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Abstract

We consider a budget-constrained bandit problem where each action depletes a
random cost from a budget B > 0, and a random reward is obtained in return. The
objective is to maximize the total expected reward under the budget constraint.
The model is general in the sense that it allows correlated, potentially heavy-tailed
cost-reward pairs that can take on negative values. We show that if moments of
order (2 + γ) for some γ > 0 exist for all cost-reward pairs, O(logB) regret is
achievable. In order to achieve tight regret bounds, we propose algorithms that
exploit the correlation between the cost and reward of each arm by extracting the
common information via linear minimum mean-square error estimation, and use
second-order moment estimates. We prove a regret lower bound for the problem,
and show that the proposed algorithms achieve the regret lower bound up to a
universal constant for the case of jointly Gaussian cost and reward pairs.

1 Introduction

Multi-armed bandits (MAB) have been the prominent model for modeling the exporation-and-
exploitation dilemma since its introduction in [Robbins, 1952]. Due to the universality of the
dilemma, bandit algorithms have found a broad area of applications from medical trials to routing
in communications. As a common feature of all MAB instances, each action depletes a cost from a
limited budget, and a random reward is obtained in return. In such a setting, the aim of the decision
maker is to balance the exploration and exploitation at every step so as to maximize the cumulative
reward until depleting the budget. In the classical MAB setting, each action is assumed to consume a
known deterministic amount of resource, i.e., one time-slot. However, in many problems of interest,
different tasks consume different and random amount of resources with diverse statistics. Moreover,
as in many applications in communications and finance, the cost and reward can be correlated and
potentially heavy-tailed.

In this paper, we consider algorithms for budget-constrained multi-armed bandit (MAB) problem
over general cost and reward distributions. Unlike the classical stochastic MAB problem, each
action incurs a random cost and yields a random reward in our model, where both cost and reward
are learned via bandit feedback. Under a budget constraint B, the objective of the controller is to
maximize the expected cumulative reward until the total cost exceeds the budget. Many of our results
are obtained for a very general setting where the cost and reward can be correlated and potentially
heavy-tailed, but sharper results are presented for some interesting special cases.

1.1 Main Contributions

There are three very important problems that remain unexplored in the budgeted bandit literature to
the best of our knowledge:

• Unbounded and potentially heavy-tailed cost and reward,
• The correlation between the cost and reward,

Preprint. Work in progress.



• Regret lower bounds that reflect the effects of variability and correlation in cost-reward
pairs.

In this paper, we address these challenges and propose provably good learning algorithms. Our main
contributions are as follows:

1. Sub-Gaussian cost and reward: We propose algorithms that use the second-order moments
to achieve tight regret bounds. In the case of correlated cost-reward pairs, we show that
exploiting the correlation might boost the convergence speed of the learning algorithms
further, which implies significant performance gains. This common information is extracted
by using linear minimum mean square error (LMMSE) estimation between the cost and
reward pairs. We show that this method yields optimal regret up to a universal constant in
the case of jointly Gaussian cost and reward pairs.

2. General cost and reward distributions: We propose an algorithm based on robust estima-
tion [Minsker et al., 2015], and show that the regret performance in the sub-Gaussian case
can be achieved as long as the moment of order (2 + γ), γ > 0 exists for the cost, and the
variance exists for the reward of each arm.

3. Regret lower bounds: We extend the regret lower bound in [Lai and Robbins, 1985]
to the case of random costs, and obtain explicit bounds for jointly Gaussian cost-reward
distributions.

1.2 Related Work

The classical stochastic multi-armed bandit problem, which is a specific case of the model we study
in this paper, has been extensively studied in the literature. For detailed discussion on the basic model,
we refer to [Bubeck et al., 2012, Berry and Fristedt, 1985].

The budget-constrained MAB problem and its variants were investigated in a variety of papers. In
[Tran-Thanh et al., 2012] and [Combes et al., 2015], budget-constrained multi-armed bandit problem
is investigated where each arm pull incurs an arm-dependent and deterministic cost. In [Guha
and Munagala, 2009], the budgeted-bandit problem with deterministic costs is investigated from a
Bayesian perspective, and constant-factor approximation algorithms are proposed. In [György et al.,
2007], the continuous-time extension of the MAB problem with side information is investigated,
which is an early example for the budget-constrained bandit problem. In [Badanidiyuru et al., 2013]
and [Agrawal and Devanur, 2014], the bandit problem under multiple budget constraints is examined,
and O(

√
B) regret bounds are obtained. In [Xia et al., 2015, 2016], the budget-constrained MAB

problem is explored in a similar setting to ours. In these works, the cost-reward pairs are supported
in [0, 1], and they are assumed to be independent for all arms. In [Cayci et al., 2019], the authors
consider a variation of the budget-constrained bandit problem where the controller has the option to
interrupt an ongoing cycle for a faster alternative. The interruption mechanism brings significantly
different dynamics to the problem that is investigated in this paper.

Bandits with heavy-tailed reward distributions are considered in [Liu and Zhao, 2011, Bubeck et al.,
2013]. These papers are still in the scope of the classical MAB setting: the budget is consumed
deterministically at rate 1 by each action, so the dynamics of the random resource consumption with
heterogeneous statistics are not included in the model.

2 System Setup

In this paper, we consider a bandit problem with K arms. The set of arms is denoted by K =
{1, 2, . . . ,K}. Each arm k ∈ K is described by a two-dimensional random process {(Xn,k, Rn,k) :
n ≥ 1} that is independent from other arms. If arm k is chosen at n-th epoch, it incurs a cost of Xn,k

and yields a reward of Rn,k, where both are learned via a bandit feedback only after the decision is
made. The controller has a cost budget B > 0, and tries to maximize the expected cumulative reward
it receives by sampling the arms wisely under this budget constraint.

The pair (Xn,k, Rn,k) is assumed to be independent and identically distributed over n, but the cost
Xn,k and reward Rn,k can be correlated. We allow Xn,k to take on negative values, but the drift is
assumed to be positive, i.e., there exists µ∗ > 0 such that E[Xn,k] ≥ µ∗ > 0 for all k.

2



Let π be an algorithm that yields a sequence of arm pulls {Iπn ∈ K : n ≥ 1}. Under π, the history
until epoch n is the following filtration:

Fπn = σ({(Xj,k, Rj,k) : Iπj = k, 1 ≤ j ≤ n}), (1)

where σ(X) denotes the sigma-field of a random variable X . We call an algorithm π admissible if π
is non-anticipating, i.e., {Iπn = k} ∈ Fπn−1 for all k, n. The set of all admissible policies is denoted
as Π.

The total cost incurred in n epochs under an admissible policy π ∈ Π is a controlled random walk
which is defined as Sπn =

∑n
i=1Xi,Iπi

. The arm pulling process under an algorithm π continues until
the budget B is depleted. We assume that the reward corresponding to the final epoch during which
the budget is depleted is gathered by the controller. Thus, the total number of pulls under π is defined
as follows:

Nπ(B) = inf
{
n : Sπn > B

}
. (2)

Note that the total number of pulls Nπ(B) is a stopping time adapted to the filtration {(Fπt ) : t ≥ 0}.
With these definitions, the cumulative reward under a policy π can be written as follows:

Rewπ(B) =

Nπ(B)∑
i=1

Ri,Iπi . (3)

The objective in this paper is to design algorithms that achieve maximum E[Rewπ(B)], or equiva-
lently minimum regret, which is defined as follows:

Regπ(B) = E[Rewπopt(B)]− E[Rewπ(B)], (4)

where πopt(B) denotes the optimal policy:

πopt(B) ∈ arg max
π′∈Π

E[Rewπ′(B)],

for any B > 0.

In the following section, we investigate the optimal policy that maximizes the expected cumulative
reward when all arm distributions are known, and provide low-complexity approximations that have
desirable performance characteristics.

3 Approximations of the Oracle

The optimization problem described in Section 2 is an instance of the well-known stochastic knapsack
problem whose solution is NP-hard even if all statistics are fully known by the controller [Kohli et al.,
2004, Kellerer et al., 2004]. In order to overcome this difficulty, we will consider approximation
algorithms with provably good performance in this section.

The main quantity of interest will be the reward rate, which is defined as follows:

rk =
E[R1,k]

E[X1,k]
, k ∈ K. (5)

Intuitively, if arm k is chosen persistently until the budget B > 0 is depleted, the cumulative reward
becomes rkB + o(B) as B →∞. The additive o(B) term is O(1) if E[(X+

1,k)2] <∞ by Lorden’s
inequality [Asmussen, 2008]. Hence, pulling the arm with the highest reward rate is a logical choice.

