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Abstract— We consider the decision problem of an external
agent choosing to execute one of M actions for each user in
a social network. We assume that observing a user’s actions
provides valuable information for a larger set of users since
each user’s preferences are interrelated with those of her social
peers. This falls into the well-known setting of the multi-armed
bandit (MAB) problems, but with the critical new component
of side observations resulting from interactions between users.
Our contributions in this work are as follows: 1) We model
the MAB problem in the presence of side observations and
obtain an asymptotic lower bound (as a function of the network
structure) on the regret (loss) of any uniformly good policy
that achieves the maximum long term average reward. 2) We
propose a randomized policy that explores actions for each user
at a rate that is a function of her network position. We show
that this policy achieves the asymptotic lower bound on regret
associated with actions that are unpopular for all the users.
3) We derive an upper bound on the regret of existing Upper
Confidence Bound (UCB) policies for MAB problems modified
for our setting of side observations. We present case studies
to show that these UCB policies are agnostic of the network
structure and this causes their regret to suffer in a network
setting. Our investigations in this work reveal the significant
gains that can be obtained even through static network-aware
policies.

I. INTRODUCTION

The unprecedented development and adoption of on-line
social networks such as Facebook, LinkedIn, MySpace, in
the last few years has had a transformative impact on
the scale and nature of social interaction between people.
Users often endorse consumer products and engage in word-
of-mouth advertising on these on-line social networks. In
this paper, we investigate the learning/earning paradigm of
multi-armed bandit (MAB) problems ([1], [2], [3]) in the
presence of side observations resulting from the interactions
on on-line social networks. We consider the setting of rec-
ommender/advertising systems embedded within an online
social network that make product recommendations to users
based on their individual history as well as global network in-
formation. The external agent (content provider) in these set-
tings must choose advertisements (recommendations) from
one of M advertising categories1 to display to each user at a
time. Users respond by clicking (or ignoring) these ads and
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1Some examples of advertising categories are sports, clothing, vacation
packages, etc.

we assume that the external agent uses the click-through-
rate as a proxy measure for the revenue obtained from the
advertisements. The external agent wishes to maximize his
revenue by personalizing the display of advertisements to
users based on their preferences. However, these preferences
are often unknown to the external agent and learning from the
click-activity by experimentation may be warranted. For each
user, the external agent faces the well known multi-armed
bandit problem setting, but with the additional component of
side-information that each observation provides for at least
a subset of the remaining users.
In this work, we model the MAB problem in the presence
of side observations as follows: each time an action is
chosen for a given user, the external agent receives a reward
associated with her action and also observes the reward
associated with that action for each of her neighbors in the
social network. Such side observations are made possible in
settings of on-line social networks like Facebook through
mechanisms such as: 1) the past knowledge of interdepen-
dence between users’ (average) preferences obtained either
directly or indirectly from user behaviors such friends re-
posting, “liking”, commenting on each other’s activity on
on-line social networks; 2) surveying a user’s neighbors
regarding their interest in the user’s activity2. Under this
model, our contributions in this work are as follows:

• We model the MAB problem in the presence of side
observations and derive an asymptotic lower bound (as a
function of the network structure) on the regret (loss) of
any uniformly good policy that achieves the maximum
long term average reward.

• We propose and investigate the performance of a ran-
domized policy, we call ε-greedy-LP policy, that ex-
plores actions for each user at a rate that is a function of
her network position. We show that this policy achieves
the asymptotic lower bound on regret associated with
actions that are suboptimal for all users in the network.

• We derive an upper bound on the regret of existing
UCB policies for MAB problems applied to our setting
of side observations. We show, using case studies, that
these existing UCB policies are agnostic of the network
structure, hence, could have a worse performance when
compared to the ε-greedy-LP policy.

