# Supplementary Material for 

'Budget-Constrained Bandits over General Cost and Reward Distributions"


#### Abstract

We consider a budget-constrained bandit problem where each action depletes a random cost from a budget $B>0$, and a random reward is obtained in return. The objective is to maximize the total expected reward under the budget constraint. The model is general in the sense that it allows correlated, potentially heavy-tailed cost-reward pairs that can take on negative values. We show that if moments of order $(2+\gamma)$ for some $\gamma>0$ exist for all cost-reward pairs, $O(\log B)$ regret is achievable. In order to achieve tight regret bounds, we propose algorithms that exploit the correlation between the cost and reward of each arm by extracting the common information via linear minimum mean-square error estimation, and use second-order moment estimates. We prove a regret lower bound for the problem, and show that the proposed algorithms achieve the regret lower bound up to a universal constant for the case of jointly Gaussian cost and reward pairs.


## 1 Introduction

Multi-armed bandits (MAB) have been the prominent model for modeling the exporation-andexploitation dilemma since its introduction in [Robbins, 1952]. Due to the universality of the dilemma, bandit algorithms have found a broad area of applications from medical trials to routing in communications. As a common feature of all MAB instances, each action depletes a cost from a limited budget, and a random reward is obtained in return. In such a setting, the aim of the decision maker is to balance the exploration and exploitation at every step so as to maximize the cumulative reward until depleting the budget. In the classical MAB setting, each action is assumed to consume a known deterministic amount of resource, i.e., one time-slot. However, in many problems of interest, different tasks consume different and random amount of resources with diverse statistics. Moreover, as in many applications in communications and finance, the cost and reward can be correlated and potentially heavy-tailed.
In this paper, we consider algorithms for budget-constrained multi-armed bandit (MAB) problem over general cost and reward distributions. Unlike the classical stochastic MAB problem, each action incurs a random cost and yields a random reward in our model, where both cost and reward are learned via bandit feedback. Under a budget constraint $B$, the objective of the controller is to maximize the expected cumulative reward until the total cost exceeds the budget. Many of our results are obtained for a very general setting where the cost and reward can be correlated and potentially heavy-tailed, but sharper results are presented for some interesting special cases.

### 1.1 Main Contributions

There are three very important problems that remain unexplored in the budgeted bandit literature to the best of our knowledge:

- Unbounded and potentially heavy-tailed cost and reward,
- The correlation between the cost and reward,
- Regret lower bounds that reflect the effects of variability and correlation in cost-reward pairs.

In this paper, we address these challenges and propose provably good learning algorithms. Our main contributions are as follows:

1. Sub-Gaussian cost and reward: We propose algorithms that use the second-order moments to achieve tight regret bounds. In the case of correlated cost-reward pairs, we show that exploiting the correlation might boost the convergence speed of the learning algorithms further, which implies significant performance gains. This common information is extracted by using linear minimum mean square error (LMMSE) estimation between the cost and reward pairs. We show that this method yields optimal regret up to a universal constant in the case of jointly Gaussian cost and reward pairs.
2. General cost and reward distributions: We propose an algorithm based on robust estimation [Minsker et al. 2015], and show that the regret performance in the sub-Gaussian case can be achieved as long as the moment of order $(2+\gamma), \gamma>0$ exists for the cost, and the variance exists for the reward of each arm.
3. Regret lower bounds: We extend the regret lower bound in [Lai and Robbins, 1985] to the case of random costs, and obtain explicit bounds for jointly Gaussian cost-reward distributions.

### 1.2 Related Work

The classical stochastic multi-armed bandit problem, which is a specific case of the model we study in this paper, has been extensively studied in the literature. For detailed discussion on the basic model, we refer to [Bubeck et al., 2012, Berry and Fristedt, 1985].

The budget-constrained MAB problem and its variants were investigated in a variety of papers. In [Tran-Thanh et al., 2012] and [Combes et al. 2015], budget-constrained multi-armed bandit problem is investigated where each arm pull incurs an arm-dependent and deterministic cost. In |Guha and Munagala, 2009], the budgeted-bandit problem with deterministic costs is investigated from a Bayesian perspective, and constant-factor approximation algorithms are proposed. In György et al. 2007], the continuous-time extension of the MAB problem with side information is investigated, which is an early example for the budget-constrained bandit problem. In [Badanidiyuru et al. 2013] and [Agrawal and Devanur 2014], the bandit problem under multiple budget constraints is examined, and $\bar{O}(\sqrt{B})$ regret bounds are obtained. In [Xia et al., 2015, 2016], the budget-constrained MAB problem is explored in a similar setting to ours. In these works, the cost-reward pairs are supported in $[0,1]$, and they are assumed to be independent for all arms. In [Cayci et al. 2019], the authors consider a variation of the budget-constrained bandit problem where the controller has the option to interrupt an ongoing cycle for a faster alternative. The interruption mechanism brings significantly different dynamics to the problem that is investigated in this paper.
Bandits with heavy-tailed reward distributions are considered in [Liu and Zhao, 2011, Bubeck et al. 2013]. These papers are still in the scope of the classical MAB setting: the budget is consumed deterministically at rate 1 by each action, so the dynamics of the random resource consumption with heterogeneous statistics are not included in the model.

## 2 System Setup

In this paper, we consider a bandit problem with $K$ arms. The set of arms is denoted by $\mathbb{K}=$ $\{1,2, \ldots, K\}$. Each arm $k \in \mathbb{K}$ is described by a two-dimensional random process $\left\{\left(X_{n, k}, R_{n, k}\right)\right.$ : $n \geq 1\}$ that is independent from other arms. If arm $k$ is chosen at $n$-th epoch, it incurs a cost of $X_{n, k}$ and yields a reward of $R_{n, k}$, where both are learned via a bandit feedback only after the decision is made. The controller has a cost budget $B>0$, and tries to maximize the expected cumulative reward it receives by sampling the arms wisely under this budget constraint.
The pair ( $X_{n, k}, R_{n, k}$ ) is assumed to be independent and identically distributed over $n$, but the cost $X_{n, k}$ and reward $R_{n, k}$ can be correlated. We allow $X_{n, k}$ to take on negative values, but the drift is assumed to be positive, i.e., there exists $\mu_{*}>0$ such that $\mathbb{E}\left[X_{n, k}\right] \geq \mu_{*}>0$ for all $k$.

Let $\pi$ be an algorithm that yields a sequence of arm pulls $\left\{I_{n}^{\pi} \in \mathbb{K}: n \geq 1\right\}$. Under $\pi$, the history until epoch $n$ is the following filtration:

$$
\begin{equation*}
\mathcal{F}_{n}^{\pi}=\sigma\left(\left\{\left(X_{j, k}, R_{j, k}\right): I_{j}^{\pi}=k, 1 \leq j \leq n\right\}\right) \tag{1}
\end{equation*}
$$

where $\sigma(X)$ denotes the sigma-field of a random variable $X$. We call an algorithm $\pi$ admissible if $\pi$ is non-anticipating, i.e., $\left\{I_{n}^{\pi}=k\right\} \in \mathcal{F}_{n-1}^{\pi}$ for all $k, n$. The set of all admissible policies is denoted as $\Pi$.

The total cost incurred in $n$ epochs under an admissible policy $\pi \in \Pi$ is a controlled random walk which is defined as $S_{n}^{\pi}=\sum_{i=1}^{n} X_{i, I_{i}^{\pi}}$. The arm pulling process under an algorithm $\pi$ continues until the budget $B$ is depleted. We assume that the reward corresponding to the final epoch during which the budget is depleted is gathered by the controller. Thus, the total number of pulls under $\pi$ is defined as follows:

$$
\begin{equation*}
N_{\pi}(B)=\inf \left\{n: S_{n}^{\pi}>B\right\} \tag{2}
\end{equation*}
$$

Note that the total number of pulls $N_{\pi}(B)$ is a stopping time adapted to the filtration $\left\{\left(\mathcal{F}_{t}^{\pi}\right): t \geq 0\right\}$. With these definitions, the cumulative reward under a policy $\pi$ can be written as follows:

$$
\begin{equation*}
\operatorname{Rew}_{\pi}(B)=\sum_{i=1}^{N_{\pi}(B)} R_{i, I_{i}^{\pi}} . \tag{3}
\end{equation*}
$$

The objective in this paper is to design algorithms that achieve maximum $\mathbb{E}\left[R e w_{\pi}(B)\right]$, or equivalently minimum regret, which is defined as follows:

$$
\begin{equation*}
\operatorname{Re} g_{\pi}(B)=\mathbb{E}\left[\operatorname{Re} w_{\pi} \mathrm{opt}(B)\right]-\mathbb{E}\left[\operatorname{Re} w_{\pi}(B)\right] \tag{4}
\end{equation*}
$$

where $\pi^{\mathrm{opt}}(B)$ denotes the optimal policy:

$$
\pi^{\mathrm{opt}}(B) \in \underset{\pi^{\prime} \in \Pi}{\arg \max } \mathbb{E}\left[\operatorname{Rew}_{\pi^{\prime}}(B)\right]
$$

for any $B>0$.
In the following section, we investigate the optimal policy that maximizes the expected cumulative reward when all arm distributions are known, and provide low-complexity approximations that have desirable performance characteristics.

## 3 Approximations of the Oracle

The optimization problem described in Section2 is an instance of the well-known stochastic knapsack problem whose solution is NP-hard even if all statistics are fully known by the controller [Kohli et al. 2004, Kellerer et al., 2004]. In order to overcome this difficulty, we will consider approximation algorithms with provably good performance in this section.
The main quantity of interest will be the reward rate, which is defined as follows:

$$
\begin{equation*}
r_{k}=\frac{\mathbb{E}\left[R_{1, k}\right]}{\mathbb{E}\left[X_{1, k}\right]}, k \in \mathbb{K} \tag{5}
\end{equation*}
$$

Intuitively, if arm $k$ is chosen persistently until the budget $B>0$ is depleted, the cumulative reward becomes $r_{k} B+o(B)$ as $B \rightarrow \infty$. The additive $o(B)$ term is $O(1)$ if $\mathbb{E}\left[\left(X_{1, k}^{+}\right)^{2}\right]<\infty$ by Lorden's inequality [Asmussen, 2008]. Hence, pulling the arm with the highest reward rate is a logical choice.

In the following, we prove that the optimality gap is $O(1)$ under mild moment conditions, which covers the case of heavy-tailed cost-reward pairs.
Definition 1 (Optimal Static Algorithm). Let $k^{*}$ be the arm with the highest reward rate:

$$
k^{*} \in \underset{k \in \mathbb{K}}{\arg \max } r_{k} .
$$

The optimal static policy, denoted by $\pi^{*}$, pulls $k^{*}$ until the budget is depleted: $I_{n}^{\pi^{*}}=k^{*}$ for all $n \leq N_{\pi^{*}}(B)$.

The main result of this section is the following proposition, which implies that $\pi^{*}$ is a plausible approximation algorithm for $\pi^{\mathrm{opt}}(B)$ for all $B>0$ under mild moment conditions.

Assumption 1. There exists $\gamma>0$ such that $\mathbb{E}\left[\left(X_{1, k}^{+}\right)^{2+\gamma}\right]<\infty$ for all $k \in \mathbb{K}$.
Proposition 1 (Optimality Gap for $\pi^{*}$ ). Under Assumption 11 there exists a constant

$$
G^{\star}=G^{\star}\left(\min _{k} \mathbb{E}\left[X_{1, k}\right], \max _{k} \operatorname{Var}\left(X_{1, k}\right)\right)<\infty
$$

independent of $B$ such that the following holds:

$$
\begin{equation*}
\max _{\pi \in \Pi} \mathbb{E}\left[\operatorname{Re} w_{\pi}(B)\right]-\mathbb{E}\left[\operatorname{Re} w_{\pi^{*}}(B)\right] \leq G^{\star} \tag{6}
\end{equation*}
$$

for any $B>0$. Consequently, $\pi^{*}$ is asymptotically optimal as $B \rightarrow \infty$.

Proof. The proof is given in Appendix A.

This result extends the optimality gap result presented in [Xia et al., 2016] for bounded and strictly positive costs to unbounded costs with positive drift that can take on negative values. Also, for small $B$ values, there can be dynamic policies that outperform this simple static policy [Dean et al. 2004]. However, the optimality gap is still $O(1)$ for these dynamic policies, therefore we consider $\pi^{*}$ for its simplicity and efficiency.
Now that we have an accurate approximation for the oracle, we propose the first and basic algorithms that assume the knowledge of second-order moments.

## 4 Algorithms for Known Second-Order Moments

In this section, we will assume that the second-order moments of all cost-reward pairs are known by the decision maker. First, in Section 4.2 , we will consider the case ( $X_{n, k}, R_{n, k}$ ) are jointly sub-Gaussian, and propose a learning algorithm that achieves tight regret bound on the order of $O(\log (B))$ by using the correlation information. Then, in Section 4.3 we will study the general case where the cost and reward can be unbounded and potentially heavy-tailed, and propose algorithms that achieve the same regret bounds (up to a constant) as the sub-Gaussian case.
The following proposition provides a basis for the algorithm design and analysis throughout the paper.

### 4.1 Preliminaries: Rate Estimation

Let $\theta=\left(\theta_{1}, \theta_{2}\right) \in \mathbb{R}^{2}$ be a pair of unknown constants for which $r=\frac{\theta_{2}}{\theta_{1}}$ is to be estimated. The following proposition yields a useful device to obtain concentration results for $r$ from concentration results for $\theta_{1}$ and $\theta_{2}$ for this estimation procedure.
Proposition 2 (Rate Estimation). Let $\widehat{\theta}_{1}$ and $\widehat{\theta}_{2}$ be estimators for $\theta_{1}>0, \theta_{2} \geq 0$, respectively. If $\eta \in\left(0, \frac{\theta_{1}(\lambda-1)}{\lambda}\right)$ for some $\lambda>1$, then we have the following result:

$$
\mathbb{P}\left(\left|r-\frac{\hat{\theta}_{2}}{\hat{\theta}_{1}}\right|>\frac{\lambda(\epsilon+r \eta)}{\theta_{1}}\right) \leq \mathbb{P}\left(\left|\hat{\theta}_{1}-\theta_{1}\right|>\eta\right)+\mathbb{P}\left(\left|\hat{\theta}_{2}-\theta_{2}\right|>\epsilon\right)
$$

Therefore, if $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ both achieve exponential convergence rate, then $\frac{\hat{\theta}_{2}}{\hat{\theta}_{1}}$ converges to $r$ exponentially fast. The intuition behind the proposition is illustrated in Figure 4.1
Remark 1 (Stability of the rate estimator). The condition $\eta<\theta_{1}$, i.e., sufficient concentration of the estimator around the true parameter $\theta_{1}$, is crucial for Proposition 2 Note that if the variability of the mean estimator is high and thus $A(\eta, \epsilon)$ intersects with the $y$-axis, then the above bound is useless as $\hat{r}$ can have arbitrarily large deviations from $r$.

