, the per-user cost in the multi-
user system decreases as the number of users K grows,
while the single-user’s cost does not benefit from more
cache storage, K, because of the associated cache check and
update requests. Recall that the multi-user scenario, despite
the single-user scenario, does not employ any optimized
cache checking and updating mechanism.

V. CONCLUSION

In this work, we have proposed caching algorithms for
wireless content distribution networks serving dynamically
changing data content such as news updates, social network
stories, and any other system with time-varying states.

Fig. 6: Average cost reduction per user by distributing cache
space between multiple users.

We have developed a design framework together with the
performance analysis for efficient freshness-driven caching
strategies. We have characterized the average operational
cost both for the single-user and multi-user scenarios. Our
results have revealed that, in the presence of dynamic
content, adding more cache space to edge-users may solve
the system congestion problem at the expense of a high
freshness cost. In the multi-user scenario, as the number
of users increases, our proposed algorithm benefits more
from the multicasting property as a mechanism to update
the cache content and outperforms single-user caching. Our
results have also demonstrated that freshness-driven design
considerably reduces the average cost and optimizes the
cache space more effectively than the predominant existing
strategies such as cache the most popular content.

REFERENCES

[1] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in 2010 Proceedings IEEE INFOCOM.
IEEE, 2010, pp. 1–9.

[2] A. Meyerson, K. Munagala, and S. Plotkin, “Web caching using
access statistics,” in Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, 2001, pp. 354–363.

[3] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Placement algo-
rithms for hierarchical cooperative caching,” Journal of Algorithms,
vol. 38, no. 1, pp. 260–302, 2001.

[4] R. E. Craig, S. D. Ims, Y. Li, D. E. Poirier, S. Sarkar, Y.-s. Tan, and
M. R. Villari, “Caching dynamic content,” Jun. 29 2004, uS Patent
6,757,708.

[5] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal,
“Enabling dynamic content caching for database-driven web sites,”
in Proceedings of the 2001 ACM SIGMOD international conference
on Management of data, 2001, pp. 532–543.

[6] C. Yuan, Y. Chen, and Z. Zhang, “Evaluation of edge caching/off load-
ing for dynamic content delivery,” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 11, pp. 1411–1423, 2004.

[7] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Information freshness and popularity in mobile
caching,” in 2017 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2017, pp. 136–140.

[8] V. S. Mookerjee and Y. Tan, “Analysis of a least recently used cache
management policy for web browsers,” Operations Research, vol. 50,
no. 2, pp. 345–357, 2002.

[9] H. Chen, Y. Xiao, and X. Shen, “Update-based cache access and
replacement in wireless data access,” IEEE Transactions on Mobile
Computing, vol. 5, no. 12, pp. 1734–1748, 2006.

[10] M. Akon, M. T. Islam, X. Shen, and A. Singh, “OUR: Optimal update-
based replacement policy for cache in wireless data access networks
with optimal effective hits and bandwidth requirements,” Wireless
Communications and Mobile Computing, vol. 13, no. 15, pp. 1337–
1352, 2013.