In the following, we prove that the optimality gap is O(1) under mild moment conditions, which
covers the case of heavy-tailed cost-reward pairs.

Definition 1 (Optimal Static Algorithm). Let k∗ be the arm with the highest reward rate:

k∗ ∈ arg max
k∈K

rk.

The optimal static policy, denoted by π∗, pulls k∗ until the budget is depleted: Iπ
∗

n = k∗ for all
n ≤ Nπ∗(B).
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The main result of this section is the following proposition, which implies that π∗ is a plausible
approximation algorithm for πopt(B) for all B > 0 under mild moment conditions.

Assumption 1. There exists γ > 0 such that E[(X+
1,k)2+γ ] <∞ for all k ∈ K.

Proposition 1 (Optimality Gap for π∗). Under Assumption 1, there exists a constant

G? = G?
(

min
k

E[X1,k],max
k

V ar(X1,k)
)
<∞,

independent of B such that the following holds:

max
π∈Π

E[Rewπ(B)]− E[Rewπ∗(B)] ≤ G?, (6)

for any B > 0. Consequently, π∗ is asymptotically optimal as B →∞.

Proof. The proof is given in Appendix A.

This result extends the optimality gap result presented in [Xia et al., 2016] for bounded and strictly
positive costs to unbounded costs with positive drift that can take on negative values. Also, for small
B values, there can be dynamic policies that outperform this simple static policy [Dean et al., 2004].
However, the optimality gap is still O(1) for these dynamic policies, therefore we consider π∗ for its
simplicity and efficiency.

Now that we have an accurate approximation for the oracle, we propose the first and basic algorithms
that assume the knowledge of second-order moments.

4 Algorithms for Known Second-Order Moments

In this section, we will assume that the second-order moments of all cost-reward pairs are known
by the decision maker. First, in Section 4.2, we will consider the case (Xn,k, Rn,k) are jointly
sub-Gaussian, and propose a learning algorithm that achieves tight regret bound on the order of
O(log(B)) by using the correlation information. Then, in Section 4.3, we will study the general case
where the cost and reward can be unbounded and potentially heavy-tailed, and propose algorithms
that achieve the same regret bounds (up to a constant) as the sub-Gaussian case.

The following proposition provides a basis for the algorithm design and analysis throughout the
paper.

4.1 Preliminaries: Rate Estimation

Let θ = (θ1, θ2) ∈ R2 be a pair of unknown constants for which r = θ2
θ1

is to be estimated. The
following proposition yields a useful device to obtain concentration results for r from concentration
results for θ1 and θ2 for this estimation procedure.

Proposition 2 (Rate Estimation). Let θ̂1 and θ̂2 be estimators for θ1 > 0, θ2 ≥ 0, respectively. If
η ∈

(
0, θ1(λ−1)

λ

)
for some λ > 1, then we have the following result:

P
(
|r − θ̂2

θ̂1

| > λ(ε+ rη)

θ1

)
≤ P(|θ̂1 − θ1| > η) + P(|θ̂2 − θ2| > ε).

Therefore, if θ̂1 and θ̂2 both achieve exponential convergence rate, then θ̂2
θ̂1

converges to r exponen-
tially fast. The intuition behind the proposition is illustrated in Figure 4.1.

Remark 1 (Stability of the rate estimator). The condition η < θ1, i.e., sufficient concentration of the
estimator around the true parameter θ1, is crucial for Proposition 2. Note that if the variability of the
mean estimator is high and thus A(η, ε) intersects with the y-axis, then the above bound is useless as
r̂ can have arbitrarily large deviations from r.

In the following, we propose algorithms under the assumption that the second-order moments for
each arm k is known by the controller.
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Figure 1: If (θ̂1, θ̂2) is in the high-probability set A(η, ε), then the maximum deviation of r̂ = θ̂2
θ̂1

from r is λ(ε+rη)
θ1

, and it is achieved at the marked corner.

4.2 Sub-Gaussian Case: Algorithm UCB-B1

The main idea behind UCB-B1 is to use an upper confidence bound for the reward rate rk. Let Tk(n)

be the number of pulls for arm k in the first n stages and r̂k,n = Ên[Rk]

max{Ên[Xk],b}
where

Ên[Xk] =
1

Tk(n)

n∑
i=1

I{Ii = k}Xi,k,

Ên[Rk] =
1

Tk(n)

n∑
i=1

I{Ii = k}Ri,k,

and b ≤ E[X1,k]/2 for all k. Instead of estimating E[X1,k] and E[R1,k] separately from the samples
of (Xn,k, Rn,k), the correlation between Xn,k and Rn,k can be exploited to tighten the upper
confidence bound for rk. This is achieved by estimating Rn,k by a linear estimator ωXn,k so as to
minimize V ar(Rn,k − ωXn,k). Let

V (X1,k, R1,k) = min
ω∈R

V ar(R1,k − ωX1,k). (7)

By the orthogonality principle [Poor, 2013],

ωk = arg min
ω∈R

V ar(R1,k − ωX1,k),

=
Cov(X1,k, R1,k)

V ar(X1,k)
,

(8)

and the optimal value of the objective is given by:

V (X1,k, R1,k) = V ar(R1,k)− ω2
kV ar(X1,k),

which implies that ωk and V can be computed from the second-order moments of (Xn,k, Rn,k),
which are assumed to be given in this section. For simplicity, assume ωk ≤ rk for all k.

For non-negative (MX ,MR, L) that will be specified later, let

εBk,n =
2αMR log(n)

3Tk(n)
+

√
Lα

V (X1,k, R1,k) log(n)

Tk(n)
,

ηBk,n =
2αMX log(n)

3Tk(n)
+

√
Lα

V ar(X1,k) log(n)

Tk(n)
.
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Then, if there is a remaining budget, then the UCB-B1 Algorithm pulls an arm at stage n+1 according
to:

In+1 ∈ arg max
k

{
r̂k,n + 1.36

εBk,n + (r̂k,n − ωk)ηBk,n(
Ên[Xk]− 3ηBk,n

)+ }
.

The regret performance of UCB-B1 is presented in the following theorem.

Theorem 1 (Regret Upper Bound for UCB-B1). Let ∆k = r∗ − rk,

σ2
k = V (X1,k, R1,k) + (r∗ − ωk)2V ar(X1,k), (9)

for all k ∈ K and recall that µ∗ = min
k

E[X1,k].

1. Bounded Cost and Reward: If |X1,k| ≤ MX , |R1,k| ≤ MR a.s., α > 3 and L = 2, then
the regret under UCB-B1 is upper bounded as:

RegπB1(B) ≤ α
∑

k:∆k>0

log
(2B

µ∗

)
CB1
k +O(1), (10)

where Mk = MR + rkMX and

CB1
k =

32σ2
k

∆kE[X1,k]
+ 32Mk + 16MX∆k,

for all k.

2. Jointly Sub-Gaussian Cost and Reward: Let (Xn,k, Rn,k) be jointly sub-Gaussian with
covariance matrix Σk for all k. Then, UCB-B1 with α > 3, MX = MR = 0 and L = 1

2
yields the following regret bound:

RegπB1(B) ≤ α
∑

k:∆k>0

log
(2B

µ∗

) 16σ2
k

∆kE[X1,k]
+O(1), (11)

where σk is defined in (9).

Proof. The detailed proof, which will provide basis for the analysis of other algorithms proposed in
this work, can be found in Appendix C. Note that the number of pulls, Nπ(B), is a random stopping
time in this setting. Moreover, the decisions are made asynchronously with the oracle, which makes
the regret analysis even more difficult. In order to tackle these challenges, we follow a proof strategy
based on establishing a high-probability upper bound for Nπ(B) by using the theory of stopped
random walks, which can be found in Appendix B.

4.3 Heavy-Tailed Case: Algorithm UCB-M1

In this subsection, we design a general algorithm that achieves the regret in the sub-Gaussian case
(up to a constant) under the mild moment condition that E[(X+

1,k)2+γ ] <∞ for all k.