In the following, we propose algorithms under the assumption that the second-order moments for each arm $k$ is known by the controller.


Figure 1: If $\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)$ is in the high-probability set $A(\eta, \epsilon)$, then the maximum deviation of $\hat{r}=\frac{\hat{\theta}_{2}}{\hat{\theta}_{1}}$ from $r$ is $\frac{\lambda(\epsilon+r \eta)}{\theta_{1}}$, and it is achieved at the marked corner.

### 4.2 Sub-Gaussian Case: Algorithm UCB-B1

The main idea behind UCB-B1 is to use an upper confidence bound for the reward rate $r_{k}$. Let $T_{k}(n)$ be the number of pulls for arm $k$ in the first $n$ stages and $\widehat{r}_{k, n}=\frac{\widehat{\mathbb{E}}_{n}\left[R_{k}\right]}{\max \left\{\widehat{\mathbb{E}}_{n}\left[X_{k}\right], b\right\}}$ where

$$
\begin{aligned}
& \widehat{\mathbb{E}}_{n}\left[X_{k}\right]=\frac{1}{T_{k}(n)} \sum_{i=1}^{n} \mathbb{I}\left\{I_{i}=k\right\} X_{i, k}, \\
& \widehat{\mathbb{E}}_{n}\left[R_{k}\right]=\frac{1}{T_{k}(n)} \sum_{i=1}^{n} \mathbb{I}\left\{I_{i}=k\right\} R_{i, k},
\end{aligned}
$$

and $b \leq \mathbb{E}\left[X_{1, k}\right] / 2$ for all $k$. Instead of estimating $\mathbb{E}\left[X_{1, k}\right]$ and $\mathbb{E}\left[R_{1, k}\right]$ separately from the samples of ( $X_{n, k}, R_{n, k}$ ), the correlation between $X_{n, k}$ and $R_{n, k}$ can be exploited to tighten the upper confidence bound for $r_{k}$. This is achieved by estimating $R_{n, k}$ by a linear estimator $\omega X_{n, k}$ so as to minimize $\operatorname{Var}\left(R_{n, k}-\omega X_{n, k}\right)$. Let

$$
\begin{equation*}
V\left(X_{1, k}, R_{1, k}\right)=\min _{\omega \in \mathbb{R}} \operatorname{Var}\left(R_{1, k}-\omega X_{1, k}\right) \tag{7}
\end{equation*}
$$

By the orthogonality principle [Poor 2013],

$$
\begin{align*}
\omega_{k} & =\underset{\omega \in \mathbb{R}}{\arg \min } \operatorname{Var}\left(R_{1, k}-\omega X_{1, k}\right) \\
& =\frac{\operatorname{Cov}\left(X_{1, k}, R_{1, k}\right)}{\operatorname{Var}\left(X_{1, k}\right)} \tag{8}
\end{align*}
$$

and the optimal value of the objective is given by:

$$
V\left(X_{1, k}, R_{1, k}\right)=\operatorname{Var}\left(R_{1, k}\right)-\omega_{k}^{2} \operatorname{Var}\left(X_{1, k}\right)
$$

which implies that $\omega_{k}$ and $V$ can be computed from the second-order moments of ( $X_{n, k}, R_{n, k}$ ), which are assumed to be given in this section. For simplicity, assume $\omega_{k} \leq r_{k}$ for all $k$.
For non-negative ( $M_{X}, M_{R}, L$ ) that will be specified later, let

$$
\begin{aligned}
& \epsilon_{k, n}^{\mathrm{B}}=\frac{2 \alpha M_{R} \log (n)}{3 T_{k}(n)}+\sqrt{L \alpha \frac{V\left(X_{1, k}, R_{1, k}\right) \log (n)}{T_{k}(n)}} \\
& \eta_{k, n}^{\mathrm{B}}=\frac{2 \alpha M_{X} \log (n)}{3 T_{k}(n)}+\sqrt{L \alpha \frac{\operatorname{Var}\left(X_{1, k}\right) \log (n)}{T_{k}(n)}}
\end{aligned}
$$

Then, if there is a remaining budget, then the UCB-B1 Algorithm pulls an arm at stage $n+1$ according to:

$$
I_{n+1} \in \arg \max _{k}\left\{\widehat{r}_{k, n}+1.36 \frac{\epsilon_{k, n}^{\mathrm{B}}+\left(\widehat{r}_{k, n}-\omega_{k}\right) \eta_{k, n}^{\mathrm{B}}}{\left(\widehat{\mathbb{E}}_{n}\left[X_{k}\right]-3 \eta_{k, n}^{\mathrm{B}}\right)^{+}}\right\}
$$

The regret performance of UCB-B1 is presented in the following theorem.
Theorem 1 (Regret Upper Bound for UCB-B1). Let $\Delta_{k}=r^{*}-r_{k}$,

$$
\begin{equation*}
\sigma_{k}^{2}=V\left(X_{1, k}, R_{1, k}\right)+\left(r^{*}-\omega_{k}\right)^{2} \operatorname{Var}\left(X_{1, k}\right), \tag{9}
\end{equation*}
$$

for all $k \in \mathbb{K}$ and recall that $\mu_{*}=\min _{k} \mathbb{E}\left[X_{1, k}\right]$.

1. Bounded Cost and Reward: If $\left|X_{1, k}\right| \leq M_{X},\left|R_{1, k}\right| \leq M_{R}$ a.s., $\alpha>3$ and $L=2$, then the regret under UCB-B1 is upper bounded as:

$$
\begin{equation*}
\operatorname{Reg}_{\pi^{\mathrm{B} 1}}(B) \leq \alpha \sum_{k: \Delta_{k}>0} \log \left(\frac{2 B}{\mu_{*}}\right) C_{k}^{\mathrm{B} 1}+O(1), \tag{10}
\end{equation*}
$$

where $M_{k}=M_{R}+r_{k} M_{X}$ and

$$
C_{k}^{\mathrm{B} 1}=\frac{32 \sigma_{k}^{2}}{\Delta_{k} \mathbb{E}\left[X_{1, k}\right]}+32 M_{k}+16 M_{X} \Delta_{k}
$$

for all $k$.
2. Jointly Sub-Gaussian Cost and Reward: Let $\left(X_{n, k}, R_{n, k}\right)$ be jointly sub-Gaussian with covariance matrix $\Sigma_{k}$ for all $k$. Then, UCB-B1 with $\alpha>3, M_{X}=M_{R}=0$ and $L=\frac{1}{2}$ yields the following regret bound:

$$
\begin{equation*}
\operatorname{Reg}_{\pi^{\mathrm{B} 1}}(B) \leq \alpha \sum_{k: \Delta_{k}>0} \log \left(\frac{2 B}{\mu_{*}}\right) \frac{16 \sigma_{k}^{2}}{\Delta_{k} \mathbb{E}\left[X_{1, k}\right]}+O(1) \tag{11}
\end{equation*}
$$

where $\sigma_{k}$ is defined in (9).

Proof. The detailed proof, which will provide basis for the analysis of other algorithms proposed in this work, can be found in Appendix C. Note that the number of pulls, $N_{\pi}(B)$, is a random stopping time in this setting. Moreover, the decisions are made asynchronously with the oracle, which makes the regret analysis even more difficult. In order to tackle these challenges, we follow a proof strategy based on establishing a high-probability upper bound for $N_{\pi}(B)$ by using the theory of stopped random walks, which can be found in Appendix B.

### 4.3 Heavy-Tailed Case: Algorithm UCB-M1

In this subsection, we design a general algorithm that achieves the regret in the sub-Gaussian case (up to a constant) under the mild moment condition that $\mathbb{E}\left[\left(X_{1, k}^{+}\right)^{2+\gamma}\right]<\infty$ for all $k$.
The empirical mean estimator played a central role in the design of the UCB-B1 Algorithm for sub-Gaussian distributions, which is proved to achieve $O(\log (B))$ regret. However, if we consider heavy-tailed distributions, the empirical mean estimator fails to achieve exponential convergence rate due to the frequent outliers [Bubeck et al., 2013]. The median-based estimators, introduced in [Nemirovsky and Yudin, 1983] provide an elegant method to boost the convergence speed in mean estimation. The idea of boosting the confidence of weak independent estimators by taking the median was extended to general point estimation problems (beyond the mean estimation) in [Minsker et al. 2015]. In the following, we will use a variation of this method in the design of median-based rate estimators.
Consider arm $k \in \mathbb{K}$ at stage $n$. For

$$
m=\lfloor 3.5 \alpha \log (n)\rfloor+1
$$

we partition the observed samples $\left\{\left(X_{i, k}, R_{i, k}\right)\right.$ : $\left.I_{i}=k, 1 \leq i \leq n\right\}$ into index sets $G_{1}, G_{2}, \ldots, G_{m}$ of size $\left\lfloor T_{k}(n) / m\right\rfloor$ each. Then, for each $j \in\{1,2, \ldots, m\}$, let $\tilde{r}_{k, G_{j}}=$ $\frac{\widehat{\mathbb{E}}_{G_{j}}\left[R_{k}\right]}{\max \left\{\widehat{\mathbb{E}}_{G_{j}}\left[X_{k}\right], b\right\}}$ where $b \leq \mathbb{E}\left[X_{1, k}\right] / 2$, and

$$
\widehat{\mathbb{E}}_{G_{j}}\left[X_{k}\right]=\sum_{i \in G_{j}} \frac{X_{i, k}}{\left|G_{j}\right|}, \quad \widehat{\mathbb{E}}_{G_{j}}\left[R_{k}\right]=\sum_{i \in G_{j}} \frac{R_{i, k}}{\left|G_{j}\right|} .
$$

The median-based rate estimator for arm $k$ at stage $n$ is thus

$$
\bar{r}_{k, n}=\underset{1 \leq j \leq m}{\text { median }} \tilde{r}_{k, G_{j}} .
$$

The deviations in the cost and reward are as follows:

$$
\begin{aligned}
& \epsilon_{k, n}^{\mathrm{M}}=11 \sqrt{\alpha \frac{V\left(X_{1, k}, R_{1, k}\right) \log (n)}{T_{k}(n)}} \\
& \eta_{k, n}^{\mathrm{M}}=11 \sqrt{\alpha \frac{\operatorname{Var}\left(X_{1, k}\right) \log (n)}{T_{k}(n)}}
\end{aligned}
$$

Therefore, the decision at stage $(n+1)$ under UCB-M1 is as follows:

$$
\begin{equation*}
I_{n+1} \in \arg \max _{k}\left\{\bar{r}_{k, n}+\widehat{c}_{k, n}^{M}\right\} \tag{12}
\end{equation*}
$$

where

$$
\widehat{c}_{k, n}^{\mathrm{M}}=\frac{2 \sqrt{2}\left(\epsilon_{k, n}^{\mathrm{M}}+\left(\bar{r}_{k, n}-\omega_{k}\right) \eta_{k, n}^{\mathrm{M}}\right.}{\left(\operatorname{median}_{1 \leq j \leq m} \widehat{\mathbb{E}}_{G_{j}}\left[X_{k}\right]-3 \eta_{k, n}^{\mathrm{M}}\right)^{+}}
$$

For UCB-M1, we have the following regret upper bound.

## Theorem 2 (Regret Upper Bound for UCB-M1). If the following moment conditions hold:

- $\mathbb{E}\left[\left(X_{1, k}^{+}\right)^{2+\gamma}\right]<\infty$, for all $k$,
- $\operatorname{Var}\left(R_{1, k}\right)<\infty$, for all $k$,
then the regret under UCB-M1 satisfies the following upper bound:

$$
\begin{equation*}
R e g_{\pi^{n 1}}(B) \leq \alpha \sum_{k: \Delta_{k}>0} \log \left(\frac{2 B}{\mu_{*}}\right) \frac{C \sigma_{k}^{2}}{\Delta_{k} \mathbb{E}\left[X_{1, k}\right]}+O(1) \tag{13}
\end{equation*}
$$

where $\sigma_{k}$ is as defined in (9) and $C>0$ is a universal constant.
Remark 2. We have the following observations from Theorem 1 and 2

- If $\operatorname{Var}\left(X_{1, k}\right) \downarrow 0$ and $\mathbb{E}\left[X_{1, k}\right]=1$, the regret upper bounds match with the existing regret bounds for the stochastic bandit problem.
- Note that for positively correlated $X_{n, k}$ and $R_{n, k}$, one can ignore the correlation and use an upper confidence bound based on the separate estimation of $X_{n, k}$ and $R_{n, k}$. From Theorem 1. it can be observed that this scheme leads to a loss of $O\left(\sum_{k} \operatorname{Cov}\left(X_{1, k}, R_{1, k}\right)\right)$. Moreover, as it will be seen in the next section, this is nearly the best way of exploiting the correlation in the case of jointly Gaussian cost and reward pairs.
- The UCB-M1 Algorithm achieves the same regret upper bound as the UCB-B1 Algorithm up to a constant with much less moment assumptions: while UCB-B1 requires sub-Gaussianity, UCB-M1 requires only existence of moments of order $(2+\gamma)$ for some $\gamma>0$ for the costs, and second-order moments for the rewards. However, the constant that multiplies the $O(\log B)$ term is much higher in UCB-M1 than UCB-B1, which can be viewed as the cost of generality.
- If the cost is deterministic, i.e., $\operatorname{Var}\left(X_{1, k}\right)=0$, then the regret is monotonically decreasing in $\Delta_{k}$ as $O\left(\frac{\log B}{\Delta_{k}}\right)$ for each arm $k$. However, for random costs, since $r^{*}=r_{k}+\Delta_{k}$, the regret bounds have an additive term scaling linearly in $\Delta_{k}$ as $O\left(\log \left(\frac{2 B}{\mu_{*}}\right) \sum_{k} \frac{\operatorname{Var}\left(X_{1, k}\right)}{\mathbb{E}\left[X_{1, k}\right]} \Delta_{k}\right)$, which might seem strange at first since the separability of a suboptimal arm $k$ increases with its corresponding $\Delta_{k}$. This is a unique phenomenon observed in the case of stochastic costs: recall from Remark 1 that the rate estimator is unstable when the confidence interval for the estimation of $\mathbb{E}\left[X_{1, k}\right]$ is large, and thus it incurs $\mathbb{E}\left[X_{1, k}\right] \Delta_{k}$ regret per pull since rate estimation is unreliable. As it will be seen in Corollary 1 , the same term appears with the same coefficient in the regret lower bound for jointly Gaussian cost-reward pairs, which implies that it is inevitable at least in that case.