2This is possible when the on-line network has an additional survey
feature that generates side observations. Specifically, when user i is given a
recommendation for movie j, her neighbors are queried as follows: “User
i was recommended movie j. Would you be interested in this movie too?”
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Our work in this paper focuses on the study of N parallel
M -armed bandits problem coupled by side observations. The
existing UCB policies are agnostic of the network structure
and this disables them to take full advantage of the side
observations. Since the exploration component of ε-greedy-
LP policy is network-aware, it is able to achieve the optimal
regret associated with actions that are unpopular for all users.
However, it is a static policy that explores all suboptimal
actions for each user equally and could suffer from over-
exploration when the actions are not unpopular for all users.
Our investigations motivate the design of adaptive network-
aware allocation strategies in order to take full advantage
of the side-observations present in the network. We provide
interesting new directions for future work along these lines
in Section VI.
The rest of the paper is organized as follows. In Section II,
we formulate the MAB problem in the presence of side
observations. We then briefly discuss existing work in the
setting of MAB problems in Section III. Our main results
are presented in Section IV while we present case studies
and numerical results in Section V.

II. MODEL

In this section, we formally define the M -armed bandit
problem in the presence of side observations in a social
network. LetN = {1, . . . , N} denote the set of users (nodes)
in the social network and M = {1, . . . ,M} denote the
set of actions. An external agent must choose an action
a ∈M at each time t for each user i. Let Xia(t) denote the
reward obtained by the external agent on choosing action
a for user i at time t. The random variable Xia(t) has
an unknown probability distribution Fia with the univariate
density function f(x; θia) and unknown parameters θia.
Let µia be the mean of the random variable Xia(t). We
assume that {Xia(t), t ≥ 0} are i.i.d for each i and a and
{Xia(t),∀i ∈ N ,∀a ∈M} are independent for each time t.
We further assume that the distributions, Fia have a bounded
support of [0, 1] for each i and a.
Next, we describe the side observation model captured by the
network structure. The users N are embedded in a social net-
work represented by the adjacency matrix G = [g(i, j)]i,j∈N
where g(i, j) ∈ {0, 1} and g(i, i) = 1 ∀i. Let Ni be the set
of neighbors of user i (including i), i.e, g(j, i) = 1,∀j ∈ Ni.
We assume that when the external agent chooses an action
a for user i, he receives a reward Xia(t) and also receives
observations Xja(t), which are drawn independently from
the distribution Fja ∀j ∈ Ni such that E[Xja(t)] = µja.
Such side observations are made possible in settings of on-
line social networks like Facebook by surveying a user’s
neighbors regarding their interest in the user’s activity. This is
possible when the on-line network has an additional survey
feature that generates side observations. Specifically, when
user i is given a recommendation for movie j, her neighbors
are queried as follows: “User i was recommended movie j.

Would you be interested in this movie too?”3

An allocation strategy or policy φ chooses the action to be
played at each time for each user in the network. Formally,
φ is a sequence of random variables {φi(t),∀i ∈ N , t ≥ 0},
where φi(t) ∈M is the action chosen by policy φ for user
i at time t. Let Yi(t) be the reward and side observations
obtained by the policy φ for user i at time t. Then, the
event {φi(t) = a} belongs to the σ-field generated by
{φi(k),Yi(k),∀i ∈ N , k ≤ t − 1}. Let Tia(t) be the total
number of times action a is chosen for user i up to time t
by policy φ. Let Sia(t) be the total number of observations
corresponding to action a available at time t for user i. For
each user, rewards are only obtained for the action chosen
for that user.

DEFINITION 1: (Regret) The regret of policy φ at time t
for a fixed µ = (µi1, . . . , µiM )i∈N is defined by

Rµ(t) =

N∑
i=1

µ∗i t−
N∑
i=1

M∑
a=1

µiaE[Tia(t)],

=

N∑
i=1

M∑
a=1

(µ∗i − µia)E[Tia(t)],

where µ∗i = max
a∈M

µia.

The objective is to find policies that minimize the rate
of growth of regret with time for every fixed network G.
We focus our investigation on the class of uniformly good
policies defined below:

DEFINITION 2: (Uniformly good policies) An allocation
rule φ is said to be uniformly good if for every fixed µ, the
following condition is satisfied as t→∞ :

Rµ(t) = o(tb) for every b > 0.
The above condition implies that uniformly good policies

achieve the optimal long term average reward of
N∑
i=1

µ∗i .