The empirical mean estimator played a central role in the design of the UCB-B1 Algorithm for
sub-Gaussian distributions, which is proved to achieve O(log(B)) regret. However, if we consider
heavy-tailed distributions, the empirical mean estimator fails to achieve exponential convergence
rate due to the frequent outliers [Bubeck et al., 2013]. The median-based estimators, introduced in
[Nemirovsky and Yudin, 1983] provide an elegant method to boost the convergence speed in mean
estimation. The idea of boosting the confidence of weak independent estimators by taking the median
was extended to general point estimation problems (beyond the mean estimation) in [Minsker et al.,
2015]. In the following, we will use a variation of this method in the design of median-based rate
estimators.

Consider arm k ∈ K at stage n. For

m = b3.5α log(n)c+ 1,
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we partition the observed samples {(Xi,k, Ri,k) : Ii = k, 1 ≤ i ≤ n} into index sets
G1, G2, . . . , Gm of size bTk(n)/mc each. Then, for each j ∈ {1, 2, . . . ,m}, let r̃k,Gj =

ÊGj [Rk]

max{ÊGj [Xk],b}
where b ≤ E[X1,k]/2, and

ÊGj [Xk] =
∑
i∈Gj

Xi,k

|Gj |
, ÊGj [Rk] =

∑
i∈Gj

Ri,k
|Gj |

.

The median-based rate estimator for arm k at stage n is thus

rk,n = median
1≤j≤m

r̃k,Gj .

The deviations in the cost and reward are as follows:

εMk,n = 11

√
α
V (X1,k, R1,k) log(n)

Tk(n)
,

ηMk,n = 11

√
α
V ar(X1,k) log(n)

Tk(n)
.

Therefore, the decision at stage (n+ 1) under UCB-M1 is as follows:

In+1 ∈ arg max
k

{
rk,n + ĉMk,n

}
(12)

where

ĉMk,n =
2
√

2
(
εMk,n + (rk,n − ωk)ηMk,n(

median
1≤j≤m

ÊGj [Xk]− 3ηMk,n

)+ .

For UCB-M1, we have the following regret upper bound.
Theorem 2 (Regret Upper Bound for UCB-M1). If the following moment conditions hold:

• E[(X+
1,k)2+γ ] <∞, for all k,

• V ar(R1,k) <∞, for all k,

then the regret under UCB-M1 satisfies the following upper bound:

RegπM1(B) ≤ α
∑

k:∆k>0

log
(2B

µ∗

) Cσ2
k

∆kE[X1,k]
+O(1), (13)

where σk is as defined in (9) and C > 0 is a universal constant.

Remark 2. We have the following observations from Theorem 1 and 2:

• If V ar(X1,k) ↓ 0 and E[X1,k] = 1, the regret upper bounds match with the existing regret
bounds for the stochastic bandit problem.

• Note that for positively correlated Xn,k and Rn,k, one can ignore the correlation and use an
upper confidence bound based on the separate estimation of Xn,k and Rn,k. From Theorem
1, it can be observed that this scheme leads to a loss ofO

(∑
k Cov(X1,k, R1,k)

)
. Moreover,

as it will be seen in the next section, this is nearly the best way of exploiting the correlation
in the case of jointly Gaussian cost and reward pairs.

• The UCB-M1 Algorithm achieves the same regret upper bound as the UCB-B1 Algorithm up
to a constant with much less moment assumptions: while UCB-B1 requires sub-Gaussianity,
UCB-M1 requires only existence of moments of order (2 + γ) for some γ > 0 for the
costs, and second-order moments for the rewards. However, the constant that multiplies the
O(logB) term is much higher in UCB-M1 than UCB-B1, which can be viewed as the cost of
generality.
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• If the cost is deterministic, i.e., V ar(X1,k) = 0, then the regret is monotonically

decreasing in ∆k as O
(

logB
∆k

)
for each arm k. However, for random costs, since

r∗ = rk + ∆k, the regret bounds have an additive term scaling linearly in ∆k as
O
(

log
(

2B
µ∗

)∑
k
V ar(X1,k)
E[X1,k] ∆k

)
, which might seem strange at first since the separabil-

ity of a suboptimal arm k increases with its corresponding ∆k. This is a unique phenomenon
observed in the case of stochastic costs: recall from Remark 1 that the rate estimator is
unstable when the confidence interval for the estimation of E[X1,k] is large, and thus it
incurs E[X1,k]∆k regret per pull since rate estimation is unreliable. As it will be seen in
Corollary 1, the same term appears with the same coefficient in the regret lower bound for
jointly Gaussian cost-reward pairs, which implies that it is inevitable at least in that case.

5 Regret Lower Bound for Admissible Policies

In this section, we will propose regret lower bounds for the budget-constrained bandit problem
based on [Lai and Robbins, 1985]. In the specific case of jointly Gaussian cost-reward pairs, we can
determine a lower bound explicitly, which provides useful insight about the impact of variability and
correlation on the regret.

In order to establish a regret lower bound, assume that the joint distribution of {(Xn,k, Rn,k) : n ≥ 1}
is parametrized by θk ∈ Θk for some parameter space Θk, i.e., (Xn,k, Rn,k) ∼ Pθk . For any k ∈ K
and θ ∈ Θk, let rk(θ) =

Eθ[R1,k]
Eθ[X1,k] be the reward rate (i.e., reward per unit cost). Furthermore, for

a given bandit instance ~θ = (θ1, θ2, . . . , θK), let r∗ = max
k

rk(θk) be the optimal reward rate, and

∆k = r∗ − rk(θk). For admissible policies, we have the following regret lower bound, which is
an extension of Lai-Robbins style regret lower bounds for the stochastic bandit problem [Lai and
Robbins, 1985].
Theorem 3 (Regret Lower Bound). Suppose that E[(X1,k)2+γ ] < ∞ for some γ > 0 and
V ar(R1,k) < ∞ hold for all k. Assume that the following conditions are satisfied by Pk,θ for
any k:

1. If rk(θ1) > rk(θ2), then D(Pk,θ2 ||Pk,θ1) <∞,

2. (Denseness) rk(Θk) = {rk(θ) : θ ∈ Θk} is dense,

3. (Continuity) θ 7→ D(Pk,θk ||Pk,θ) is a continuous mapping.

For a given bandit instance ~θ = (θ1, θ2, . . . , θK), if π ∈ Π is a policy such that E[Tπk (n)] = o(nα)
for any α > 0 and k such that rk(θk) < r∗, then we have the following lower bound:

lim inf
B→∞

Regπ(B)

log(B)
≥ 1

2

∑
k:∆k>0

E[X1,k]∆k

D?
k

, (14)

where D?
k is the solution to the following optimization problem:

D?
k = min

θ∈Θk
D(Pk,θk ||Pk,θ) subject to rk(θ) ≥ r∗.

Proof. The proof can be found in Appendix E.

The regret lower bound has an explicit form if the cost and reward distributions of each arm is jointly
Gaussian with a known covariance matrix.
Corollary 1 (Jointly Gaussian Cost and Reward). Let (Xn,k, Rn,k) be jointly Gaussian:

(Xn,k, Rn,k) ∼ N (µk,Σk),

for all k ∈ K where µk =
(
E[Xn,k],E[Rn,k]

)
and

Σk =

(
V ar(Xn,k) Cov(Xn,k, Rn,k)

Cov(Xn,k, Rn,k) V ar(Rn,k)

)
.
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If Σk is known and µk is unknown by the controller for all k ∈ K, we have the following regret lower
bound for the Gaussian case:

lim inf
B→∞

Regπ(B)

log(B)
≥

∑
k:∆k>0

σ2
k

E[X1,k]∆k
, (15)

where σ2
k is defined in (9).

Proof. For known Σk, we have D?
k =

(E[X1,k]∆k)2

2σ2
k

for θk = µk and Θk = R2
+. Using this in

Theorem 3 yields the result.

Remark 3 (Optimality of UCB-B1 and UCB-M1). Comparing (11) and (13) with (15), we can deduce
that UCB-B1 and UCB-M1 achieve optimal regret up to a universal constant for the case of jointly
Gaussian cost and reward pairs with known covariance matrix.

6 Algorithms for Unknown Second-Order Moments

In Section 6, we proposed algorithms under the assumption that the second-order moments are known
for each arm k. However, in practice, these second-order moments are unknown, and therefore to be
estimated from the samples collected via bandit feedback. In this section, we will propose algorithms
that use these second-order moment estimates to achieve tight regret bounds.

The general strategy in the development of the algorithms in this section is to use high-probability
upper bounds for the second-order moments that appear in UCB-B1 as a surrogate.