## 5 Regret Lower Bound for Admissible Policies

In this section, we will propose regret lower bounds for the budget-constrained bandit problem based on [Lai and Robbins, 1985]. In the specific case of jointly Gaussian cost-reward pairs, we can determine a lower bound explicitly, which provides useful insight about the impact of variability and correlation on the regret.
In order to establish a regret lower bound, assume that the joint distribution of $\left\{\left(X_{n, k}, R_{n, k}\right): n \geq 1\right\}$ is parametrized by $\theta_{k} \in \Theta_{k}$ for some parameter space $\Theta_{k}$, i.e., $\left(X_{n, k}, R_{n, k}\right) \sim P_{\theta_{k}}$. For any $k \in \mathbb{K}$ and $\theta \in \Theta_{k}$, let $r_{k}(\theta)=\frac{\mathbb{E}_{\theta}\left[R_{1, k}\right]}{\mathbb{E}_{\theta}\left[X_{1, k}\right]}$ be the reward rate (i.e., reward per unit cost). Furthermore, for a given bandit instance $\vec{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{K}\right)$, let $r^{*}=\max _{k} r_{k}\left(\theta_{k}\right)$ be the optimal reward rate, and $\Delta_{k}=r^{*}-r_{k}\left(\theta_{k}\right)$. For admissible policies, we have the following regret lower bound, which is an extension of Lai-Robbins style regret lower bounds for the stochastic bandit problem [Lai and Robbins, 1985].
Theorem 3 (Regret Lower Bound). Suppose that $\mathbb{E}\left[\left(X_{1, k}\right)^{2+\gamma}\right]<\infty$ for some $\gamma>0$ and $\operatorname{Var}\left(R_{1, k}\right)<\infty$ hold for all $k$. Assume that the following conditions are satisfied by $P_{k, \theta}$ for any $k$ :

1. If $r_{k}\left(\theta_{1}\right)>r_{k}\left(\theta_{2}\right)$, then $D\left(P_{k, \theta_{2}} \| P_{k, \theta_{1}}\right)<\infty$,
2. (Denseness) $r_{k}\left(\Theta_{k}\right)=\left\{r_{k}(\theta): \theta \in \Theta_{k}\right\}$ is dense,
3. (Continuity) $\theta \mapsto D\left(P_{k, \theta_{k}} \| P_{k, \theta}\right)$ is a continuous mapping.

For a given bandit instance $\vec{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{K}\right)$, if $\pi \in \Pi$ is a policy such that $\mathbb{E}\left[T_{k}^{\pi}(n)\right]=o\left(n^{\alpha}\right)$ for any $\alpha>0$ and $k$ such that $r_{k}\left(\theta_{k}\right)<r^{*}$, then we have the following lower bound:

$$
\begin{equation*}
\liminf _{B \rightarrow \infty} \frac{\operatorname{Reg} g_{\pi}(B)}{\log (B)} \geq \frac{1}{2} \sum_{k: \Delta_{k}>0} \frac{\mathbb{E}\left[X_{1, k}\right] \Delta_{k}}{D_{k}^{\star}} \tag{14}
\end{equation*}
$$

where $D_{k}^{\star}$ is the solution to the following optimization problem:

$$
D_{k}^{\star}=\min _{\theta \in \Theta_{k}} D\left(P_{k, \theta_{k}} \| P_{k, \theta}\right) \text { subject to } r_{k}(\theta) \geq r^{*}
$$

Proof. The proof can be found in Appendix E.
The regret lower bound has an explicit form if the cost and reward distributions of each arm is jointly Gaussian with a known covariance matrix.
Corollary 1 (Jointly Gaussian Cost and Reward). Let $\left(X_{n, k}, R_{n, k}\right)$ be jointly Gaussian:

$$
\left(X_{n, k}, R_{n, k}\right) \sim \mathcal{N}\left(\mu_{k}, \Sigma_{k}\right)
$$

for all $k \in \mathbb{K}$ where $\mu_{k}=\left(\mathbb{E}\left[X_{n, k}\right], \mathbb{E}\left[R_{n, k}\right]\right)$ and

$$
\Sigma_{k}=\left(\begin{array}{cc}
\operatorname{Var}\left(X_{n, k}\right) & \operatorname{Cov}\left(X_{n, k}, R_{n, k}\right) \\
\operatorname{Cov}\left(X_{n, k}, R_{n, k}\right) & \operatorname{Var}\left(R_{n, k}\right)
\end{array}\right)
$$

If $\Sigma_{k}$ is known and $\mu_{k}$ is unknown by the controller for all $k \in \mathbb{K}$, we have the following regret lower bound for the Gaussian case:

$$
\begin{equation*}
\liminf _{B \rightarrow \infty} \frac{\operatorname{Reg}(B)}{\log (B)} \geq \sum_{k: \Delta_{k}>0} \frac{\sigma_{k}^{2}}{\mathbb{E}\left[X_{1, k}\right] \Delta_{k}} \tag{15}
\end{equation*}
$$

where $\sigma_{k}^{2}$ is defined in (9).
Proof. For known $\Sigma_{k}$, we have $D_{k}^{\star}=\frac{\left(\mathbb{E}\left[X_{1, k}\right] \Delta_{k}\right)^{2}}{2 \sigma_{k}^{2}}$ for $\theta_{k}=\mu_{k}$ and $\Theta_{k}=\mathbb{R}_{+}^{2}$. Using this in Theorem 3 yields the result.

Remark 3 (Optimality of UCB-B1 and UCB-M1). Comparing (11) and (13) with (15), we can deduce that UCB-B1 and UCB-M1 achieve optimal regret up to a universal constant for the case of jointly Gaussian cost and reward pairs with known covariance matrix.

## 6 Algorithms for Unknown Second-Order Moments

In Section 6, we proposed algorithms under the assumption that the second-order moments are known for each arm $k$. However, in practice, these second-order moments are unknown, and therefore to be estimated from the samples collected via bandit feedback. In this section, we will propose algorithms that use these second-order moment estimates to achieve tight regret bounds.

The general strategy in the development of the algorithms in this section is to use high-probability upper bounds for the second-order moments that appear in UCB-B1 as a surrogate.

### 6.1 Bounded and Uncorrelated Cost and Reward: UCB-B2

For clarity, we first consider the case $X_{n, k}$ and $R_{n, k}$ are uncorrelated for all $k$ and $X_{n, k} \in\left[0, M_{X}\right]$ and $R_{n, k} \in\left[0, M_{R}\right]$ almost surely for known $M_{X}, M_{R}>0$. In this case, we will propose an algorithm based on a variant of the empirical Bernstein inequality, which was introduced in Audibert et al., 2009].
For any $k$, let the variance estimate $\widehat{V}_{k, n}\left(X_{k}\right)$ be defined as follows:

$$
\widehat{V}_{k, n}\left(X_{k}\right)=\frac{1}{T_{k}(n)} \sum_{i=1}^{n} \mathbb{I}\left\{I_{i}=k\right\}\left(X_{i, k}-\widehat{\mathbb{E}}_{n}\left[X_{1, k}\right]\right)^{2}
$$

where $\widehat{\mathbb{E}}_{n}\left[X_{k}\right]$ is the empirical mean of the observations up to epoch $n$. Also, let $\nu_{k, n}$ be defined for $X_{k} \in\left[0, M_{X}\right]$ as follows:

$$
\nu_{k, n}\left(X_{k}\right)=M_{X}^{2}\left(\frac{7 \log \left(n^{\alpha}\right)}{6 T_{k}(n)}+\sqrt{\frac{\log \left(n^{\alpha}\right)}{2 T_{k}(n)}}\right), \alpha>3
$$

Then, it can be shown by using Bernstein's inequality that $\widehat{V}_{k, n}\left(X_{k}\right)+\nu_{k, n}\left(X_{k}\right)$ is an upper bound for $\operatorname{Var}\left(X_{1, k}\right)$ with high probability.

The bias terms in UCB-B2 are defined as follows:

$$
\begin{aligned}
& \epsilon_{k, n}^{\mathrm{B} 2}=\sqrt{\frac{2\left(\widehat{V}_{k, n}\left(R_{k}\right)+\nu_{k, n}\left(R_{k}\right)\right) \log \left(n^{\alpha}\right)}{T_{k}(n)}}+\frac{2 M_{R} \log \left(n^{\alpha}\right)}{3 T_{k}(n)} \\
& \eta_{k, n}^{\mathrm{B} 2}=\sqrt{\frac{2\left(\widehat{V}_{k, n}\left(X_{k}\right)+\nu_{k, n}\left(X_{k}\right)\right) \log \left(n^{\alpha}\right)}{T_{k}(n)}}+\frac{2 M_{X} \log \left(n^{\alpha}\right)}{3 T_{k}(n)}
\end{aligned}
$$

Let $\widehat{r}_{k, n}$ be the empirical reward rate estimator in Section 4.2 and

$$
\begin{equation*}
\widehat{c}_{k, n}^{\mathrm{B} 2}=1.36 \frac{\epsilon_{k, n}^{\mathrm{B} 2}+\widehat{r}_{k, n} \eta_{k, n}^{\mathrm{B} 2}}{\left(\widehat{\mathbb{E}}_{n}\left[X_{k}\right]-3 \eta_{k, n}^{\mathrm{B} 2}\right)^{+}} \tag{16}
\end{equation*}
$$

Then, at stage $n+1$, the following decision is made under UCB-B2:

$$
I_{n+1} \in \arg \max _{k}\left\{\widehat{r}_{k, n}+\widehat{c}_{k, n}^{\mathrm{B} 2}\right\} .
$$

The lack of knowledge for the second-order statistics loosen the upper confidence bound for the rate estimator, which in turn increases the regret. In the following, we provide the regret upper bounds for UCB-B2 to gain insight about the impact of using variance estimates on the performance of the algorithm.
Theorem 4 (Regret Upper Bound for UCB-B2). Let $\sigma_{k}$ and $M_{k}$ be as defined in Theorem 11. Then, we have the following upper bound for the regret under UCB-B2:

$$
\begin{equation*}
\operatorname{Reg}_{\pi^{\mathrm{B2}}}(B) \leq \alpha \sum_{k: \Delta_{k}>0} \log \left(\frac{2 B}{\mu_{*}}\right)\left(C_{k}^{\mathrm{B} 1}+\delta C_{k}\right)+O(1), \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta C_{k}=16\left(\frac{M_{k}^{2}}{\Delta_{k} \mu_{k}}+\frac{M_{X}^{4} \Delta_{k} \mu_{k}}{\operatorname{Var}^{2}\left(X_{1, k}\right)}+\frac{\operatorname{Var}\left(X_{1, k}\right) \Delta_{k}}{\mu_{k}}\right) . \tag{18}
\end{equation*}
$$

for $\mu_{k}=\mathbb{E}\left[X_{1, k}\right]$.
The proof of Theorem 4 involves the analysis of sample variance estimates, and can be found in Appendix F.
Remark 4 (Impact of Unknown Variances). If the controller has the knowledge of $\mathbb{E}\left[\left(X_{1, k}-\right.\right.$ $\left.\left.\mathbb{E}\left[X_{1, k}\right]\right)^{4}\right]$ and $\mathbb{E}\left[\left(R_{1, k}-\mathbb{E}\left[R_{1, k}\right]\right)^{4}\right]$, the first term on the RHS of (18) disappears. The other terms are caused by the stability of the rate estimator: since we use a variance estimate in the upper confidence bound of $X_{n, k}$, the rate estimator suffers from a longer period of instability, which increases the regret coefficient.

### 6.2 Learning the Correlation: UCB-B2C

Finally we consider the case $\left(X_{n, k}, R_{n, k}\right)$ are bounded and correlated, but the second-order moments are unknown. In the absence of correlation, our goal was to estimate $\operatorname{Var}\left(R_{1, k}\right)$ and $\operatorname{Var}\left(X_{1, k}\right)$ from the samples of $\left(X_{n, k}, R_{n, k}\right)$. When there is a correlation, we have an optimization problem: we need to establish confidence bounds for the LMMSE estimator $\omega_{k}$ defined in (8) as well as the minimum variance $\operatorname{Var}\left(R_{1, k}-\omega_{k} X_{1, k}\right)$ by using the samples of $\left(X_{n, k}, R_{n, k}\right)$ observed via bandit feedback. We take a loss minimization approach in the statistical learning setting to estimate these quantities.
For any $k \in \mathbb{K}$, let the empirical LMMSE estimator be defined as follows:

$$
\widehat{\omega}_{k, n}=\arg \min _{\omega^{\prime} \in \mathbb{R}} \widehat{L}_{k, n}(\omega)
$$

where the empirical loss function is the following:

$$
\widehat{L}_{k, n}(\omega)=\sum_{i=1}^{n} \frac{\mathbb{I}\left\{I_{i}=k\right\}}{T_{k}(n)}\left(R_{i}-\widehat{\mathbb{E}}_{n}[R]-\omega\left(X_{i}-\widehat{\mathbb{E}}_{n}[X]\right)\right)^{2}
$$

It can be shown that $\widehat{\omega}_{k, n} \rightarrow \omega_{k}$ if $T_{k}(n) \rightarrow \infty$ as $n \rightarrow \infty$, and moreover the convergence rate is exponential and tight concentration bounds for $\widehat{\omega}_{k, n}$ and $\widehat{L}_{k, n}\left(\widehat{\omega}_{k, n}\right)$ can be established. Let $M_{Z}=M_{R}+\bar{\omega} M_{X}$ where $\bar{\omega}>\max _{k} \omega_{k}$ is a given parameter, and let

$$
\begin{align*}
\nu_{k, n}\left(\omega_{k}\right) & =\frac{1.36 M_{X} M_{Z}}{\operatorname{Var}\left(X_{1, k}\right)} \sqrt{\frac{\log n^{\alpha}}{T_{k}(n)}}  \tag{19}\\
\nu_{k, n}\left(L_{k}\right) & =M_{Z}^{2} \sqrt{\frac{2 \log n^{\alpha}}{T_{k}(n)}} \tag{20}
\end{align*}
$$

Then, it can be shown that $-\widehat{\omega}_{k, n}+\nu_{k, n}\left(\omega_{k}\right)$ and $\widehat{L}_{k, n}\left(\widehat{\omega}_{k, n}\right)+\nu_{k, n}\left(\omega_{k}\right)$ are high-probability upper bounds for $-\omega_{k}$ and $\min _{\omega} \operatorname{Var}\left(R_{1, k}-\omega X_{1, k}\right)$, respectively, for large enough $T_{k}(n)$.