Next, we define two structures that will be useful later to
bound the performance of allocation strategies in terms of
the network structure G.

DEFINITION 3: A dominating set D of a network G is
such that every node in N is either in D or has at least one
neighbor in D. Let γ(G) denote the size of the minimum
dominating set of network G.

DEFINITION 4: A clique covering C of a network G is
a partition of nodes in N into sets C ∈ C such that the
sub-network formed by each C is a clique. Let χ(G) be
the smallest number of cliques into which the nodes of the
network G can be partitioned.

III. RELATED WORK

The seminal work of [1] shows that the asymptotic
lower bound on the regret of any uniformly good policy
scales logarithmically with time with a multiplicative

3Since, the neighbors do not have any information on whether the user
i accepted the promotion, they act independently according to their own
preferences in answering this survey. The network itself provides a better
way for surveying and obtaining side observations.
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constant, which is a function of the Kullback Leibler
distance of the distributions of the actions. Further, the
authors of [1] provide constructive policies called Upper
Confidence Bound (UCB) policies based on the concept
of optimism in the face of uncertainty, which achieve the
lower bound asymptotically. Later works of [2] and [3]
propose simpler sample-mean based UCB policies that
achieve the logarithmic lower bound up to a multiplicative
constant factor. In [3], the authors propose UCB1 and
decreasing-ε-greedy policies that achieve logarithmic regret
uniformly over time, rather than only asymptotically as in
the previous works.
Recent works of [4] and [5] are related to our paper. In
both [4] and [5], the authors consider a setting where
the actions are embedded in a network and choosing an
action reveals side observations on the neighboring actions.
On the other hand, in our work, we consider N parallel
M -armed bandits and assume that each time an action is
chosen for a user, side observations associated with the
same action are revealed for her neighbors. [4] considers
an adversarial setting with no statistical assumptions on
the reward distributions (see [6] for details on adversarial
MABs) while [5] considers stochastic bandits. The policies
proposed in [4] achieve the best possible regret in the
adversarial setting with side observations and the bounds
of these policies are in terms of the independence number
of the network. In [5], the authors propose modified UCB1
policies and the upper bounds are in terms of χ(G).

IV. MAIN RESULTS

In this section, we first obtain an asymptotic lower bound
on the regret of uniformly good policies for the setting of
MABs with side observations. This lower bound is expressed
as the optimal value of a linear program (LP), where the
constraints of the LP capture the connectivity of each user
in the network.

Motivated by the LP associated with the lower bound, we
propose a network-aware randomized policy called the ε-
greedy-LP policy. Similar to the ε-greedy policy introduced
in [3], the exploration component in our ε-greedy-LP policy
is proportional to (1/time). However, our policy has the
novel element of exploration for each user at a rate propor-
tional to her network position. We provide an upper bound
on the regret of this policy and show that, for actions that are
suboptimal for all users, our policy achieves the asymptotic
lower bound up to a constant multiplier independent of
network structure. Finally, we investigate the performance of
a modified UCB1 policy similar to the one proposed in [3]
and provide an upper bound on its regret for our setting
of side observations. We omit the full proofs due to space
constraints. Interested readers can refer to [7].

A. Lower Bound

In order to derive a lower bound on the regret, we need
some mild regularity assumptions on the distributions Fia
that are similar to the ones in [1]. Let D(θia||θib) denote the

Kullback Leibler (KL) distance between distributions with
density functions f(x; θia) and f(x; θib) and with means µia
and µib respectively.

ASSUMPTION 1: We assume that f(·; ·) is such that 0 <
D(θia||θib) <∞ whenever µib > µia.

ASSUMPTION 2: For any ε > 0 and θia, θib such that
µib > µia, there exists ∆ > 0 for which |D(θia||θib) −
D(θia||θic)| < ε whenever µib < µic < µib + ∆.

ASSUMPTION 3: For each i ∈ N and a ∈ M, θia ∈ Θ
where the set Θ satisfies the following denseness condition:
for all θia ∈ Θ and for all ∆ > 0, there exists θib ∈ Θ such
that µia < µib < µia + ∆.