6.1 Bounded and Uncorrelated Cost and Reward: UCB-B2

For clarity, we first consider the case Xn,k and Rn,k are uncorrelated for all k and Xn,k ∈ [0,MX ]
and Rn,k ∈ [0,MR] almost surely for known MX ,MR > 0. In this case, we will propose an
algorithm based on a variant of the empirical Bernstein inequality, which was introduced in [Audibert
et al., 2009].

For any k, let the variance estimate V̂k,n(Xk) be defined as follows:

V̂k,n(Xk) =
1

Tk(n)

n∑
i=1

I{Ii = k}
(
Xi,k − Ên[X1,k]

)2
,

where Ên[Xk] is the empirical mean of the observations up to epoch n. Also, let νk,n be defined for
Xk ∈ [0,MX ] as follows:

νk,n(Xk) = M2
X

(7 log(nα)

6Tk(n)
+

√
log(nα)

2Tk(n)

)
, α > 3.

Then, it can be shown by using Bernstein’s inequality that V̂k,n(Xk) + νk,n(Xk) is an upper bound
for V ar(X1,k) with high probability.

The bias terms in UCB-B2 are defined as follows:

εB2k,n =

√
2
(
V̂k,n(Rk) + νk,n(Rk)

)
log(nα)

Tk(n)
+

2MR log(nα)

3Tk(n)
,

ηB2k,n =

√
2
(
V̂k,n(Xk) + νk,n(Xk)

)
log(nα)

Tk(n)
+

2MX log(nα)

3Tk(n)
.

Let r̂k,n be the empirical reward rate estimator in Section 4.2, and

ĉB2k,n = 1.36
εB2k,n + r̂k,nη

B2
k,n(

Ên[Xk]− 3ηB2k,n
)+ (16)
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Then, at stage n+ 1, the following decision is made under UCB-B2:

In+1 ∈ arg max
k

{
r̂k,n + ĉB2k,n

}
.

The lack of knowledge for the second-order statistics loosen the upper confidence bound for the rate
estimator, which in turn increases the regret. In the following, we provide the regret upper bounds
for UCB-B2 to gain insight about the impact of using variance estimates on the performance of the
algorithm.
Theorem 4 (Regret Upper Bound for UCB-B2). Let σk and Mk be as defined in Theorem 1. Then,
we have the following upper bound for the regret under UCB-B2:

RegπB2(B) ≤ α
∑

k:∆k>0

log
(2B

µ∗

)
(CB1

k + δCk) +O(1), (17)

where

δCk = 16
( M2

k

∆kµk
+

M4
X∆kµk

V ar2(X1,k)
+
V ar(X1,k)∆k

µk

)
. (18)

for µk = E[X1,k].

The proof of Theorem 4 involves the analysis of sample variance estimates, and can be found in
Appendix F.
Remark 4 (Impact of Unknown Variances). If the controller has the knowledge of E[(X1,k −
E[X1,k])4] and E[(R1,k − E[R1,k])4], the first term on the RHS of (18) disappears. The other terms
are caused by the stability of the rate estimator: since we use a variance estimate in the upper
confidence bound of Xn,k, the rate estimator suffers from a longer period of instability, which
increases the regret coefficient.

6.2 Learning the Correlation: UCB-B2C

Finally we consider the case (Xn,k, Rn,k) are bounded and correlated, but the second-order moments
are unknown. In the absence of correlation, our goal was to estimate V ar(R1,k) and V ar(X1,k)
from the samples of (Xn,k, Rn,k). When there is a correlation, we have an optimization problem:
we need to establish confidence bounds for the LMMSE estimator ωk defined in (8) as well as the
minimum variance V ar(R1,k − ωkX1,k) by using the samples of (Xn,k, Rn,k) observed via bandit
feedback. We take a loss minimization approach in the statistical learning setting to estimate these
quantities.

For any k ∈ K, let the empirical LMMSE estimator be defined as follows:

ω̂k,n = arg min
ω′∈R

L̂k,n(ω)

where the empirical loss function is the following:

L̂k,n(ω) =

n∑
i=1

I{Ii = k}
Tk(n)

(
Ri − Ên[R]− ω

(
Xi − Ên[X]

))2

.

It can be shown that ω̂k,n → ωk if Tk(n) → ∞ as n → ∞, and moreover the convergence rate
is exponential and tight concentration bounds for ω̂k,n and L̂k,n(ω̂k,n) can be established. Let
MZ = MR + ωMX where ω > maxk ωk is a given parameter, and let

νk,n(ωk) =
1.36MXMZ

V ar(X1,k)

√
log nα

Tk(n)
, (19)

νk,n(Lk) = M2
Z

√
2 log nα

Tk(n)
. (20)

Then, it can be shown that −ω̂k,n + νk,n(ωk) and L̂k,n(ω̂k,n) + νk,n(ωk) are high-probability upper
bounds for −ωk and minω V ar(R1,k − ωX1,k), respectively, for large enough Tk(n).
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The bias terms in UCB-B2C are defined as follows:

εB2Ck,n =

√
2
(
L̂k,n(ω̂k,n) + νk,n(Lk)

)
log(nα)

Tk(n)
+

2MZ log(nα)

3Tk(n)
,

ηB2k,n =

√
2
(
V̂k,n(Xk) + νk,n(Xk)

)
log(nα)

Tk(n)
+

2MX log(nα)

3Tk(n)
.

Then, at stage n+ 1, the following decision is made under UCB-B2C:

In+1 ∈ arg max
k

{
r̂k,n + ĉB2Ck,n

}
,

where

ĉB2Ck,n = 1.36
εB2Ck,n + (r̂k,n − ω̂k,n + νk,n(ωk))ηB2Ck,n(

Ên[Xk]− 3ηB2Ck,n

)+ .

In the following, we investigate the impact of using second-order moment estimates on the regret
under the UCB-B2C Algorithm. The proof can be found in Appendix G.

Theorem 5 (Regret Upper Bound for UCB-B2C). Let CB1
k be defined as in Theorem 1. Then, we have

the following upper bound for the regret under UCB-B2:

RegπB2(B) ≤ α
∑

k:∆k>0

log
(2B

µ∗

)
(CB1

k + δC ′k) +O(1), (21)

where

δC ′k = δCk + 32
( MZMX√

V ar(X1,k)
+

M4
X∆kµk

V ar2(X1,k)

)
. (22)

for µk = E[X1,k] and δCk defined in (18).

Note that the regret of UCB-B2C converges to the regret of UCB-B2, and they both approach to the
performance of the UCB-B1 Algorithm as ∆k ↓ 0.

7 Conclusions

In this paper, we considered a very general setting for the budgeted bandit problem where each action
incurs a potentially correlated and heavy-tailed cost-reward pair. We proved that positive expected
cost and existence of moments of order 2 + γ for some γ > 0 suffice for O(logB) regret for a given
budget B > 0. For known second-order moments, we proposed two algorithms named UCB-B1
and UCB-M1 that exploit the correlation between cost and reward by using an LMMSE estimator.
By proposing a regret lower bound, we proved that UCB-B1 and UCB-M1 achieve order optimality,
and moreover they achieve optimal regret up to a universal constant for the specific case of jointly
Gaussian cost and reward pairs, which underlines the significance of second-order moments and
correlation in the regret performance. For the case of bounded cost and reward with unknown second-
order moments, we proposed learning algorithms UCB-B2 and UCB-B2C that estimate variances as
well as LMMSE estimator to approach the performance of UCB-B1. We investigated the effect of
using these estimates as surrogates in the absence of second-order moments, and proved that they
achieve the performance of UCB-B1 for certain cases.
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A Proof of Proposition 1

Proof. The proof consists of two parts.

1. In the first part, we find an upper bound for E[Rewπopt(B)(B)]. In order to achieve this goal,
we consider an arbitrary admissible algorithm π ∈ Π. Since π is admissible, we have the
following relationship:

E[Rn,Iπn |F
π
n−1] = rInE[Xn,Iπn

|Fπn−1]. (23)

Let Wπ
t = max

1≤i≤t
Sπi for any t > 0. Then, inspired by the proof of Wald’s equation (see

Siegmund [2013], Xia et al. [2015]), we have the following inequality for the expected
cumulative reward under π:

E[Rewπ(B)] = E
[ ∞∑
i=1

I{Wπ
i−1 ≤ B}Ri,Iπi

]
,

= E
[ ∞∑
i=1

E
[
Ri,Iπi |F

π
i−1

]
I{Wπ

i−1 ≤ B}
]
, (24)

= E
[ ∞∑
i=1

rIπi E
[
Xi,Iπi

|Fπi−1

]
I{Wπ

i−1 ≤ B}
]
, (25)

≤ r∗E
[Nπ(B)∑

i=1

Xi,Iπi

]
= r∗E

[
SπNπ(B)

]
, (26)

where (24) follows since π is admissible and Wπ
i−1 ∈ Fi−1, and (25) follows from the

relation (23) and the fact that rIi ≤ r∗ with probability 1.