The bias terms in UCB-B2C are defined as follows:

$$
\begin{aligned}
& \epsilon_{k, n}^{\mathrm{B2C}}=\sqrt{\frac{2\left(\widehat{L}_{k, n}\left(\widehat{\omega}_{k, n}\right)+\nu_{k, n}\left(L_{k}\right)\right) \log \left(n^{\alpha}\right)}{T_{k}(n)}}+\frac{2 M_{Z} \log \left(n^{\alpha}\right)}{3 T_{k}(n)} \\
& \eta_{k, n}^{\mathrm{B} 2}=\sqrt{\frac{2\left(\widehat{V}_{k, n}\left(X_{k}\right)+\nu_{k, n}\left(X_{k}\right)\right) \log \left(n^{\alpha}\right)}{T_{k}(n)}}+\frac{2 M_{X} \log \left(n^{\alpha}\right)}{3 T_{k}(n)}
\end{aligned}
$$

Then, at stage $n+1$, the following decision is made under UCB-B2C:

$$
I_{n+1} \in \arg \max _{k}\left\{\widehat{r}_{k, n}+\widehat{c}_{k, n}^{\mathrm{B2C}}\right\},
$$

where

$$
\widehat{c}_{k, n}^{\mathrm{B} 2 \mathrm{C}}=1.36 \frac{\epsilon_{k, n}^{\mathrm{B} 2 \mathrm{C}}+\left(\widehat{r}_{k, n}-\widehat{\omega}_{k, n}+\nu_{k, n}\left(\omega_{k}\right)\right) \eta_{k, n}^{\mathrm{B} 2 \mathrm{C}}}{\left(\widehat{\mathbb{E}}_{n}\left[X_{k}\right]-3 \eta_{k, n}^{\mathrm{B} 2 \mathrm{C}}\right)^{+}} .
$$

In the following, we investigate the impact of using second-order moment estimates on the regret under the UCB-B2C Algorithm. The proof can be found in Appendix G.
Theorem 5 (Regret Upper Bound for UCB-B2C). Let $C_{k}^{\mathrm{B1}}$ be defined as in Theorem 11. Then, we have the following upper bound for the regret under UCB-B2:

$$
\begin{equation*}
\operatorname{Reg}_{\pi^{\mathrm{B} 2}}(B) \leq \alpha \sum_{k: \Delta_{k}>0} \log \left(\frac{2 B}{\mu_{*}}\right)\left(C_{k}^{\mathrm{B} 1}+\delta C_{k}^{\prime}\right)+O(1) \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta C_{k}^{\prime}=\delta C_{k}+32\left(\frac{M_{Z} M_{X}}{\sqrt{\operatorname{Var}\left(X_{1, k}\right)}}+\frac{M_{X}^{4} \Delta_{k} \mu_{k}}{\operatorname{Var}^{2}\left(X_{1, k}\right)}\right) . \tag{22}
\end{equation*}
$$

for $\mu_{k}=\mathbb{E}\left[X_{1, k}\right]$ and $\delta C_{k}$ defined in (18).
Note that the regret of UCB-B2C converges to the regret of UCB-B2, and they both approach to the performance of the UCB-B1 Algorithm as $\Delta_{k} \downarrow 0$.

## 7 Conclusions

In this paper, we considered a very general setting for the budgeted bandit problem where each action incurs a potentially correlated and heavy-tailed cost-reward pair. We proved that positive expected cost and existence of moments of order $2+\gamma$ for some $\gamma>0$ suffice for $O(\log B)$ regret for a given budget $B>0$. For known second-order moments, we proposed two algorithms named UCB-B1 and UCB-M1 that exploit the correlation between cost and reward by using an LMMSE estimator. By proposing a regret lower bound, we proved that UCB-B1 and UCB-M1 achieve order optimality, and moreover they achieve optimal regret up to a universal constant for the specific case of jointly Gaussian cost and reward pairs, which underlines the significance of second-order moments and correlation in the regret performance. For the case of bounded cost and reward with unknown secondorder moments, we proposed learning algorithms UCB-B2 and UCB-B2C that estimate variances as well as LMMSE estimator to approach the performance of UCB-B1. We investigated the effect of using these estimates as surrogates in the absence of second-order moments, and proved that they achieve the performance of UCB-B1 for certain cases.

## References

S. Agrawal and N. R. Devanur. Bandits with concave rewards and convex knapsacks. In Proceedings of the fifteenth ACM conference on Economics and computation, pages 989-1006. ACM, 2014.
S. Asmussen. Applied probability and queues, volume 51. Springer Science \& Business Media, 2008.
J.-Y. Audibert, R. Munos, and C. Szepesvári. Exploration-exploitation tradeoff using variance estimates in multi-armed bandits. Theoretical Computer Science, 410(19):1876-1902, 2009.
A. Badanidiyuru, R. Kleinberg, and A. Slivkins. Bandits with knapsacks. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 207-216. IEEE, 2013.
D. A. Berry and B. Fristedt. Bandit problems: sequential allocation of experiments (monographs on statistics and applied probability). London: Chapman and Hall, 5:71-87, 1985.
S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1-122, 2012.
S. Bubeck, N. Cesa-Bianchi, and G. Lugosi. Bandits with heavy tail. IEEE Transactions on Information Theory, 59(11):7711-7717, 2013.
D. L. Burkholder. Distribution function inequalities for martingales. the Annals of Probability, pages 19-42, 1973.
A. N. Burnetas and M. N. Katehakis. Optimal adaptive policies for sequential allocation problems. Advances in Applied Mathematics, 17(2):122-142, 1996.
S. Cayci, A. Eryilmaz, and R. Srikant. Learning to control renewal processes with bandit feedback. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 3(2):43, 2019.
R. Combes, C. Jiang, and R. Srikant. Bandits with budgets: Regret lower bounds and optimal algorithms. ACM SIGMETRICS Performance Evaluation Review, 43(1):245-257, 2015.
B. C. Dean, M. X. Goemans, and J. Vondrdk. Approximating the stochastic knapsack problem: The benefit of adaptivity. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 208-217. IEEE, 2004.
R. Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
S. Guha and K. Munagala. Multi-armed bandits with metric switching costs. In International Colloquium on Automata, Languages, and Programming, pages 496-507. Springer, 2009.
A. Gut. Stopped random walks. Springer, 2009.
A. György, L. Kocsis, I. Szabó, and C. Szepesvári. Continuous time associative bandit problems. In IJCAI, pages 830-835, 2007.
H. Kellerer, U. Pferschy, and D. Pisinger. Multidimensional knapsack problems. In Knapsack problems, pages 235-283. Springer, 2004.
R. Kohli, R. Krishnamurti, and P. Mirchandani. Average performance of greedy heuristics for the integer knapsack problem. European Journal of Operational Research, 154(1):36-45, 2004.
T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4-22, 1985.
S. Lalley and G. Lorden. A control problem arising in the sequential design of experiments. Annals of probability, 14(1):136-172, 1986.
K. Liu and Q. Zhao. Multi-armed bandit problems with heavy-tailed reward distributions. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 485-492. IEEE, 2011.
S. Minsker et al. Geometric median and robust estimation in banach spaces. Bernoulli, 21(4): 2308-2335, 2015.
A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. 1983.
H. V. Poor. An introduction to signal detection and estimation. Springer Science \& Business Media, 2013.
H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society, 58(5):527-535, 1952.
D. Siegmund. Sequential analysis: tests and confidence intervals. Springer Science \& Business Media, 2013.
L. Tran-Thanh, A. Chapman, A. Rogers, and N. R. Jennings. Knapsack based optimal policies for budget-limited multi-armed bandits. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.
Y. Xia, H. Li, T. Qin, N. Yu, and T.-Y. Liu. Thompson sampling for budgeted multi-armed bandits. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
Y. Xia, W. Ding, X.-D. Zhang, N. Yu, and T. Qin. Budgeted bandit problems with continuous random costs. In Asian conference on machine learning, pages 317-332, 2016.

## A Proof of Proposition 1

Proof. The proof consists of two parts.

1. In the first part, we find an upper bound for $\mathbb{E}\left[R e w_{\pi^{\mathrm{opt}(B)}}(B)\right]$. In order to achieve this goal, we consider an arbitrary admissible algorithm $\pi \in \Pi$. Since $\pi$ is admissible, we have the following relationship:

$$
\begin{equation*}
\mathbb{E}\left[R_{n, I_{n}^{\pi}} \mid \mathcal{F}_{n-1}^{\pi}\right]=r_{I_{n}} \mathbb{E}\left[X_{n, I_{n}^{\pi}} \mid \mathcal{F}_{n-1}^{\pi}\right] \tag{23}
\end{equation*}
$$

Let $W_{t}^{\pi}=\max _{1 \leq i \leq t} S_{i}^{\pi}$ for any $t>0$. Then, inspired by the proof of Wald's equation (see Siegmund [2013], Xia et al. [2015]), we have the following inequality for the expected cumulative reward under $\pi$ :

$$
\begin{align*}
\mathbb{E}\left[\operatorname{Rew}_{\pi}(B)\right] & =\mathbb{E}\left[\sum_{i=1}^{\infty} \mathbb{I}\left\{W_{i-1}^{\pi} \leq B\right\} R_{i, I_{i}^{\pi}}\right], \\
& =\mathbb{E}\left[\sum_{i=1}^{\infty} \mathbb{E}\left[R_{i, I_{i}^{\pi}} \mid \mathcal{F}_{i-1}^{\pi}\right] \mathbb{I}\left\{W_{i-1}^{\pi} \leq B\right\}\right],  \tag{24}\\
& =\mathbb{E}\left[\sum_{i=1}^{\infty} r_{I_{i}^{\pi}} \mathbb{E}\left[X_{i, I_{i}^{\pi}} \mid \mathcal{F}_{i-1}^{\pi}\right] \mathbb{I}\left\{W_{i-1}^{\pi} \leq B\right\}\right],  \tag{25}\\
& \leq r^{*} \mathbb{E}\left[\sum_{i=1}^{N_{\pi}(B)} X_{i, I_{i}^{\pi}}\right]=r^{*} \mathbb{E}\left[S_{N_{\pi}(B)}^{\pi}\right], \tag{26}
\end{align*}
$$

where (24) follows since $\pi$ is admissible and $W_{i-1}^{\pi} \in \mathcal{F}_{i-1}$, and 25) follows from the relation (23) and the fact that $r_{I_{i}} \leq r^{*}$ with probability 1 .
Note that $S_{N_{\pi}(B)}^{\pi}$ is a controlled random walk whose increments $X_{i, I_{i}^{\pi}}$ are dependent. Therefore, classical second-order moment results in renewal theory, such as Lorden's inequality Asmussen, 2008], are not directly applicable to provide an upper bound for $\mathbb{E}\left[S_{N_{\pi}(B)}^{\pi}\right]$. Instead, the following result for the first passage times of submartingales yields a tight upper bound for $\mathbb{E}\left[S_{N_{\pi}(B)}^{\pi}\right]$.

Proposition 3 (Lalley and Lorden, 1986 Lalley and Lorden [1986]). Consider a stochastic process $\left\{\left(U_{n}\right): n \geq 1\right\}$ with $\mathbb{E}\left[U_{n}\right]>0$ adapted to the filtration $\mathcal{F}_{n}$. Let $S_{n}=\sum_{i=1}^{n} U_{i}$ with $S_{0}=0$ and $N(a)=\inf \left\{n: S_{n}>a\right\}$ be the first passage time of the random walk.