Recall that Sia(t) is the total number of observations cor-
responding to action a available at time t for user i. The
following proposition is obtained by modifying the proof of
Theorem 2 in [1]. It provides an asymptotic lower bound on
the total number of observations for each suboptimal action
obtained by any uniformly good policy under the model
described in Section II:

PROPOSITION 1: Suppose Assumptions 1, 2, and 3 hold.
Then, under any uniformly good policy φ, we have that, for
each user i and each action a with µia < µ∗i ,

lim inf
t→∞

E[Sia(t)]

log(t)
≥ 1

D(θia||θ∗i )
.

Proof: (Sketch) Any uniformly good policy must
achieve a regret of o(tb) for all b > 0 for each user in the
network. Also, the total number of observations of an action
for a user is greater than (or equal to) the total number of
times the action is chosen for that user. Using these two
facts, we can modify the proof of Theorem 2 in [1] to get
the above proposition for the total number of observations
for each suboptimal action. The main idea in the proof of
Theorem 2 in [1] is that unless we have enough (of the
order Ω(log(t))) number of observations for each suboptimal
action, the empirical KL-distance will not converge to the
actual KL-distance and hence, the policy cannot distinguish
the suboptimal action from the optimal action to obtain o(tb)
regret. See [7] for a detailed proof.

Each time an action is chosen for a user i, we receive
side observations for all her neighbors Ni. Hence, Sia(t) =∑
v∈Ni

Tva(t). This gives us the following corollary to Propo-

sition 1:
COROLLARY 1: Suppose Assumptions 1, 2, and 3 hold.

Let Ua = {i : µia < µ∗i } be the set of users for whom action
a is suboptimal. Then, under any uniformly good policy
φ, the expected regret is asymptotically bounded below as
follows:

lim inf
t→∞

Rµ(t)

log(t)
≥
∑
a∈M

min
i∈Ua

(µ∗i − µia)ca,

where ca is the optimal value of the following linear program
(LP):
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P1 : min
∑
i∈Ua

wi

subject to Gi ·w ≥
1

D(θia||θ∗i )
, ∀i ∈ Ua,

and wi ≥ 0, ∀i ∈ N .

Here, Gi is the ith row of G.
Proof: (Sketch) The constraints in the LP P1 are ob-

tained by relating the total number of observations for each
user’s action to the total number of times an action is chosen
in the user’s neighborhood.
Next, consider the following LP:

P2 : min
∑
i∈N

zi

subject to Gi · z ≥ 1, ∀i ∈ N ,
and zi ≥ 0, ∀i ∈ N .

In the next proposition, we provide a lower bound on ca
using the optimal solution z∗ = (z∗i )i∈N of LP P2.

PROPOSITION 2: Let Ua = {i : µia < µ∗i } be the set of
users for whom action a is suboptimal. Let Oa = {i : µia =
µ∗i } be the set of users for whom action a is optimal. Let
Ia = {i ∈ Ua : Ni ∩Oa 6= ∅} be the set of users in Ua with
neighbors in Oa. Then,

ca ≥
1

max
i∈Ua

D(θia||θ∗i )

(∑
i∈N

z∗i − γ(G′)

)
, (1)

where G′ is the sub-network of G restricted to the set of
nodes Oa∪Ia, γ(G′) is the size of the minimum dominating
set of G′, and z∗ is the optimal solution of LP P2.

Proof: (Sketch) Using the optimal solution of LP P1,
we construct a feasible solution satisfying constraints in LP
P2 for users in Ua. In order to satisfy the constraints for
users in Ia ∪ Oa, we use zi = 1 for all i in the minimum
dominating set of Ia∪Oa. The feasible solution constructed
in this way gives an upper bound on the optimal value of
LP P2 in terms of the optimal value of LP P1. See [7] for
a detailed proof.

Note that the lower bound in (1) need not be asymptotically
tight and might be weaker than the trivial lower bound of 0.
This happens, for example, when γ(G) = γ(G′). However,
when Ua = N , i.e., the action a is suboptimal for all users,
we can see that

ca ≥
1

max
i∈N

D(θia||θ∗i )

∑
i∈N

z∗i .