Note that SπNπ(B) is a controlled random walk whose increments Xi,Iπi
are dependent.

Therefore, classical second-order moment results in renewal theory, such as Lorden’s
inequality [Asmussen, 2008], are not directly applicable to provide an upper bound for
E[SπNπ(B)]. Instead, the following result for the first passage times of submartingales yields
a tight upper bound for E[SπNπ(B)].

Proposition 3 (Lalley and Lorden, 1986 Lalley and Lorden [1986]). Consider a stochastic
process {(Un) : n ≥ 1} with E[Un] > 0 adapted to the filtration Fn. Let Sn =

∑n
i=1 Ui

with S0 = 0 and N(a) = inf{n : Sn > a} be the first passage time of the random walk.

Assume that there exists constants µ∗, µ∗, σ2 > 0 such that

0 < µ∗ ≤ E[Un|Fn−1] ≤ µ∗ <∞,
and

V ar(Un|Fn−1) ≤ σ2 <∞,
with probability 1 for all n ≥ 1. If there exists γ > 0 such that E[(U+

n )2+γ ] < ∞, then
there exists a constant C = C(µ∗, µ

∗, σ2) such that the following holds:

E[SN(a)]− a ≤ C,
for any a > 0.

Note that we have

0 < min
k∈[K]

E[X1,k] ≤ E[Xi,Iπi
|Fi−1] ≤ max

k∈[K]
E[X1,k] <∞,

and
V ar(Xi,Iπi

|Fi−1) ≤ max
k∈[K]

V ar(X1,k) <∞,

with probability 1 for all i ≥ 1. Thus, under Assumption 1, Proposition 3 implies that there
exists a constant C > 0 such that the following holds:

E[SπNπ(B)] ≤ B + C, (27)
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for all B > 0. Hence, (26) and (27) together imply the following upper bound:

E[Rewπ(B)] ≤ r∗(B + C), (28)

for all B > 0 and any admissible policy π ∈ Π. Since the inequality (28) holds for any
admissible π ∈ Π, we have the following result:

E[Rewπopt(B)(B)] ≤ r∗(B + C), ∀B > 0. (29)

2. In the second part of the proof, we will find a lower bound for E[Rewπ∗(B)]. Since π∗ is a
static policy and Nπ∗(B) is a stopping time, Wald’s equation implies the following result
Siegmund [2013]:

E[Rewπ∗(B)] = E
[
R1,k∗

]
E
[
Nπ∗(B)

]
. (30)

For random walks with positive drift, the following inequality holds for anyB > 0 Asmussen
[2008], Gut [2009]:

E[Nπ∗(B)] ≥ B

E[X1,k∗ ]
. (31)

(30) and (31) together imply the following:

E[Rewπ∗(B)] ≥ r∗B, ∀B > 0. (32)

Inequalities in (29) and (32) together imply that the optimality gap is bounded for all B > 0.

Proposition 1 has a striking implication: the optimality gap is still bounded for unbounded and
correlated cost and reward pairs, and this result requires only a mild moment assumption that
E[(X+

1,k)2+γ ], k ∈ [K] exists for some γ > 0. Therefore, the simple policy π∗ serves as a plausible
substitute for πopt(B), which is NP-hard, for learning purposes.

B A Useful Upper Bound for Regret

The number of trials Nπ(B) under an admissible policy π is a random stopping time, which makes
the regret computations difficult. The following proposition, which extends the strategy in [Xia
et al., 2016] to the case of unbounded and potentially heavy-tailed cost-reward pairs that can take on
negative values, provides a useful tool for regret computations.
Proposition 4 (Regret Upper Bounds for Admissible Policies). Suppose that

max
k

E[|X1,k − E[X1,k]|p] = umax <∞,

for some p > 2. Let Tk(n) be the number of pulls for arm k in n trials, and µ∗ = mink E[X1,k]. The
following upper bound holds for any admissible policy π ∈ Π and B > µ∗/2:

Regπ(B) ≤
∑
k

E
[
Tk

(2B

µ∗

)]
∆kE[X1,k] +

(
2p2

p−1

)p
umax

(2B − µ∗)
p
2 µ

p
2
∗ (p2 − 1)

∑
k

∆kE[X1,k] + r∗C, (33)

where C = C(µ∗, σ
2
max) is a constant.

The proof of Proposition 4 relies on a variant of Chebyshev inequality for controlled random walks.
Note that 2B/µ∗ is a high-probability upper bound for the total number of pulls Nπ(B), and
∆kE[X1,k] is the average regret per pull for a suboptimal arm k. Proposition 4 implies that the
expected regret after 2B/µ∗ pulls is O(1).

Proof of Proposition 4. Take an arbitrary admissible policy π ∈ Π. The regret can be decomposed
as follows:

Regπ(B) = E[Rewπopt(B)(B)]− E[Rewπ∗(B)]︸ ︷︷ ︸
(a)

+E[Rewπ∗(B)]− E[Rewπ(B)]︸ ︷︷ ︸
(b)

. (34)

Note that (a) in (33) is the optimality gap for π∗, which is upper bounded by a constant r∗C by
Proposition 1. In the following, we provide an upper bound for (b) in (33).
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First, note that the cumulative reward under π∗ is upper bounded as follows:
E[Rewπ∗(B)] = E[Nπ∗(B)] · E[R1,k∗ ],

≤ Br∗ + r∗
E[X2

1,k∗ ]

E[X1,k∗ ]
= Br∗ + c, (35)

where the first line follows from Wald’s equation and the second line is a consequence of Lorden’s
inequality Asmussen [2008]. Since B ≤

∑Nπ(B)
i=1 Xi,Iπi

under π, we can further upper bound
E[Rewπ∗(B)] as follows:

E[Rewπ∗(B)] ≤ E
[Nπ(B)∑

i=1

r∗Xi,Iπi

]
+ r∗

E[X2
1,k∗ ]

E[X1,k∗ ]
,

= E
[∑

k

∞∑
i=1

I{Wπ
i−1 ≤ B}I{Iπi = k}r∗E[Xi,k]

]
+ c. (36)

where
Wπ
n = max{Sπ1 , Sπ2 , . . . , Sπn}.

Similar to the proof of Proposition 1, we have the following equation for E[Rewπ(B)]:

E[Rewπ(B)] = E
[Nπ(B)∑

i=1

Ri,Iπi

]
,

= E
[∑

k

∞∑
i=1

I{Wπ
i−1 ≤ B}I{Iπi = k}rkE[Xi,k]

]
(37)

From (36) and (37), we have the following upper bound for (b) in (33):

E[Rewπ∗(B)]− E[Rewπ(B)] ≤ E
[∑

k

∞∑
i=1

I{Wπ
i−1 ≤ B}I{Iπi = k}∆kE[Xi,k]

]
+ c. (38)

For any integer n0 > 1, the RHS of (38) can be upper bounded as follows:

E[Rewπ∗(B)]− E[Rewπ(B)] ≤ E
[ n0∑
i=1

∑
k

I{Iπi = k}∆kE[Xi,k]
]

+ E
[ ∑
i>n0

I{Wπ
i−1 ≤ B}

∑
k

∆kE[Xi,k]
]

+ c,

=
∑
k

E[Tπk (n0)]∆kE[X1,k] (39)

+
(∑

k

∆kE[Xi,k]
) ∑
i>n0

P
(
Wπ
i−1 ≤ B

)
+ c.

The following martingale-based concentration inequality will be crucial in finding a tight upper bound
for the crossing probability of the controlled process Wπ

n in (39).