Assume that there exists constants $\mu_{*}, \mu^{*}, \sigma^{2}>0$ such that

$$
0<\mu_{*} \leq \mathbb{E}\left[U_{n} \mid \mathcal{F}_{n-1}\right] \leq \mu^{*}<\infty
$$

and

$$
\operatorname{Var}\left(U_{n} \mid \mathcal{F}_{n-1}\right) \leq \sigma^{2}<\infty,
$$

with probability 1 for all $n \geq 1$. If there exists $\gamma>0$ such that $\mathbb{E}\left[\left(U_{n}^{+}\right)^{2+\gamma}\right]<\infty$, then there exists a constant $C=C\left(\mu_{*}, \mu^{*}, \sigma^{2}\right)$ such that the following holds:

$$
\mathbb{E}\left[S_{N(a)}\right]-a \leq C,
$$

for any $a>0$.
Note that we have

$$
0<\min _{k \in[K]} \mathbb{E}\left[X_{1, k}\right] \leq \mathbb{E}\left[X_{i, I_{i}^{\pi}} \mid \mathcal{F}_{i-1}\right] \leq \max _{k \in[K]} \mathbb{E}\left[X_{1, k}\right]<\infty,
$$

and

$$
\operatorname{Var}\left(X_{i, I_{i}^{\pi}} \mid \mathcal{F}_{i-1}\right) \leq \max _{k \in[K]} \operatorname{Var}\left(X_{1, k}\right)<\infty
$$

with probability 1 for all $i \geq 1$. Thus, under Assumption 1 . Proposition 3 implies that there exists a constant $C>0$ such that the following holds:

$$
\begin{equation*}
\mathbb{E}\left[S_{N_{\pi}(B)}^{\pi}\right] \leq B+C, \tag{27}
\end{equation*}
$$

for all $B>0$. Hence, (26) and (27) together imply the following upper bound:

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Rew}_{\pi}(B)\right] \leq r^{*}(B+C) \tag{28}
\end{equation*}
$$

for all $B>0$ and any admissible policy $\pi \in \Pi$. Since the inequality 28 holds for any admissible $\pi \in \Pi$, we have the following result:

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Rew}_{\pi^{o p t}(B)}(B)\right] \leq r^{*}(B+C), \forall B>0 \tag{29}
\end{equation*}
$$

2. In the second part of the proof, we will find a lower bound for $\mathbb{E}\left[\operatorname{Re} w_{\pi^{*}}(B)\right]$. Since $\pi^{*}$ is a static policy and $N_{\pi^{*}}(B)$ is a stopping time, Wald's equation implies the following result Siegmund |2013]:

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Re} w_{\pi^{*}}(B)\right]=\mathbb{E}\left[R_{1, k^{*}}\right] \mathbb{E}\left[N_{\pi^{*}}(B)\right] \tag{30}
\end{equation*}
$$

For random walks with positive drift, the following inequality holds for any $B>0$ Asmussen [2008], Gut 2009]:

$$
\begin{equation*}
\mathbb{E}\left[N_{\pi^{*}}(B)\right] \geq \frac{B}{\mathbb{E}\left[X_{1, k^{*}}\right]} \tag{31}
\end{equation*}
$$

(30) and (31) together imply the following:

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Re} w_{\pi^{*}}(B)\right] \geq r^{*} B, \forall B>0 \tag{32}
\end{equation*}
$$

Inequalities in (29) and (32) together imply that the optimality gap is bounded for all $B>0$.
Proposition 1 has a striking implication: the optimality gap is still bounded for unbounded and correlated cost and reward pairs, and this result requires only a mild moment assumption that $\mathbb{E}\left[\left(X_{1, k}^{+}\right)^{2+\gamma}\right], k \in[K]$ exists for some $\gamma>0$. Therefore, the simple policy $\pi^{*}$ serves as a plausible substitute for $\pi^{\mathrm{opt}}(B)$, which is NP-hard, for learning purposes.

## B A Useful Upper Bound for Regret

The number of trials $N_{\pi}(B)$ under an admissible policy $\pi$ is a random stopping time, which makes the regret computations difficult. The following proposition, which extends the strategy in Xia et al. 2016 to the case of unbounded and potentially heavy-tailed cost-reward pairs that can take on negative values, provides a useful tool for regret computations.
Proposition 4 (Regret Upper Bounds for Admissible Policies). Suppose that

$$
\max _{k} \mathbb{E}\left[\left|X_{1, k}-\mathbb{E}\left[X_{1, k}\right]\right|^{p}\right]=u_{\max }<\infty
$$

for some $p>2$. Let $T_{k}(n)$ be the number of pulls for arm $k$ in $n$ trials, and $\mu_{*}=\min _{k} \mathbb{E}\left[X_{1, k}\right]$. The following upper bound holds for any admissible policy $\pi \in \Pi$ and $B>\mu_{*} / 2$ :

$$
\begin{equation*}
\operatorname{Reg}_{\pi}(B) \leq \sum_{k} \mathbb{E}\left[T_{k}\left(\frac{2 B}{\mu_{*}}\right)\right] \Delta_{k} \mathbb{E}\left[X_{1, k}\right]+\frac{\left(\frac{2 p^{2}}{p-1}\right)^{p} u_{\max }}{\left(2 B-\mu_{*}\right)^{\frac{p}{2}} \mu_{*}^{\frac{p}{2}}\left(\frac{p}{2}-1\right)} \sum_{k} \Delta_{k} \mathbb{E}\left[X_{1, k}\right]+r^{*} C \tag{33}
\end{equation*}
$$

where $C=C\left(\mu_{*}, \sigma_{\max }^{2}\right)$ is a constant.
The proof of Proposition 4 relies on a variant of Chebyshev inequality for controlled random walks. Note that $2 B / \mu_{*}$ is a high-probability upper bound for the total number of pulls $N_{\pi}(B)$, and $\Delta_{k} \mathbb{E}\left[X_{1, k}\right]$ is the average regret per pull for a suboptimal arm $k$. Proposition 4 implies that the expected regret after $2 B / \mu^{*}$ pulls is $O(1)$.

Proof of Proposition 4. Take an arbitrary admissible policy $\pi \in \Pi$. The regret can be decomposed as follows:

$$
\begin{equation*}
\operatorname{Re} g_{\pi}(B)=\underbrace{\mathbb{E}\left[\operatorname{Re} w_{\pi^{o p t}(B)}(B)\right]-\mathbb{E}\left[\operatorname{Rew}_{\pi^{*}}(B)\right]}_{(a)}+\underbrace{\mathbb{E}\left[\operatorname{Re} w_{\pi^{*}}(B)\right]-\mathbb{E}\left[\operatorname{Re} w_{\pi}(B)\right]}_{(b)} \tag{34}
\end{equation*}
$$

Note that (a) in (33) is the optimality gap for $\pi^{*}$, which is upper bounded by a constant $r^{*} C$ by Proposition 1. In the following, we provide an upper bound for $(b)$ in (33).

First, note that the cumulative reward under $\pi^{*}$ is upper bounded as follows:

$$
\begin{align*}
\mathbb{E}\left[\operatorname{Rew}_{\pi^{*}}(B)\right] & =\mathbb{E}\left[N_{\pi^{*}}(B)\right] \cdot \mathbb{E}\left[R_{1, k^{*}}\right], \\
& \leq B r^{*}+r^{*} \frac{\mathbb{E}\left[X_{1, k^{*}}^{2}\right]}{\mathbb{E}\left[X_{1, k^{*}}\right]}=B r^{*}+c, \tag{35}
\end{align*}
$$

where the first line follows from Wald's equation and the second line is a consequence of Lorden's inequality Asmussen 2008]. Since $B \leq \sum_{i=1}^{N_{\pi}(B)} X_{i, I_{i}^{\pi}}$ under $\pi$, we can further upper bound $\mathbb{E}\left[R e w_{\pi^{*}}(B)\right]$ as follows:

$$
\begin{align*}
\mathbb{E}\left[\operatorname{Rew}_{\pi^{*}}(B)\right] & \leq \mathbb{E}\left[\sum_{i=1}^{N_{\pi}(B)} r^{*} X_{i, I_{i}^{\pi}}\right]+r^{*} \frac{\mathbb{E}\left[X_{1, k^{*}}^{2}\right]}{\mathbb{E}\left[X_{1, k^{*}}\right]} \\
& =\mathbb{E}\left[\sum_{k} \sum_{i=1}^{\infty} \mathbb{I}\left\{W_{i-1}^{\pi} \leq B\right\} \mathbb{I}\left\{I_{i}^{\pi}=k\right\} r^{*} \mathbb{E}\left[X_{i, k}\right]\right]+c . \tag{36}
\end{align*}
$$

where

$$
W_{n}^{\pi}=\max \left\{S_{1}^{\pi}, S_{2}^{\pi}, \ldots, S_{n}^{\pi}\right\}
$$

Similar to the proof of Proposition 1, we have the following equation for $\mathbb{E}\left[\operatorname{Re} w_{\pi}(B)\right]$ :

$$
\begin{align*}
\mathbb{E}\left[\operatorname{Rew}_{\pi}(B)\right] & =\mathbb{E}\left[\sum_{i=1}^{N_{\pi}(B)} R_{i, I_{i}^{\pi}}\right] \\
& =\mathbb{E}\left[\sum_{k} \sum_{i=1}^{\infty} \mathbb{I}\left\{W_{i-1}^{\pi} \leq B\right\} \mathbb{I}\left\{I_{i}^{\pi}=k\right\} r_{k} \mathbb{E}\left[X_{i, k}\right]\right] \tag{37}
\end{align*}
$$

From (36) and 37, we have the following upper bound for $(b)$ in 33):

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Re}_{\pi^{*}}(B)\right]-\mathbb{E}\left[\operatorname{Rew}_{\pi}(B)\right] \leq \mathbb{E}\left[\sum_{k} \sum_{i=1}^{\infty} \mathbb{I}\left\{W_{i-1}^{\pi} \leq B\right\} \mathbb{I}\left\{I_{i}^{\pi}=k\right\} \Delta_{k} \mathbb{E}\left[X_{i, k}\right]\right]+c \tag{38}
\end{equation*}
$$

For any integer $n_{0}>1$, the RHS of 38) can be upper bounded as follows:

$$
\begin{align*}
& \mathbb{E}\left[\operatorname{Rew}_{\pi^{*}}(B)\right]-\mathbb{E}\left[\operatorname{Rew} w_{\pi}(B)\right] \leq \mathbb{E}\left[\sum_{i=1}^{n_{0}} \sum_{k}\right.\left.\mathbb{I}\left\{I_{i}^{\pi}=k\right\} \Delta_{k} \mathbb{E}\left[X_{i, k}\right]\right] \\
&+\mathbb{E}\left[\sum_{i>n_{0}} \mathbb{I}\left\{W_{i-1}^{\pi} \leq B\right\} \sum_{k} \Delta_{k} \mathbb{E}\left[X_{i, k}\right]\right]+c \\
&=\sum_{k} \mathbb{E}\left[T_{k}^{\pi}\left(n_{0}\right)\right] \Delta_{k} \mathbb{E}\left[X_{1, k}\right]  \tag{39}\\
&+\left(\sum_{k} \Delta_{k} \mathbb{E}\left[X_{i, k}\right]\right) \sum_{i>n_{0}} \mathbb{P}\left(W_{i-1}^{\pi} \leq B\right)+c
\end{align*}
$$

The following martingale-based concentration inequality will be crucial in finding a tight upper bound for the crossing probability of the controlled process $W_{n}^{\pi}$ in (39).

Lemma 1 (Chebyshev Inequality for Submartingales). Let $\left\{Z_{n}: n \geq 0\right\}$ be a stochastic process adapted to the filtration $\mathcal{F}_{n}$ such that there exists a pair $(\mu, u)$ satisfying

$$
\begin{align*}
\mathbb{E}\left[Z_{n} \mid \mathcal{F}_{n-1}\right] & \geq \mu>0 \\
\mathbb{E}\left[\left|Z_{n}-\mathbb{E}\left[Z_{n} \mid \mathcal{F}_{n-1}\right]\right|^{p} \mid \mathcal{F}_{n-1}\right] & \leq u<\infty \tag{40}
\end{align*}
$$

almost surely for all $n \geq 1$ for $p>2$. Let $S_{n}=\sum_{i=1}^{n} Z_{i}$ and $W_{n}=\max _{1 \leq i \leq n} S_{i}$. For a given $B>0$, let $n_{0}=\left\lceil\frac{2 B}{\mu}\right\rceil$. Then we have the following inequality:

$$
\begin{equation*}
\mathbb{P}\left(W_{n_{0}+j} \leq B\right) \leq \frac{\left(\frac{2 p^{2}}{p-1}\right)^{p} u}{\mu^{p}\left(n_{0}+j\right)^{p / 2}} \tag{41}
\end{equation*}
$$

for all $j \geq 0$.

Under an admissible policy $\pi$, the increments $X_{i, I_{i}^{\pi}}$ of the controlled random walk $S_{n}^{\pi}$ satisfy $\mathbb{E}\left[X_{i, I_{i}^{\pi}} \mid \mathcal{F}_{i-1}\right] \geq \mu_{*}$ and $\mathbb{E}\left[\left|X_{i, I_{i}^{\pi}}-\mathbb{E}\left[X_{i, I_{i}^{\pi}} \mid \mathcal{F}_{i-1}\right]\right|^{p} \mid \mathcal{F}_{i-1}\right] \leq u_{\max }$ almost surely for all $i$. Therefore, the conditions in (40) are satisfied, and we have:

$$
\begin{equation*}
\mathbb{P}\left(W_{n_{0}+j}^{\pi} \leq B\right) \leq \frac{\left(\frac{2 p^{2}}{p-1}\right)^{p} u_{\max }}{\left(2 B-\mu_{*}\right)^{p / 2} \mu_{*}^{p / 2}\left(n_{0}+j\right)^{p / 2}} \tag{42}
\end{equation*}
$$

for $n_{0}=2 B / \mu_{*}, k \geq 1$ and $j \geq 0$. Thus, for $B>\mu_{*} / 2$,

$$
\begin{align*}
\sum_{i>n_{0}} \mathbb{P}\left(W_{i-1}^{\pi} \leq B\right) & =\sum_{j=0}^{\infty} \mathbb{P}\left(W_{n_{0}+j}^{\pi} \leq B\right) \\
& \leq \frac{\left(\frac{2 p^{2}}{p-1}\right)^{p} u_{\max }}{\left(2 B-\mu_{*}\right)^{p / 2} \mu_{*}^{p / 2}(p / 2-1)} \tag{43}
\end{align*}
$$

Substituting $n_{0}=\frac{2 B}{\mu_{*}}$ and (43) into (39) completes the proof.