Hence, when Ua = N , the asymptotic lower bound
on the expected regret due to action a is given by
Ω
(∑

i∈N z
∗
i log(t)

)
, where z∗ completely captures the de-

pendence of the logarithmic term of the regret on the network
structure G. Motivated by the LP P2, we next propose the
ε-greedy-LP policy.

B. ε-greedy-LP policy

Let x̄ia(t) be the sample mean of observations (rewards
and side observations combined) available for action a for
user i up to time t. The ε-greedy-LP policy is described in
Algorithm 1. The policy consists of two phases for each user
- exploitation and exploration. For each user i, we choose
εi(t) proportional to z∗i /t, where z∗ is the optimal solution
of LP P2. The policy explores a randomly chosen action
with probability εi(t) and exploits the action with the highest
sample mean with probability 1− εi(t).

Algorithm 1 : ε-greedy-LP

Input: c > 0, 0 < d < 1, optimal solution z∗ of P2.
for each time t do

for each user i do

Let εi(t) = z∗i min

(
1,
cM

d2t

)
.

Let a∗i = arg max
a∈M

x̄ia(t),

where x̄ia(t) is the sample mean of observations
available for action a for user i up to time t.
With probability 1−εi(t), pick action φi(t) = a∗i and
with probability εi(t), pick action φi(t) uniformly at
random from M.

end for
for each user i do

Update sample means x̄vφi(t)(t+ 1),∀v ∈ Ni.
end for

end for

The following proposition provides performance guaran-
tees on the expected regret due to ε-greedy-LP policy:

PROPOSITION 3: Let ∆ia = µ∗i − µia. For 0 < d <
min
a∈M
{min
i∈Ua

∆ia}, and c > max(4α(4α−1)d2/3(α−1)2, 2α)

for any α > 1, the expected regret of ε-greedy-LP policy
described in Algorithm 1 due to each action a is at most(

c

d2
max
i∈Ua

∆ia

∑
i∈Ua

z∗i

)
log(t) +O(1). (2)

Proof: (Sketch) Since z∗ satisfies the constraints in LP
P2, there is sufficient exploration of suboptimal actions in
each user’s neighborhood. This ensures that the regret from
the exploitation phase is finite. Further, the regret from the
exploration phase is bounded logarithmically due to the
decreasing ε. See [7] for a detailed proof.

COROLLARY 2: When Ua = N , i.e., action a is subop-
timal for all users in G, the ε-greedy-LP policy achieves
O
(∑

i∈N z
∗
i log(t)

)
regret, where z∗ completely captures

the time dependence of the regret on the network structure
G. Also,

∑
i∈N z

∗
i ≤ γ(G), where γ(G) is the size of the

minimum dominating set of the network G. Hence, the regret
due to an action a with Ua = N is O (γ(G) log(t)) .

While the above corollary holds true for actions that are
unpopular for all users, we believe that the policy is near-
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optimal when different actions are optimal within well-
separated clusters in the network, i.e, the sets, Ua partition
the network into well-separated clusters.

C. UCB1-SO policy

Next, consider the UCB1-SO policy in Algorithm 2 that
is a modified version of the UCB1 algorithm described
in [3]. UCB1-SO has been modified to take into account both
rewards and side observations while computing the UCB
index of each action.

Algorithm 2 : UCB1-SO

for each time t do
for each user i do

Pick action φ′i(t) such that,

φ′i(t) = arg max
a∈M

x̄ia(t) +

√
2 log(t)

sia(t)
,

where sia(t) is the number of observations available
for action a for user i at time t.

end for
for each user i do

Update sample means x̄vφ′
i(t)

(t+ 1),∀v ∈ Ni.
svφ′

i(t)
(t+ 1) = svφ′

i(t)
+ 1,∀v ∈ Ni.

end for
end for

The following proposition provides performance guaran-
tees on the expected regret due to UCB1-SO policy:

PROPOSITION 4: Let Ia = {i ∈ Ua : Ni ∩ Oa 6= ∅} be
the set of users in Ua with at least one neighbor for whom
action a is optimal. Then, under UCB1-SO policy described
in Algorithm 2,

lim sup
t→∞

E[Tva(t)] <∞,∀v ∈ Ia. (3)

Let ∆ia = µ∗i −µia. Then, the expected regret of the UCB1-
SO policy due to each action a is at most

inf
Ca

(∑
C∈Ca

maxi∈C ∆ia

mini∈C ∆2
ia

)
8 log(t) +O(1), (4)

where Ca is the clique covering of all users in Ua \ Ia.