Lemma 1 (Chebyshev Inequality for Submartingales). Let {Zn : n ≥ 0} be a stochastic process
adapted to the filtration Fn such that there exists a pair (µ, u) satisfying

E[Zn|Fn−1] ≥ µ > 0,

E
[∣∣Zn − E[Zn|Fn−1]

∣∣p|Fn−1

]
≤ u <∞,

(40)

almost surely for all n ≥ 1 for p > 2. Let Sn =
∑n
i=1 Zi and Wn = max

1≤i≤n
Si. For a given B > 0,

let n0 = d 2B
µ e. Then we have the following inequality:

P(Wn0+j ≤ B) ≤
(

2p2

p−1

)p
u

µp(n0 + j)p/2
. (41)

for all j ≥ 0.
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Under an admissible policy π, the increments Xi,Iπi
of the controlled random walk Sπn satisfy

E[Xi,Iπi
|Fi−1] ≥ µ∗ and E

[∣∣Xi,Iπi
− E[Xi,Iπi

|Fi−1]
∣∣p∣∣∣Fi−1

]
≤ umax almost surely for all i.

Therefore, the conditions in (40) are satisfied, and we have:

P(Wπ
n0+j ≤ B) ≤

(
2p2

p−1

)p
umax

(2B − µ∗)p/2µp/2∗ (n0 + j)p/2
. (42)

for n0 = 2B/µ∗, k ≥ 1 and j ≥ 0. Thus, for B > µ∗/2,∑
i>n0

P(Wπ
i−1 ≤ B) =

∞∑
j=0

P(Wπ
n0+j ≤ B),

≤
(

2p2

p−1

)p
umax

(2B − µ∗)p/2µp/2∗ (p/2− 1)
. (43)

Substituting n0 = 2B
µ∗

and (43) into (39) completes the proof.

B.1 Proof of Lemma 1

Let Yi = Zi−E[Zi|Fi−1] and Mn =
∑
i=1 Yi, and note that Mn is a martingale. By the assumption

(40), µ ≤ E[Zi|Fi−1] holds almost surely for all i ≥ 1. Therefore, the following relation holds:{
Wn ≤ B

}
⊂
{
Sn ≤ B

}
⊂
{
Mn ≤ B − nµ

}
. (44)

Let n0 = 2B
µ . Then, for any j ≥ 0, we have the following inequality:

P(Wn0+j ≤ B) ≤ P(Mn0+j ≤ −
µ

2
(n0 + j)),

≤ P
(

max
1≤i≤n0+j

|Mi| >
µ

2
(n0 + j)

)
,

≤
2pE

[(
max

1≤i≤n0+j
|Mi|

)p]
µp(n0 + j)p

.

Then, by Lp maximum inequality for martingales (Theorem 4.4.4 in [Durrett, 2019]), we have:

E
[(

max
1≤i≤n0+j

|Mi|
)p] ≤ ( p

p− 1

)p
E[|Mn0+j |p]. (45)

For the martingale Mn with increments {Yn : n ≥ 1}, let Qn = Y 2
1 + Y 2

2 . . .+ Y 2
n be the quadratic

variation process. It is interesting to note that Mn and
√
Qn increase at the same rate in terms of

Lp-norm [Burkholder, 1973]:

cpE[|Qn|
p
2 ] ≤ E[|Mn|p] ≤ CpE[|Qn|

p
2 ], (46)

where Cp ≤ pp and cp = 1/Cp. By Hölder’s inequality, we have the following result for all i > 0:

E[|Mn|p] ≤ Cpn
p
2−1E[

n∑
i=1

|Yi|p],

for all n > 0. Given (40), the following holds:

E[|Yi|p] = E
[
E[|Yi|p

∣∣Fi−1]
]
, (47)

≤ u, (48)

for any i ≥ 1. Therefore, we have:

P(Wn0+j ≤ B) ≤
(

2p2

p−1

)p
u

µp(n0 + j)p/2
. (49)
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C Proof of Theorem 1

Proof. The regret decomposition in Proposition 4 will be used for the proof. Note that we need to
find the expected number of pulls, E[Tk(n)], for each arm k with rk < r∗. The following proposition
yields an upper bound for E[Tk(n)] for any n > 0.

Lemma 2. Let ∆k = r∗ − rk be the reward rate discrepancy and

σ2
k =

{
V ar(R1,k)− ω2

kV ar(X1,k) + (r∗ − ωk)2V ar(X1,k), V ar(X1,k) 6= 0,

V ar(R1,k), V ar(X1,k) = 0,
(50)

for all k ∈ K, and recall that µ∗ = min
k

E[X1,k]. Then we have the following upper bounds for

E[Tk(n)], the expected number of pulls for arm k in n stages.

1. Bounded Cost and Reward: If ∆k > 0 and |X1,k| ≤MX , |R1,k| ≤MR a.s., then we have
the following upper bound under UCB-B1 with α > 3 and L = 2:

E[Tk(n)] ≤ 32 log(nα)
( σ2

k

∆2
k(E[X1,k])2

+
Mk

∆kE[X1,k]
+

MX

E[X1,k]

)
+ 8π2, (51)

where Mk = MR + rkMX .

2. Jointly Sub-Gaussian Cost and Reward: Let (Xn,k, Rn,k) be jointly sub-Gaussian with
covariance matrix Σk for all k. Then, UCB-B1 with α > 3, MX = MR = 0 and L = 1

2
yields the following:

E[Tk(n)] ≤ 16 log(nα)
σ2
k

∆2
k(E[X1,k])2

+ 8π2. (52)

The proof then follows from substituting E[Tk(n)] in (51) (or (52) for the Gaussian case) into
(33).

In the rest of this section, we prove Lemma 2.

C.1 Proof of Lemma 2

Consider a suboptimal arm k with ∆k > 0 and a given n > 0. For any t < n, let

ĉk,t = λ
εBk,n + (r̂k,n − ωk)ηBk,n(

Ên[Xk]− 3ηBk,n
)+ ,

and

ck,t =
λ

E[X1,k]

(2Mk log(nα)

3Tk(t)
+

√
L log(nα)σ2

Tk(t)

)
, (53)

where σ2 =
√
V (X1,k, R1,k) + (rk − ωk)

√
V ar(X1,k) and λ > 1. Then, we have the following

relation:

{|r̂k,t − rk| > ĉk,t} ⊂ {|r̂k,t − rk| > ck,t} ∪ {|Ên[Xk]− E[Xk]| > ηBk,n},

which facilitate the regret analysis.

We have the following claim based on [Audibert et al., 2009].
Claim 1. Given n > 0, for any t < n, if It+1 = k holds, at least one of the following must be true:

• E1 = {r̂k∗,t + ck∗,t ≤ r∗},

• E2 = {r̂k,t > rk + ck,t},

• E3 = {Tk(t) ≤ 8λ2
(

2σ2
k(

∆kE[X1,k]
)2 + Mr

∆kE[X1,k]

)
log(nα)},
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• E4 = {Tk(t) ≤ 2
(

λ
λ−1

)2( V ar(X1,k)(
E[X1,k]

)2 + MX

E[X1,k]

)
log(nα)},

Proof. For notational convenience, let s = Tk(t) and ` = log(nα). Suppose to the contrary that
neither holds. Then, we have:

Ec4 ⊂ {
2MX`

3s
+

√
2V ar(X1,k)`

s
≤ E[X1,k]

(λ− 1)

λ
}, (54)

which implies that the rate estimator is stable, thus the concentration inequality in Proposition 2 holds.
In order to see (54), let x = λ

λ−1 , µk = E[X1,k] and

u = 2x2
(V ar(X1,k)(

E[X1,k]
)2 +

MX

E[X1,k]

)
`. (55)

Then, for any s ≥ u, we have the following:

2MXµ
2
k

6x2
(
MXµk + V ar(X1,k)

+
1

x

√
V ar(X1,k)µ2

k

V ar(X1,k) +MXµk
≤ µk

x
,

since x > 1 and 1−β
3x +

√
β ≤ 1 for β =

V ar(X1,k)
V ar(X1,k)+MXµk

∈ [0, 1].