## B. 1 Proof of Lemma 1

Let $Y_{i}=Z_{i}-\mathbb{E}\left[Z_{i} \mid \mathcal{F}_{i-1}\right]$ and $M_{n}=\sum_{i=1} Y_{i}$, and note that $M_{n}$ is a martingale. By the assumption (40), $\mu \leq \mathbb{E}\left[Z_{i} \mid \mathcal{F}_{i-1}\right]$ holds almost surely for all $i \geq 1$. Therefore, the following relation holds:

$$
\begin{equation*}
\left\{W_{n} \leq B\right\} \subset\left\{S_{n} \leq B\right\} \subset\left\{M_{n} \leq B-n \mu\right\} \tag{44}
\end{equation*}
$$

Let $n_{0}=\frac{2 B}{\mu}$. Then, for any $j \geq 0$, we have the following inequality:

$$
\begin{aligned}
\mathbb{P}\left(W_{n_{0}+j} \leq B\right) & \leq \mathbb{P}\left(M_{n_{0}+j} \leq-\frac{\mu}{2}\left(n_{0}+j\right)\right), \\
& \leq \mathbb{P}\left(\max _{1 \leq i \leq n_{0}+j}\left|M_{i}\right|>\frac{\mu}{2}\left(n_{0}+j\right)\right), \\
& \leq \frac{2^{p} \mathbb{E}\left[\left(\max _{1 \leq i \leq n_{0}+j}\left|M_{i}\right|\right)^{p}\right]}{\mu^{p}\left(n_{0}+j\right)^{p}} .
\end{aligned}
$$

Then, by $L^{p}$ maximum inequality for martingales (Theorem 4.4.4 in [Durrett 2019]), we have:

$$
\begin{equation*}
\mathbb{E}\left[\left(\max _{1 \leq i \leq n_{0}+j}\left|M_{i}\right|\right)^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} \mathbb{E}\left[\left|M_{n_{0}+j}\right|^{p}\right] \tag{45}
\end{equation*}
$$

For the martingale $M_{n}$ with increments $\left\{Y_{n}: n \geq 1\right\}$, let $Q_{n}=Y_{1}^{2}+Y_{2}^{2} \ldots+Y_{n}^{2}$ be the quadratic variation process. It is interesting to note that $M_{n}$ and $\sqrt{Q_{n}}$ increase at the same rate in terms of $\mathcal{L}_{p}$-norm Burkholder, 1973]:

$$
\begin{equation*}
c_{p} \mathbb{E}\left[\left|Q_{n}\right|^{\frac{p}{2}}\right] \leq \mathbb{E}\left[\left|M_{n}\right|^{p}\right] \leq C_{p} \mathbb{E}\left[\left|Q_{n}\right|^{\frac{p}{2}}\right], \tag{46}
\end{equation*}
$$

where $C_{p} \leq p^{p}$ and $c_{p}=1 / C_{p}$. By Hölder's inequality, we have the following result for all $i>0$ :

$$
\mathbb{E}\left[\left|M_{n}\right|^{p}\right] \leq C_{p} n^{\frac{p}{2}-1} \mathbb{E}\left[\sum_{i=1}^{n}\left|Y_{i}\right|^{p}\right]
$$

for all $n>0$. Given (40), the following holds:

$$
\begin{align*}
\mathbb{E}\left[\left|Y_{i}\right|^{p}\right] & =\mathbb{E}\left[\mathbb{E}\left[\left|Y_{i}\right|^{p} \mid \mathcal{F}_{i-1}\right]\right]  \tag{47}\\
& \leq u \tag{48}
\end{align*}
$$

for any $i \geq 1$. Therefore, we have:

$$
\begin{equation*}
\mathbb{P}\left(W_{n_{0}+j} \leq B\right) \leq \frac{\left(\frac{2 p^{2}}{p-1}\right)^{p} u}{\mu^{p}\left(n_{0}+j\right)^{p / 2}} \tag{49}
\end{equation*}
$$

## C Proof of Theorem 1

Proof. The regret decomposition in Proposition 4 will be used for the proof. Note that we need to find the expected number of pulls, $\mathbb{E}\left[T_{k}(n)\right]$, for each arm $k$ with $r_{k}<r^{*}$. The following proposition yields an upper bound for $\mathbb{E}\left[T_{k}(n)\right]$ for any $n>0$.
Lemma 2. Let $\Delta_{k}=r^{*}-r_{k}$ be the reward rate discrepancy and

$$
\sigma_{k}^{2}= \begin{cases}\operatorname{Var}\left(R_{1, k}\right)-\omega_{k}^{2} \operatorname{Var}\left(X_{1, k}\right)+\left(r^{*}-\omega_{k}\right)^{2} \operatorname{Var}\left(X_{1, k}\right), & \operatorname{Var}\left(X_{1, k}\right) \neq 0,  \tag{50}\\ \operatorname{Var}\left(R_{1, k}\right), & \operatorname{Var}\left(X_{1, k}\right)=0\end{cases}
$$

for all $k \in \mathbb{K}$, and recall that $\mu_{*}=\min _{k} \mathbb{E}\left[X_{1, k}\right]$. Then we have the following upper bounds for $\mathbb{E}\left[T_{k}(n)\right]$, the expected number of pulls for arm $k$ in $n$ stages.

1. Bounded Cost and Reward: If $\Delta_{k}>0$ and $\left|X_{1, k}\right| \leq M_{X},\left|R_{1, k}\right| \leq M_{R}$ a.s., then we have the following upper bound under UCB-B1 with $\alpha>3$ and $L=2$ :

$$
\begin{equation*}
\mathbb{E}\left[T_{k}(n)\right] \leq 32 \log \left(n^{\alpha}\right)\left(\frac{\sigma_{k}^{2}}{\Delta_{k}^{2}\left(\mathbb{E}\left[X_{1, k}\right]\right)^{2}}+\frac{M_{k}}{\Delta_{k} \mathbb{E}\left[X_{1, k}\right]}+\frac{M_{X}}{\mathbb{E}\left[X_{1, k}\right]}\right)+8 \pi^{2} \tag{51}
\end{equation*}
$$

where $M_{k}=M_{R}+r_{k} M_{X}$.
2. Jointly Sub-Gaussian Cost and Reward: Let $\left(X_{n, k}, R_{n, k}\right)$ be jointly sub-Gaussian with covariance matrix $\Sigma_{k}$ for all $k$. Then, UCB-B1 with $\alpha>3, M_{X}=M_{R}=0$ and $L=\frac{1}{2}$ yields the following:

$$
\begin{equation*}
\mathbb{E}\left[T_{k}(n)\right] \leq 16 \log \left(n^{\alpha}\right) \frac{\sigma_{k}^{2}}{\Delta_{k}^{2}\left(\mathbb{E}\left[X_{1, k}\right]\right)^{2}}+8 \pi^{2} \tag{52}
\end{equation*}
$$

The proof then follows from substituting $\mathbb{E}\left[T_{k}(n)\right]$ in (51) (or 52) for the Gaussian case) into (33).

In the rest of this section, we prove Lemma 2

## C. 1 Proof of Lemma 2

Consider a suboptimal arm $k$ with $\Delta_{k}>0$ and a given $n>0$. For any $t<n$, let

$$
\hat{c}_{k, t}=\lambda \frac{\epsilon_{k, n}^{\mathrm{B}}+\left(\widehat{r}_{k, n}-\omega_{k}\right) \eta_{k, n}^{\mathrm{B}}}{\left(\widehat{\mathbb{E}}_{n}\left[X_{k}\right]-3 \eta_{k, n}^{\mathrm{B}}\right)^{+}}
$$

and

$$
\begin{equation*}
c_{k, t}=\frac{\lambda}{\mathbb{E}\left[X_{1, k}\right]}\left(\frac{2 M_{k} \log \left(n^{\alpha}\right)}{3 T_{k}(t)}+\sqrt{\frac{L \log \left(n^{\alpha}\right) \sigma^{2}}{T_{k}(t)}}\right), \tag{53}
\end{equation*}
$$

where $\sigma^{2}=\sqrt{V\left(X_{1, k}, R_{1, k}\right)}+\left(r_{k}-\omega_{k}\right) \sqrt{\operatorname{Var}\left(X_{1, k}\right)}$ and $\lambda>1$. Then, we have the following relation:

$$
\left\{\left|\widehat{r}_{k, t}-r_{k}\right|>\widehat{c}_{k, t}\right\} \subset\left\{\left|\widehat{r}_{k, t}-r_{k}\right|>c_{k, t}\right\} \cup\left\{\left|\widehat{\mathbb{E}}_{n}\left[X_{k}\right]-\mathbb{E}\left[X_{k}\right]\right|>\eta_{k, n}^{\mathrm{B}}\right\}
$$

which facilitate the regret analysis.
We have the following claim based on Audibert et al. 2009].
Claim 1. Given $n>0$, for any $t<n$, if $I_{t+1}=k$ holds, at least one of the following must be true:

- $E_{1}=\left\{\hat{r}_{k^{*}, t}+c_{k^{*}, t} \leq r^{*}\right\}$,
- $E_{2}=\left\{\hat{r}_{k, t}>r_{k}+c_{k, t}\right\}$,
- $E_{3}=\left\{T_{k}(t) \leq 8 \lambda^{2}\left(\frac{2 \sigma_{k}^{2}}{\left(\Delta_{k} \mathbb{E}\left[X_{1, k}\right]\right)^{2}}+\frac{M_{r}}{\Delta_{k} \mathbb{E}\left[X_{1, k}\right]}\right) \log \left(n^{\alpha}\right)\right\}$,
- $E_{4}=\left\{T_{k}(t) \leq 2\left(\frac{\lambda}{\lambda-1}\right)^{2}\left(\frac{\operatorname{Var}\left(X_{1, k}\right)}{\left(\mathbb{E}\left[X_{1, k}\right]\right)^{2}}+\frac{M_{X}}{\mathbb{E}\left[X_{1, k}\right]}\right) \log \left(n^{\alpha}\right)\right\}$,

Proof. For notational convenience, let $s=T_{k}(t)$ and $\ell=\log \left(n^{\alpha}\right)$. Suppose to the contrary that neither holds. Then, we have:

$$
\begin{equation*}
E_{4}^{c} \subset\left\{\frac{2 M_{X} \ell}{3 s}+\sqrt{\frac{2 \operatorname{Var}\left(X_{1, k}\right) \ell}{s}} \leq \mathbb{E}\left[X_{1, k}\right] \frac{(\lambda-1)}{\lambda}\right\} \tag{54}
\end{equation*}
$$

which implies that the rate estimator is stable, thus the concentration inequality in Proposition 2 holds. In order to see (54), let $x=\frac{\lambda}{\lambda-1}, \mu_{k}=\mathbb{E}\left[X_{1, k}\right]$ and

$$
\begin{equation*}
u=2 x^{2}\left(\frac{\operatorname{Var}\left(X_{1, k}\right)}{\left(\mathbb{E}\left[X_{1, k}\right]\right)^{2}}+\frac{M_{X}}{\mathbb{E}\left[X_{1, k}\right]}\right) \ell \tag{55}
\end{equation*}
$$

Then, for any $s \geq u$, we have the following:

$$
\frac{2 M_{X} \mu_{k}^{2}}{6 x^{2}\left(M_{X} \mu_{k}+\operatorname{Var}\left(X_{1, k}\right)\right.}+\frac{1}{x} \sqrt{\frac{\operatorname{Var}\left(X_{1, k}\right) \mu_{k}^{2}}{\operatorname{Var}\left(X_{1, k}\right)+M_{X} \mu_{k}}} \leq \frac{\mu_{k}}{x}
$$

since $x>1$ and $\frac{1-\beta}{3 x}+\sqrt{\beta} \leq 1$ for $\beta=\frac{\operatorname{Var}\left(X_{1, k}\right)}{\operatorname{Var}\left(X_{1, k}\right)+M_{X} \mu_{k}} \in[0,1]$.

Second, we have the following relation:

$$
\begin{equation*}
E_{3}^{c} \subset\left\{c_{k, t} \leq \frac{\Delta_{k}}{2}\right\} \tag{56}
\end{equation*}
$$

In order to prove (56), let

$$
\begin{equation*}
v=8 \lambda^{2}\left(\frac{2 \sigma_{k}^{2}}{\Delta_{k}^{2} \mu_{k}^{2}}+\frac{M_{r}}{\Delta_{k} \mu_{k}}\right) \ell \tag{57}
\end{equation*}
$$

and note that $\sigma^{2} \leq 2 \sigma_{k}^{2}$ by Cauchy-Schwarz inequality. Then, for any $s \geq v$, we have:

$$
\begin{aligned}
c_{k, t} & \leq \frac{\lambda}{\mu_{k}}\left(\frac{1}{24 \lambda^{2}} \frac{M_{r} \Delta_{k}^{2} \mu_{k}^{2}}{2 \sigma_{k}^{2}+M_{r} \Delta_{k} \mu_{k}}+\frac{1}{2 \lambda} \sqrt{\frac{2 \sigma_{k}^{2} \Delta_{k}^{2} \mu_{k}^{2}}{2 \sigma_{k}^{2}+M_{r} \Delta_{k} \mu_{k}}}\right) \\
& \leq \frac{\Delta_{k}}{2}\left(\frac{M_{r} \Delta_{k} \mu_{k}}{12 \lambda\left(2 \sigma_{k}^{2}+M_{r} \Delta_{k} \mu_{k}\right)}+\sqrt{\frac{2 \sigma_{k}^{2}}{2 \sigma_{k}^{2}+M_{r} \Delta_{k} \mu_{k}}}\right) \\
& \leq \frac{\Delta_{k}}{2}
\end{aligned}
$$

where the last line holds since $\frac{1-\beta}{12 \lambda}+\sqrt{\beta} \leq 1$ for $\lambda>1$ and $\beta=\frac{2 \sigma_{k}^{2}}{2 \sigma_{k}^{2}+M_{r} \Delta_{k} \mu_{k}} \in[0,1]$. Since the concentration inequality holds and $E_{3}^{c} \subset\left\{c_{k, t} \leq \Delta_{k} / 2\right\}$, we have:

$$
\bigcap_{i=1}^{4} E_{i}^{c} \subset\left\{\widehat{r}_{k, t}+c_{k, t} \leq \widehat{r}_{k^{*}, t}+c_{k^{*}, t}\right\}
$$

which implies that $I_{t+1}=k^{*} \neq k$.

In order to bound $\mathbb{P}\left(E_{1} \cup E_{2}\right)$, let $Z_{n, k}=R_{n, k}-\omega_{k} X_{n, k}$ and

$$
\begin{aligned}
& \epsilon_{k, t}=\frac{2 M_{Z} \ell}{3 s}+\sqrt{L \frac{V\left(X_{1, k}, R_{1, k}\right) \ell}{s}} \\
& \eta_{k, t}=\frac{2 M_{X} \ell}{3 s}+\sqrt{L \frac{\operatorname{Var}\left(X_{1, k}\right) \ell}{s}}
\end{aligned}
$$

where $M_{Z}=M_{R}+\omega_{k} M_{Z}$. Then, the following inequality based on Proposition 2 will be used:

$$
\begin{aligned}
\mathbb{P}\left(\left|\widehat{r}_{k, t}-r_{k}\right|>c_{k, t}\right) & =\mathbb{P}\left(\left|\frac{\widehat{\mathbb{E}}_{t}\left[Z_{k}\right]}{\mathbb{E}_{t}\left[X_{k}\right]}-\frac{\mathbb{E}\left[Z_{k}\right]}{\mathbb{E}\left[X_{k}\right]}\right|>c_{k, t}\right) \\
& \leq \mathbb{P}\left(\left|\widehat{\mathbb{E}}_{t}\left[Z_{k}\right]-\mathbb{E}\left[Z_{k}\right]\right|>\epsilon_{k, t}\right)+\mathbb{P}\left(\left|\widehat{\mathbb{E}}_{t}\left[X_{k}\right]-\mathbb{E}\left[X_{k}\right]\right|>\eta_{k, t}\right) .
\end{aligned}
$$

Note that for sub-Gaussian cost and reward pairs, $M_{X}=M_{R}=0$ and $L=1 / 2$ yields Hoeffding's inequality. For the specific case of bounded cost and reward pairs with bounds $M_{X}$ and $M_{R}$, respectively, $L=2$ leads to Bernstein's inequality. These, along with the union bound, imply the following:

$$
\mathbb{P}\left(E_{1} \cup E_{2}\right) \leq \frac{8}{t^{\alpha-1}}
$$

By using this result and Claim 1, we obtain the following inequality:

$$
\mathbb{E}\left[T_{k}(n)\right] \leq u+v+\sum_{t=1}^{\infty} \frac{8}{t^{\alpha-1}}
$$

where $u$ and $v$ are defined in (55) and (57), respectively. Choosing $\lambda=1+\frac{1}{2 \sqrt{2}}$ yields the result.