Second, we have the following relation:

Ec3 ⊂ {ck,t ≤
∆k

2
}. (56)

In order to prove (56), let

v = 8λ2
( 2σ2

k

∆2
kµ

2
k

+
Mr

∆kµk

)
`, (57)

and note that σ2 ≤ 2σ2
k by Cauchy-Schwarz inequality. Then, for any s ≥ v, we have:

ck,t ≤
λ

µk

( 1

24λ2

Mr∆
2
kµ

2
k

2σ2
k +Mr∆kµk

+
1

2λ

√
2σ2

k∆2
kµ

2
k

2σ2
k +Mr∆kµk

)
,

≤ ∆k

2

( Mr∆kµk

12λ
(
2σ2

k +Mr∆kµk
) +

√
2σ2

k

2σ2
k +Mr∆kµk

)
,

≤ ∆k

2
,

where the last line holds since 1−β
12λ +

√
β ≤ 1 for λ > 1 and β =

2σ2
k

2σ2
k+Mr∆kµk

∈ [0, 1]. Since the
concentration inequality holds and Ec3 ⊂ {ck,t ≤ ∆k/2}, we have:

4⋂
i=1

Eci ⊂
{
r̂k,t + ck,t ≤ r̂k∗,t + ck∗,t

}
,

which implies that It+1 = k∗ 6= k.

In order to bound P(E1 ∪ E2), let Zn,k = Rn,k − ωkXn,k and

εk,t =
2MZ`

3s
+

√
L
V (X1,k, R1,k)`

s
,

ηk,t =
2MX`

3s
+

√
L
V ar(X1,k)`

s
,
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where MZ = MR + ωkMZ . Then, the following inequality based on Proposition 2 will be used:

P(|r̂k,t − rk| > ck,t) = P
(∣∣∣ Êt[Zk]

Et[Xk]
− E[Zk]

E[Xk]

∣∣∣ > ck,t
)
,

≤ P
(∣∣∣Êt[Zk]− E[Zk]

∣∣∣ > εk,t

)
+ P

(∣∣∣Êt[Xk]− E[Xk]
∣∣∣ > ηk,t

)
.

Note that for sub-Gaussian cost and reward pairs, MX = MR = 0 and L = 1/2 yields Hoeffding’s
inequality. For the specific case of bounded cost and reward pairs with bounds MX and MR,
respectively, L = 2 leads to Bernstein’s inequality. These, along with the union bound, imply the
following:

P
(
E1 ∪ E2

)
≤ 8

tα−1
.

By using this result and Claim 1, we obtain the following inequality:

E[Tk(n)] ≤ u+ v +

∞∑
t=1

8

tα−1
,

where u and v are defined in (55) and (57), respectively. Choosing λ = 1 + 1
2
√

2
yields the result.

D Proof of Theorem 2

For any k, if Xn,k or Rn,k has heavy tails, then the empirical rate estimator is weak in the sense that
the convergence rate is polynomial rather than exponential [Bubeck et al., 2013]. In the following,
we propose a median-based rate estimator, and prove that it is robust in the sense that an exponential
convergence rate is achieved even if the cost and reward are heavy-tailed. The correlation between
X1,k and R1,k is exploited for improved coefficients.
Proposition 5 (Median-based rate estimation). For any given δ ∈ (0, 1), let

m = d3.5 log(δ−1)e+ 1,

and G1, G2, . . . , Gm be a partition of [s] where |Gj | = b smc for each j. Define ÊGj [Xk] (and

ÊGj [Rk]) be the sample mean of Xn,k (and Rn,k) in partition Gj , and r̃j,k =
ÊGj [Rk]

ÊGj [Xk]
for each j.

Given λ > 1, if

s ≥ 135
( λ

λ− 1

)2

V ar(X1,k) log(1.4δ−1), (58)

then the following inequality holds:

P
(∣∣rs,k − rk∣∣ > 22λ

E[X1,k]

√
σ2
k log(δ−1)

s

)
≤ 1.4δ,

where rs,k = median
1≤i≤m

r̃j,k and σk is defined in (9) .

Proof. Given λ > 1, for any j ∈ [m] and p ∈ (0, 1
2 ), if√

4mV ar(X1,k)

sp
≤ E[X1,k](λ− 1)

λ
,

we have the following:

P(|r̃j,k − rk| >
λ

E[X1,k]

√
8mσ2

k

sp
) ≤ p,

by Chebyshev’s inequality and Proposition 2. Therefore, by Theorem 3.1 in [Minsker et al., 2015],
we have:

P
(
|rs,k − rk| >

1− β√
1− 2β

λ

E[X1,k]

√
8mσ2

k

sp

)
≤ e−mψ(β;p),
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for β ∈ (p, 1
2 ) and

ψ(β; p) = β log
(β
p

)
+ (1− β) log

(1− β
1− p

)
.

For a given δ ∈ (0, 1), the values m = b3.5 log(δ−1)c + 1, β = 8/17 and p = 0.1 yield the
result.

The proof of Theorem 2 is based on the regret decomposition in Appendix B and the following
lemma.
Lemma 3. For any λ > 1 and α > 3, we have:

E[Tk(n)] ≤ log(nα)
( 484λ2σ2

k

∆2
k(E[X1,k])2

+
135( λ

λ−1 )2V ar(X1,k)

(E[X1,k])2

)
+ 8π2, (59)

for any k that satisfies rk < r∗.

Lemma 3 is proved in an identical way to Lemma 2 by using the concentration inequality proposed in
Proposition 5.

E Proof of Theorem 3

Proof. The regret under any admissible policy can be lower bounded as follows:

Lemma 4. For any B > 0, let

φπ(B) =
∑
k

E[I{INπ(B) = k}]E[XNπ(B),k],

be the average cost in the last epoch under an admissible policy π, µ+ = max
k

E[X+
1,k] and

µ∗ = min
k

E[X1,k]. Then, the regret under π is lower bounded as follows:

Regπ(B) ≥
∑
k

∆kE[X1,k]E[Tk(
⌈√

2B/µ∗
⌉
)]− µ+

µ∗
(1 +

1√
2B

)
∑
k

∆kE[X1,k]− φπ(B). (60)

Then, under the conditions stated in Theorem 3, the following result provides an asymptotic lower
bound for E[Tk(n)] for any k with rk < r∗.

Lemma 5. If π ∈ Π is a policy such that E[Tπk (n)] = o(nα) for any α > 0 and k such that
rk(θk) < r∗, then we have the following lower bound:

lim inf
n→∞

E[Tk(n)]

log(n)
≥ 1

D?
k

, (61)

where D?
k is the solution to the following optimization problem:

D?
k = min

θ∈Θk
D(Pk,θk ||Pk,θ) subject to rk(θ) ≥ r∗.

Lemma 5 can be proved by a straightforward adaptation of Theorem 1 in [Burnetas and Katehakis,
1996].

If the moment condition E[(X1,k)2+γ ] <∞ holds for all k, then the term φπ(B) = O(1) asB →∞
by Lorden’s inequality [Asmussen, 2008]. Therefore, using (60) and (61), we obtain the result.

E.1 Proof of Lemma 4

Take any admissible policy π and B > 0. We have the following inequalities:

Regπ(B) = E[Rewπopt(B)(B)]− E[Rewπ(B)],

≥ E[Rewπ∗(B)]− E[Rewπ(B)],
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since E[Rewπopt(B)(B)] ≥ E[Rewπ∗(B)] by definition. Then, by using a similar decomposition as
(36), we have the following:

Regπ(B) ≥ E[

∞∑
t=1

∑
k

∆kE[X1,k]I{Wt−1 ≤ B}I{It = k}]− r∗φπ(B), (62)

≥ E[

n0∑
t=1

∑
k

∆kE[X1,k]I{Wt−1 ≤ B}I{It = k}]− r∗φπ(B) (63)

for any n0 > 0, where Wπ
t = max

1≤i≤t
Sπi . Since I{Wπ

t−1 ≤ B} = 1− I{Wπ
t−1 > B}, we have:

Regπ(B) ≥
∑
k

E[Tk(n0)]∆kE[X1,k]− (
∑
k

∆kE[X1,k])

n0∑
t=1

P(Wπ
t−1 > B)− r∗φπ(B). (64)

We have the following result:

P(Wπ
t > B) ≤ P( max

1≤i≤t
(Sπi )+ > B),

≤ E[(Sπt )+]

B
,

≤
E[
∑t
i=1X

+
i,Ii

]

B
≤ tµ+

B
,

(65)

where the second inequality follows from Doob’s martingale inequality [Durrett, 2019], and the last
inequality is true since µ+ ≥ X+

i,Ii
with probability 1 for all i. Substituting (65) into (64), and setting

n0 =
√

2B/µ∗ yields the result.

F Proof of Theorem 4

In the design of UCB-B2, empirical variance estimates are used, which require a modified analysis
compared to UCB-B1.

Lemma 6. If ∆k > 0 and |X1,k| ≤MX , |R1,k| ≤MR a.s., then we have the following upper bound
under UCB-B2 with α > 3:

E[Tk(n)] ≤ 16 log(nα)
( M4

X

V ar2(X1,k)
+

2MX

E[X1,k]
+

3V ar(X1,k)

E2[X1,k]

)
+ 32 log(nα)

( σ2
k

∆2
k(E[X1,k])2

+
Mk

∆kE[X1,k]

)
+ 8π2, (66)

where σk = V ar(R1,k)− ω2
kV ar(X1,k) and Mk = MR + rkMX .

Proof. For any k, let ck,t be as defined in (53) and

Ak,t = {
∣∣V ar(X1,k)− V̂k,t(Xk)

∣∣ ≤ νk,t(Xk)} ∩ {
∣∣V ar(R1,k)− V̂k,t(Rk)

∣∣ ≤ νk,t(Rk)}.

Then, analogous to Claim 1, we have the following:

Claim 2. Given n > 0, for any t < n, if It+1 = k holds, at least one of the following must be true:

• E1 = {r̂k∗,t + ck∗,t ≤ r∗} ∪Ack∗,t,

• E2 = {r̂k,t > rk + ck,t} ∪Ack,t,

• E3 = {Tk(t) ≤ 16λ2
(

σ2
k(

∆kE[X1,k]
)2 + Mr

∆kE[X1,k]

)
log(nα)},

• E4 = {Tk(t) ≤ 3
(

λ
λ−1

)2( V ar(X1,k)(
E[X1,k]

)2 + 2MX

3E[X1,k]

)
log(nα)},
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• E5 = {Tk(t) ≤ 32M2
r log(nα)

∆2
kµ

2
k
},

for λ > 1.

Note that

P(E1 ∪ E2) ≤ P(r̂k∗,t + ck∗,t ≤ r∗) + P(r̂k,t > rk + ck,t) + P(Ack,t) + P(Ack∗,t),

and
∑n
t=1 P(Ack,t) ≤ 2π2 by Bernstein’s inequality for variance and union bound. Therefore, the

proof follows from the same steps as the proof of Lemma 2.

F.1 Proof of Claim 2

Consider k 6= k∗, and let ` = log(nα) and s = Tk(t).

E′1 = {r̂k∗,t + ĉB2k∗,t ≤ r∗},
E′2 = {r̂k,t > rk + ĉB2k,t}.

Then, it is easy to show that E′1 ⊂ E1 and E2′ ⊂ E2. The rate estimator is unstable in the following
set:

E′4 =
{2MX`

3s
+

√
2(V̂k,t(Xk) + νk,t(Xk))`

s
>

E[X1,k]

x

}
,

where x = λ/(λ− 1). If 2νk,t(Xk) ≤ V ar(X1,k)
2 , then we have:

E′4 ⊂
{2MX`

3s
+

√
3V ar(X1,k)`

s
>

E[X1,k]

x

}
∪Ack, (67)

since V̂k,t(Xk) + νk,t(Xk) ≤ V ar(X1,k) + 2νk,t(Xk) in Ak. The first set on the RHS of (67) is a
subset of E4, which can be shown by the completing the square method used in the proof of Claim 1.
Thus, we have E′4 ⊂ E4 ∪Ack.

Finally, if we have

2νk,t(Rt) >
MR∆kE[R1,k]

2
,

2νk,t(Xt) >
MX∆kE[R1,k]

2rk
,

which together imply E5, then E′3 = {ĉB2k,t >
∆k

2 } ⊂ E3 ∪ Ack. Therefore, we have ∪4
i=1E

′
i ⊂

∪5
i=1Ei, and since {It+1 = k} ⊂ ∪4

i=1E
′
i, we have {It+1 = k} ⊂ ∪5

i=1Ei.

G Proof of Theorem 5

The proof of Theorem 4 follows the same steps as Theorem 5, with the difference that the correlation
between Xn,k and Rn,k are estimated in the latter. In order to observe the effect of using LMMSE
estimates to exploit correlation, we first present concentration bounds for ωk and min

ω
V ar(R1,k −

ωX1,k).

G.1 Preliminaries

Throughout this subsection, we consider a generic iid stochastic process (Xn, Rn) with Xn ∈
[0,MX ] and Rn ∈ [0,MR]. For this process, let ω∗ = arg minω L(ω) where

L(ω) = V ar(R1 − ωX1),

and ω̂s = arg minω L̂s(ω) where

L̂s(ω) =
1

s

s∑
i=1

(
Ri − Ês[R]− ω(Xi − Ês[X])

)2

.
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Note that ω∗ = Cov(X1,R1)
V ar(X1) and ω̂s = Ĉovs(X,R)

V̂ ars(X)
where

Ĉovs(X,R) =
1

s

s∑
i=1

(Ri − Ês[R])(Xi − Ês[X]),

is the empirical covariance and V̂ ars(X) = Ĉovs(X,X). In the following, we propose concentration
inequalities for ω∗ and L(ω∗).

Proposition 6 (Concentration of LMMSE Estimator). Let MZ ≥MR + ω∗MX and λ = 1 + 1
2
√

2
.

Then, for any δ ∈ (0, 1), if

s ≥ 48M4
X log(δ−1)

V ar2(X1)
, (68)

then the following inequalities hold simultaneously:

P(|ω∗ − ω̂s| >
λMZMX

V ar(X1)

√
log(δ−1)

s
) ≤ 12δ,

P(|L(ω∗)− L̂s(ω̂s)| > M2
Z

√
2 log(δ−1)

s
) ≤ 18δ.

Proof. For the first inequality, recall that ω∗ = Cov(X1,R1)
V ar(X1) and ω̂s is the ratio of empirical estimates

for Cov(X1, R1) and V ar(X1). Therefore, we can use Proposition 2 for the proof. Note that (68) is
the stability condition for the estimator ω̂s. Since s ≥ 1

2 log(δ−1), Hoeffding’s inequality yields the
following result for the empirical covariance:

P(|Ĉovs(X1, R1)− Cov(X1, R1)| > MXMR

√
log(δ−1)

s
) ≤ 6δ. (69)

Using this twice for Ĉovs(X1, R1) and V̂ ars(X1), we obtain the first inequality.

For the second inequality, first we make the following decomposition:

|L̂s(ω̂s)− L(ω∗)| = |L̂s(ω∗)− L(ω∗)|+ |L̂s(ω̂s)− L̂s(ω∗)|. (70)

For the first term on the RHS of (70), we have the following result:

|L̂s(ω∗)− L(ω∗)| ≤M2
Z

√
log(δ−1)

s
,

by applying Hoeffding’s inequality for the variance (69) to the decomposition:

V ar(R1 − ωX1) = V ar(R1) + ω2V ar(X1)− 2Cov(X1, R1),

and its empirical counterpart. For the second term on the RHS of (70), note that the following identity
holds by the orthogonality principle:

L̂s(ω) = L̂s(ω̂s) + |ω − ω̂s|2V̂ ars(X1), (71)

for any ω ∈ R. Therefore, by union bound, we have the following result:

P
(
|Ls(ω∗)− L̂s(ω̂s)| > M2

Z

(√ log(δ−1)

s
+

3λ2M2
X log(δ−1)

2V ar(X1)s

))
≤ 18δ,

from the concentration result for |ω∗ − ω̂s| and (69) with M2
X

√
log(δ−1)

s ≤ V ar(X1)
2 by (68). Since

s is assumed to be sufficiently large by (68), we have:√
log(δ−1)

s
>

3λ2M2
X log(δ−1)

2V ar(X1)s
,

which concludes the proof.
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G.2 Proof of Theorem 5

The proof follows a similar steps as the proof of Theorem 4 (see Appendix F). The main difference is
the use of LMMSE estimator as a surrogate for V (X1,k, R1,k). By using Proposition 6 together with
the proof technique in Claim 2, one can show the following:

E[Tk(n)] ≤ 16 log(nα)
( 3M4

X

V ar2(X1,k)
+

2MX

E[X1,k]
+

3V ar(X1,k)

E2[X1,k]

)
+ 32 log(nα)

( σ2
k

∆2
k(E[X1,k])2

+
Mk +M

∆kE[X1,k]

)
+ 8π2,

where M = MXMZ√
V ar(X1,k)

, σk = V ar(R1,k)− ω2
kV ar(X1,k) and Mk = MR + rkMX .
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