## D Proof of Theorem 2

For any $k$, if $X_{n, k}$ or $R_{n, k}$ has heavy tails, then the empirical rate estimator is weak in the sense that the convergence rate is polynomial rather than exponential [Bubeck et al., 2013]. In the following, we propose a median-based rate estimator, and prove that it is robust in the sense that an exponential convergence rate is achieved even if the cost and reward are heavy-tailed. The correlation between $X_{1, k}$ and $R_{1, k}$ is exploited for improved coefficients.
Proposition 5 (Median-based rate estimation). For any given $\delta \in(0,1)$, let

$$
m=\left\lceil 3.5 \log \left(\delta^{-1}\right)\right\rceil+1
$$

and $G_{1}, G_{2}, \ldots, G_{m}$ be a partition of $[s]$ where $\left|G_{j}\right|=\left\lfloor\frac{s}{m}\right\rfloor$ for each $j$. Define $\widehat{\mathbb{E}}_{G_{j}}\left[X_{k}\right]$ (and $\left.\widehat{\mathbb{E}}_{G_{j}}\left[R_{k}\right]\right)$ be the sample mean of $X_{n, k}\left(\right.$ and $\left.R_{n, k}\right)$ in partition $G_{j}$, and $\tilde{r}_{j, k}=\frac{\widehat{\mathbb{E}}_{G_{j}}\left[R_{k}\right]}{\widehat{\mathbb{E}}_{G_{j}}\left[X_{k}\right]}$ for each $j$. Given $\lambda>1$, if

$$
\begin{equation*}
s \geq 135\left(\frac{\lambda}{\lambda-1}\right)^{2} \operatorname{Var}\left(X_{1, k}\right) \log \left(1.4 \delta^{-1}\right) \tag{58}
\end{equation*}
$$

then the following inequality holds:

$$
\mathbb{P}\left(\left|\bar{r}_{s, k}-r_{k}\right|>\frac{22 \lambda}{\mathbb{E}\left[X_{1, k}\right]} \sqrt{\frac{\sigma_{k}^{2} \log \left(\delta^{-1}\right)}{s}}\right) \leq 1.4 \delta
$$

where $\bar{r}_{s, k}=\underset{1 \leq i \leq m}{\operatorname{median}} \tilde{r}_{j, k}$ and $\sigma_{k}$ is defined in (9).
Proof. Given $\lambda>1$, for any $j \in[m]$ and $p \in\left(0, \frac{1}{2}\right)$, if

$$
\sqrt{\frac{4 m \operatorname{Var}\left(X_{1, k}\right)}{s p}} \leq \frac{\mathbb{E}\left[X_{1, k}\right](\lambda-1)}{\lambda}
$$

we have the following:

$$
\mathbb{P}\left(\left|\tilde{r}_{j, k}-r_{k}\right|>\frac{\lambda}{\mathbb{E}\left[X_{1, k}\right]} \sqrt{\frac{8 m \sigma_{k}^{2}}{s p}}\right) \leq p
$$

by Chebyshev's inequality and Proposition 2 Therefore, by Theorem 3.1 in [Minsker et al. 2015], we have:

$$
\mathbb{P}\left(\left|\bar{r}_{s, k}-r_{k}\right|>\frac{1-\beta}{\sqrt{1-2 \beta}} \frac{\lambda}{\mathbb{E}\left[X_{1, k}\right]} \sqrt{\frac{8 m \sigma_{k}^{2}}{s p}}\right) \leq e^{-m \psi(\beta ; p)}
$$

for $\beta \in\left(p, \frac{1}{2}\right)$ and

$$
\psi(\beta ; p)=\beta \log \left(\frac{\beta}{p}\right)+(1-\beta) \log \left(\frac{1-\beta}{1-p}\right)
$$

For a given $\delta \in(0,1)$, the values $m=\left\lfloor 3.5 \log \left(\delta^{-1}\right)\right\rfloor+1, \beta=8 / 17$ and $p=0.1$ yield the result.

The proof of Theorem 2 is based on the regret decomposition in Appendix B and the following lemma.
Lemma 3. For any $\lambda>1$ and $\alpha>3$, we have:

$$
\begin{equation*}
\mathbb{E}\left[T_{k}(n)\right] \leq \log \left(n^{\alpha}\right)\left(\frac{484 \lambda^{2} \sigma_{k}^{2}}{\Delta_{k}^{2}\left(\mathbb{E}\left[X_{1, k}\right]\right)^{2}}+\frac{135\left(\frac{\lambda}{\lambda-1}\right)^{2} \operatorname{Var}\left(X_{1, k}\right)}{\left(\mathbb{E}\left[X_{1, k}\right]\right)^{2}}\right)+8 \pi^{2} \tag{59}
\end{equation*}
$$

for any $k$ that satisfies $r_{k}<r^{*}$.
Lemma 3 is proved in an identical way to Lemma 2 by using the concentration inequality proposed in Proposition 5

## E Proof of Theorem 3

Proof. The regret under any admissible policy can be lower bounded as follows:
Lemma 4. For any $B>0$, let

$$
\phi_{\pi}(B)=\sum_{k} \mathbb{E}\left[\mathbb{I}\left\{I_{N_{\pi}(B)}=k\right\}\right] \mathbb{E}\left[X_{N_{\pi}(B), k}\right],
$$

be the average cost in the last epoch under an admissible policy $\pi, \mu_{+}=\max _{k} \mathbb{E}\left[X_{1, k}^{+}\right]$and $\mu_{*}=\min _{k} \mathbb{E}\left[X_{1, k}\right]$. Then, the regret under $\pi$ is lower bounded as follows:

$$
\begin{equation*}
\operatorname{Reg}_{\pi}(B) \geq \sum_{k} \Delta_{k} \mathbb{E}\left[X_{1, k}\right] \mathbb{E}\left[T_{k}\left(\left\lceil\sqrt{2 B / \mu_{*}}\right\rceil\right)\right]-\frac{\mu_{+}}{\mu_{*}}\left(1+\frac{1}{\sqrt{2 B}}\right) \sum_{k} \Delta_{k} \mathbb{E}\left[X_{1, k}\right]-\phi_{\pi}(B) \tag{60}
\end{equation*}
$$

Then, under the conditions stated in Theorem3, the following result provides an asymptotic lower bound for $\mathbb{E}\left[T_{k}(n)\right]$ for any $k$ with $r_{k}<r^{*}$.
Lemma 5. If $\pi \in \Pi$ is a policy such that $\mathbb{E}\left[T_{k}^{\pi}(n)\right]=o\left(n^{\alpha}\right)$ for any $\alpha>0$ and $k$ such that $r_{k}\left(\theta_{k}\right)<r^{*}$, then we have the following lower bound:

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\mathbb{E}\left[T_{k}(n)\right]}{\log (n)} \geq \frac{1}{D_{k}^{\star}} \tag{61}
\end{equation*}
$$

where $D_{k}^{\star}$ is the solution to the following optimization problem:

$$
D_{k}^{\star}=\min _{\theta \in \Theta_{k}} D\left(P_{k, \theta_{k}} \| P_{k, \theta}\right) \text { subject to } r_{k}(\theta) \geq r^{*}
$$

Lemma 5 can be proved by a straightforward adaptation of Theorem 1 in Burnetas and Katehakis 1996.

If the moment condition $\mathbb{E}\left[\left(X_{1, k}\right)^{2+\gamma}\right]<\infty$ holds for all $k$, then the term $\phi_{\pi}(B)=O(1)$ as $B \rightarrow \infty$ by Lorden's inequality [Asmussen, 2008]. Therefore, using 60 and 61, we obtain the result.

## E. 1 Proof of Lemma 4

Take any admissible policy $\pi$ and $B>0$. We have the following inequalities:

$$
\begin{aligned}
\operatorname{Reg}_{\pi}(B) & =\mathbb{E}\left[\operatorname{Re}_{\pi^{\mathrm{opt}}(B)}(B)\right]-\mathbb{E}\left[\operatorname{Re}_{\pi}(B)\right] \\
& \geq \mathbb{E}\left[\operatorname{Rew}_{\pi^{*}}(B)\right]-\mathbb{E}\left[\operatorname{Rew}_{\pi}(B)\right]
\end{aligned}
$$

since $\mathbb{E}\left[\operatorname{Re} w_{\pi^{\mathrm{opt}(B)}}(B)\right] \geq \mathbb{E}\left[\operatorname{Re} w_{\pi^{*}}(B)\right]$ by definition. Then, by using a similar decomposition as (36), we have the following:

$$
\begin{align*}
R e g_{\pi}(B) & \geq \mathbb{E}\left[\sum_{t=1}^{\infty} \sum_{k} \Delta_{k} \mathbb{E}\left[X_{1, k}\right] \mathbb{I}\left\{W_{t-1} \leq B\right\} \mathbb{I}\left\{I_{t}=k\right\}\right]-r^{*} \phi_{\pi}(B),  \tag{62}\\
& \geq \mathbb{E}\left[\sum_{t=1}^{n_{0}} \sum_{k} \Delta_{k} \mathbb{E}\left[X_{1, k}\right] \mathbb{I}\left\{W_{t-1} \leq B\right\} \mathbb{I}\left\{I_{t}=k\right\}\right]-r^{*} \phi_{\pi}(B) \tag{63}
\end{align*}
$$

for any $n_{0}>0$, where $W_{t}^{\pi}=\max _{1 \leq i \leq t} S_{i}^{\pi}$. Since $\mathbb{I}\left\{W_{t-1}^{\pi} \leq B\right\}=1-\mathbb{I}\left\{W_{t-1}^{\pi}>B\right\}$, we have:

$$
\begin{equation*}
\operatorname{Reg}_{\pi}(B) \geq \sum_{k} \mathbb{E}\left[T_{k}\left(n_{0}\right)\right] \Delta_{k} \mathbb{E}\left[X_{1, k}\right]-\left(\sum_{k} \Delta_{k} \mathbb{E}\left[X_{1, k}\right]\right) \sum_{t=1}^{n_{0}} \mathbb{P}\left(W_{t-1}^{\pi}>B\right)-r^{*} \phi_{\pi}(B) \tag{64}
\end{equation*}
$$

We have the following result:

$$
\begin{align*}
\mathbb{P}\left(W_{t}^{\pi}>B\right) & \leq \mathbb{P}\left(\max _{1 \leq i \leq t}\left(S_{i}^{\pi}\right)^{+}>B\right) \\
& \leq \frac{\mathbb{E}\left[\left(S_{t}^{\pi}\right)^{+}\right]}{B}  \tag{65}\\
& \leq \frac{\mathbb{E}\left[\sum_{i=1}^{t} X_{i, I_{i}}^{+}\right]}{B} \leq \frac{t \mu_{+}}{B},
\end{align*}
$$

where the second inequality follows from Doob's martingale inequality [Durrett, 2019], and the last inequality is true since $\mu_{+} \geq X_{i, I_{i}}^{+}$with probability 1 for all $i$. Substituting 65) into 64), and setting $n_{0}=\sqrt{2 B / \mu_{*}}$ yields the result.

## F Proof of Theorem 4

In the design of UCB-B2, empirical variance estimates are used, which require a modified analysis compared to UCB-B1.
Lemma 6. If $\Delta_{k}>0$ and $\left|X_{1, k}\right| \leq M_{X},\left|R_{1, k}\right| \leq M_{R}$ a.s., then we have the following upper bound under UCB-B2 with $\alpha>3$ :

$$
\begin{align*}
\mathbb{E}\left[T_{k}(n)\right] \leq 16 \log \left(n^{\alpha}\right)\left(\frac{M_{X}^{4}}{\operatorname{Var}^{2}\left(X_{1, k}\right)}\right. & \left.+\frac{2 M_{X}}{\mathbb{E}\left[X_{1, k}\right]}+\frac{3 \operatorname{Var}\left(X_{1, k}\right)}{\mathbb{E}^{2}\left[X_{1, k}\right]}\right) \\
+ & 32 \log \left(n^{\alpha}\right)\left(\frac{\sigma_{k}^{2}}{\Delta_{k}^{2}\left(\mathbb{E}\left[X_{1, k}\right]\right)^{2}}+\frac{M_{k}}{\Delta_{k} \mathbb{E}\left[X_{1, k}\right]}\right)+8 \pi^{2} \tag{66}
\end{align*}
$$

where $\sigma_{k}=\operatorname{Var}\left(R_{1, k}\right)-\omega_{k}^{2} \operatorname{Var}\left(X_{1, k}\right)$ and $M_{k}=M_{R}+r_{k} M_{X}$.
Proof. For any $k$, let $c_{k, t}$ be as defined in (53) and

$$
A_{k, t}=\left\{\left|\operatorname{Var}\left(X_{1, k}\right)-\widehat{V}_{k, t}\left(X_{k}\right)\right| \leq \nu_{k, t}\left(X_{k}\right)\right\} \cap\left\{\left|\operatorname{Var}\left(R_{1, k}\right)-\widehat{V}_{k, t}\left(R_{k}\right)\right| \leq \nu_{k, t}\left(R_{k}\right)\right\} .
$$

Then, analogous to Claim 1 we have the following:
Claim 2. Given $n>0$, for any $t<n$, if $I_{t+1}=k$ holds, at least one of the following must be true:

- $E_{1}=\left\{\hat{r}_{k^{*}, t}+c_{k^{*}, t} \leq r^{*}\right\} \cup A_{k^{*}, t}^{c}$,
- $E_{2}=\left\{\hat{r}_{k, t}>r_{k}+c_{k, t}\right\} \cup A_{k, t}^{c}$,
- $E_{3}=\left\{T_{k}(t) \leq 16 \lambda^{2}\left(\frac{\sigma_{k}^{2}}{\left(\Delta_{k} \mathbb{E}\left[X_{1, k}\right]\right)^{2}}+\frac{M_{r}}{\Delta_{k} \mathbb{E}\left[X_{1, k}\right]}\right) \log \left(n^{\alpha}\right)\right\}$,
- $E_{4}=\left\{T_{k}(t) \leq 3\left(\frac{\lambda}{\lambda-1}\right)^{2}\left(\frac{\operatorname{Var}\left(X_{1, k}\right)}{\left(\mathbb{E}\left[X_{1, k}\right]\right)^{2}}+\frac{2 M_{X}}{3 \mathbb{E}\left[X_{1, k}\right]}\right) \log \left(n^{\alpha}\right)\right\}$,
- $E_{5}=\left\{T_{k}(t) \leq \frac{32 M_{r}^{2} \log \left(n^{\alpha}\right)}{\Delta_{k}^{2} \mu_{k}^{2}}\right\}$,
for $\lambda>1$.
Note that

$$
\mathbb{P}\left(E_{1} \cup E_{2}\right) \leq \mathbb{P}\left(\hat{r}_{k^{*}, t}+c_{k^{*}, t} \leq r^{*}\right)+\mathbb{P}\left(\hat{r}_{k, t}>r_{k}+c_{k, t}\right)+\mathbb{P}\left(A_{k, t}^{c}\right)+\mathbb{P}\left(A_{k^{*}, t}^{c}\right),
$$

and $\sum_{t=1}^{n} \mathbb{P}\left(A_{k, t}^{c}\right) \leq 2 \pi^{2}$ by Bernstein's inequality for variance and union bound. Therefore, the proof follows from the same steps as the proof of Lemma 2

## F. 1 Proof of Claim 2

Consider $k \neq k^{*}$, and let $\ell=\log \left(n^{\alpha}\right)$ and $s=T_{k}(t)$.

$$
\begin{aligned}
E_{1}^{\prime} & =\left\{\hat{r}_{k^{*}, t}+\widehat{c}_{k^{*}, t}^{\mathrm{B} 2} \leq r^{*}\right\}, \\
E_{2}^{\prime} & =\left\{\hat{r}_{k, t}>r_{k}+\widehat{c}_{k, t}^{\mathrm{B} 2}\right\} .
\end{aligned}
$$

Then, it is easy to show that $E_{1}^{\prime} \subset E_{1}$ and $E_{2} \prime \subset E_{2}$. The rate estimator is unstable in the following set:

$$
E_{4}^{\prime}=\left\{\frac{2 M_{X} \ell}{3 s}+\sqrt{\frac{2\left(\widehat{V}_{k, t}\left(X_{k}\right)+\nu_{k, t}\left(X_{k}\right)\right) \ell}{s}}>\frac{\mathbb{E}\left[X_{1, k}\right]}{x}\right\}
$$

where $x=\lambda /(\lambda-1)$. If $2 \nu_{k, t}\left(X_{k}\right) \leq \frac{\operatorname{Var}\left(X_{1, k}\right)}{2}$, then we have:

$$
\begin{equation*}
E_{4}^{\prime} \subset\left\{\frac{2 M_{X} \ell}{3 s}+\sqrt{\frac{3 \operatorname{Var}\left(X_{1, k}\right) \ell}{s}}>\frac{\mathbb{E}\left[X_{1, k}\right]}{x}\right\} \cup A_{k}^{c} \tag{67}
\end{equation*}
$$

since $\widehat{V}_{k, t}\left(X_{k}\right)+\nu_{k, t}\left(X_{k}\right) \leq \operatorname{Var}\left(X_{1, k}\right)+2 \nu_{k, t}\left(X_{k}\right)$ in $A_{k}$. The first set on the RHS of (67) is a subset of $E_{4}$, which can be shown by the completing the square method used in the proof of Claim 1 Thus, we have $E_{4}^{\prime} \subset E_{4} \cup A_{k}^{c}$.
Finally, if we have

$$
\begin{aligned}
& 2 \nu_{k, t}\left(R_{t}\right)>\frac{M_{R} \Delta_{k} \mathbb{E}\left[R_{1, k}\right]}{2} \\
& 2 \nu_{k, t}\left(X_{t}\right)>\frac{M_{X} \Delta_{k} \mathbb{E}\left[R_{1, k}\right]}{2 r_{k}}
\end{aligned}
$$

which together imply $E_{5}$, then $E_{3}^{\prime}=\left\{\hat{c}_{k, t}^{B 2}>\frac{\Delta_{k}}{2}\right\} \subset E_{3} \cup A_{k}^{c}$. Therefore, we have $\cup_{i=1}^{4} E_{i}^{\prime} \subset$ $\cup_{i=1}^{5} E_{i}$, and since $\left\{I_{t+1}=k\right\} \subset \cup_{i=1}^{4} E_{i}^{\prime}$, we have $\left\{I_{t+1}=k\right\} \subset \cup_{i=1}^{5} E_{i}$.

## G Proof of Theorem 5

The proof of Theorem 4 follows the same steps as Theorem 5 with the difference that the correlation between $X_{n, k}$ and $R_{n, k}$ are estimated in the latter. In order to observe the effect of using LMMSE estimates to exploit correlation, we first present concentration bounds for $\omega_{k}$ and $\min _{\omega} \operatorname{Var}\left(R_{1, k}-\right.$ $\omega X_{1, k}$ ).

## G. 1 Preliminaries

Throughout this subsection, we consider a generic iid stochastic process $\left(X_{n}, R_{n}\right)$ with $X_{n} \in$ $\left[0, M_{X}\right]$ and $R_{n} \in\left[0, M_{R}\right]$. For this process, let $\omega_{*}=\arg \min _{\omega} L(\omega)$ where

$$
L(\omega)=\operatorname{Var}\left(R_{1}-\omega X_{1}\right)
$$

and $\widehat{\omega}_{s}=\arg \min _{\omega} \widehat{L}_{s}(\omega)$ where

$$
\widehat{L}_{s}(\omega)=\frac{1}{s} \sum_{i=1}^{s}\left(R_{i}-\widehat{\mathbb{E}}_{s}[R]-\omega\left(X_{i}-\widehat{\mathbb{E}}_{s}[X]\right)\right)^{2}
$$

Note that $\omega_{*}=\frac{\operatorname{Cov}\left(X_{1}, R_{1}\right)}{\operatorname{Var}\left(X_{1}\right)}$ and $\widehat{\omega}_{s}=\frac{\widehat{\operatorname{Cov}}_{s}(X, R)}{\widehat{\operatorname{Var}}_{s}(X)}$ where

$$
\widehat{\operatorname{Cov}}_{s}(X, R)=\frac{1}{s} \sum_{i=1}^{s}\left(R_{i}-\widehat{\mathbb{E}}_{s}[R]\right)\left(X_{i}-\widehat{\mathbb{E}}_{s}[X]\right)
$$

is the empirical covariance and $\widehat{\operatorname{Var}}_{s}(X)=\widehat{\operatorname{Cov}}_{s}(X, X)$. In the following, we propose concentration inequalities for $\omega_{*}$ and $L\left(\omega_{*}\right)$.
Proposition 6 (Concentration of LMMSE Estimator). Let $M_{Z} \geq M_{R}+\omega_{*} M_{X}$ and $\lambda=1+\frac{1}{2 \sqrt{2}}$. Then, for any $\delta \in(0,1)$, if

$$
\begin{equation*}
s \geq \frac{48 M_{X}^{4} \log \left(\delta^{-1}\right)}{\operatorname{Var}^{2}\left(X_{1}\right)} \tag{68}
\end{equation*}
$$

then the following inequalities hold simultaneously:

$$
\begin{aligned}
\mathbb{P}\left(\left|\omega_{*}-\widehat{\omega}_{s}\right|>\frac{\lambda M_{Z} M_{X}}{\operatorname{Var}\left(X_{1}\right)} \sqrt{\frac{\log \left(\delta^{-1}\right)}{s}}\right) & \leq 12 \delta, \\
\mathbb{P}\left(\left|L\left(\omega_{*}\right)-\widehat{L}_{s}\left(\widehat{\omega}_{s}\right)\right|>M_{Z}^{2} \sqrt{\frac{2 \log \left(\delta^{-1}\right)}{s}}\right) & \leq 18 \delta .
\end{aligned}
$$

Proof. For the first inequality, recall that $\omega_{*}=\frac{\operatorname{Cov}\left(X_{1}, R_{1}\right)}{\operatorname{Var}\left(X_{1}\right)}$ and $\widehat{\omega}_{s}$ is the ratio of empirical estimates for $\operatorname{Cov}\left(X_{1}, R_{1}\right)$ and $\operatorname{Var}\left(X_{1}\right)$. Therefore, we can use Proposition 2 for the proof. Note that 68 is the stability condition for the estimator $\widehat{\omega}_{s}$. Since $s \geq \frac{1}{2} \log \left(\delta^{-1}\right)$, Hoeffding's inequality yields the following result for the empirical covariance:

$$
\begin{equation*}
\mathbb{P}\left(\left|\widehat{\operatorname{Cov}}_{s}\left(X_{1}, R_{1}\right)-\operatorname{Cov}\left(X_{1}, R_{1}\right)\right|>M_{X} M_{R} \sqrt{\frac{\log \left(\delta^{-1}\right)}{s}}\right) \leq 6 \delta \tag{69}
\end{equation*}
$$

Using this twice for $\widehat{\operatorname{Cov}}_{s}\left(X_{1}, R_{1}\right)$ and $\widehat{\operatorname{Var}}_{s}\left(X_{1}\right)$, we obtain the first inequality.
For the second inequality, first we make the following decomposition:

$$
\begin{equation*}
\left|\widehat{L}_{s}\left(\widehat{\omega}_{s}\right)-L\left(\omega_{*}\right)\right|=\left|\widehat{L}_{s}\left(\omega_{*}\right)-L\left(\omega_{*}\right)\right|+\left|\widehat{L}_{s}\left(\widehat{\omega}_{s}\right)-\widehat{L}_{s}\left(\omega_{*}\right)\right| \tag{70}
\end{equation*}
$$

For the first term on the RHS of (70), we have the following result:

$$
\left|\widehat{L}_{s}\left(\omega_{*}\right)-L\left(\omega_{*}\right)\right| \leq M_{Z}^{2} \sqrt{\frac{\log \left(\delta^{-1}\right)}{s}}
$$

by applying Hoeffding's inequality for the variance $\sqrt{69}$ to the decomposition:

$$
\operatorname{Var}\left(R_{1}-\omega X_{1}\right)=\operatorname{Var}\left(R_{1}\right)+\omega^{2} \operatorname{Var}\left(X_{1}\right)-2 \operatorname{Cov}\left(X_{1}, R_{1}\right)
$$

and its empirical counterpart. For the second term on the RHS of 70, note that the following identity holds by the orthogonality principle:

$$
\begin{equation*}
\widehat{L}_{s}(\omega)=\widehat{L}_{s}\left(\widehat{\omega}_{s}\right)+\left|\omega-\widehat{\omega}_{s}\right|^{2} \widehat{\operatorname{Var}}_{s}\left(X_{1}\right), \tag{71}
\end{equation*}
$$

for any $\omega \in \mathbb{R}$. Therefore, by union bound, we have the following result:

$$
\mathbb{P}\left(\left|L_{s}\left(\omega_{*}\right)-\widehat{L}_{s}\left(\widehat{\omega}_{s}\right)\right|>M_{Z}^{2}\left(\sqrt{\frac{\log \left(\delta^{-1}\right)}{s}}+\frac{3 \lambda^{2} M_{X}^{2} \log \left(\delta^{-1}\right)}{2 \operatorname{Var}\left(X_{1}\right) s}\right)\right) \leq 18 \delta
$$

from the concentration result for $\left|\omega_{*}-\widehat{\omega}_{s}\right|$ and (69) with $M_{X}^{2} \sqrt{\frac{\log \left(\delta^{-1}\right)}{s}} \leq \frac{\operatorname{Var}\left(X_{1}\right)}{2}$ by (68). Since $s$ is assumed to be sufficiently large by (68), we have:

$$
\sqrt{\frac{\log \left(\delta^{-1}\right)}{s}}>\frac{3 \lambda^{2} M_{X}^{2} \log \left(\delta^{-1}\right)}{2 \operatorname{Var}\left(X_{1}\right) s}
$$

which concludes the proof.

## G. 2 Proof of Theorem 5

The proof follows a similar steps as the proof of Theorem 4 (see Appendix F). The main difference is the use of LMMSE estimator as a surrogate for $V\left(X_{1, k}, R_{1, k}\right)$. By using Proposition 6 together with the proof technique in Claim 2, one can show the following:

$$
\begin{aligned}
\mathbb{E}\left[T_{k}(n)\right] \leq 16 \log \left(n^{\alpha}\right)\left(\frac{3 M_{X}^{4}}{\operatorname{Var}^{2}\left(X_{1, k}\right)}\right. & \left.+\frac{2 M_{X}}{\mathbb{E}\left[X_{1, k}\right]}+\frac{3 \operatorname{Var}\left(X_{1, k}\right)}{\mathbb{E}^{2}\left[X_{1, k}\right]}\right) \\
& +32 \log \left(n^{\alpha}\right)\left(\frac{\sigma_{k}^{2}}{\Delta_{k}^{2}\left(\mathbb{E}\left[X_{1, k}\right]\right)^{2}}+\frac{M_{k}+M}{\Delta_{k} \mathbb{E}\left[X_{1, k}\right]}\right)+8 \pi^{2}
\end{aligned}
$$

where $M=\frac{M_{X} M_{Z}}{\sqrt{\operatorname{Var}\left(X_{1, k}\right)}}, \sigma_{k}=\operatorname{Var}\left(R_{1, k}\right)-\omega_{k}^{2} \operatorname{Var}\left(X_{1, k}\right)$ and $M_{k}=M_{R}+r_{k} M_{X}$.