Proof: (Sketch) We use the following proof technique
from [4] and [5] in our analysis. We bound the regret of
UCB1-SO policy for the whole network above with the regret
for the clique covering. The latter can then be bounded above
using the analysis of UCB1 policy from [3]. See [7] for a
detailed proof.
For the case of actions a with Ua = N , the upper bound
in (4) is O(χ(G) log(t)), where χ(G) is the size of the
minimum clique covering of all nodes in the network G.
For any network G, we have χ(G) ≥ γ(G). Hence, we have,
from Corollary 2, that the upper bound in (4) is greater than
or equal to regret of the ε-greedy-LP policy for actions a
with Ua = N .

In the next section, we present case studies and numerical
results to better understand the working on UCB1-SO policy
and to compare the performance of the two policies described
in this section.

V. CASE STUDIES AND NUMERICAL RESULTS

We see from (3) that UCB1-SO policy does not explore
when there are enough side observations in the system.
Despite this adaptive nature of UCB1-SO policy, the UCB1-
SO policy remains unaware of the network structure. Next,
we present two case studies that demonstrate this. Consider

… 

3 

2 

c 

4 
… 

Fig. 1: A star network.

the star network Gstar in Figure 1 with center node c such
that g(c, j) = g(j, c) = 1 for all j and g(i, j) = 0 otherwise.
Case Study 1: Consider an action a such that a is optimal
for user 2 and suboptimal for all other users. Then, under
UCB1-SO policy, owing to Proposition 4, lim sup

t→∞
E[Tca(t)]

is a finite constant. Hence, none of the other users in the
network receive substantial side observations for action a.
Now, UCB1-SO policy is a uniformly good policy. Hence,
for all i 6= c, there exists a constant k such that, E[Tia(t)] &
k log(t) as t → ∞,4 owing to the lower bound in Proposi-
tion 1. Hence, the regret of UCB1-SO policy for action a
can be bounded above as:

Ra(t) & k′(N − 2) log(t) as t→∞,

where k′ is a constant independent of network structure and
time.
Case Study 2: Next, consider an action a that is suboptimal
for all users. Then, as we will verify soon numerically (see
Figure 3) that, under UCB1-SO policy, E[Tca(t)] ≤ E[Tia(t)]
for all i. Hence, we have

E[Sia(t)] = E[Tca(t)] + E[Tia(t)] ≤ 2E[Tia(t)],

for all i 6= c. Once again, combining the above fact with
the lower bound in Proposition 1, we have that, for some
constant k, E[Tia(t)] & k log(t) as t → ∞ for all i 6= c.
This gives us the following bound on the expected regret of
UCB1-SO policy for action a :

Ra(t) & k′(N − 1) log(t) as t→∞,

where k′ is a constant independent of network size and time.
On the other hand, in both the case studies above, the optimal
solution of the LP P2 for the star network is z∗c = 1 and

4We say that f(t) & g(t) as t→∞ if lim inf
t→∞

f(t)/g(t) ≥ 1.
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Fig. 2: Comparing ε-greedy-LP pol-
icy and UCB1-SO policy when all
users have same action profiles in a
star network.
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Fig. 3: Center user explores the
most in ε-greedy-LP, while end
users explore the most in the
UCB1-SO in a star network.
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Fig. 4: ε-greedy-LP policy has bet-
ter regret than the UCB1-SO pol-
icy even when different clusters of
users have different best actions.

z∗i = 0 for all other i. Hence, in both cases, the regret of ε-
greedy-LP policy is at most k′′ log(t), where k′′ is a constant
independent of network size and time.
Next, we present some numerical evaluation to compare
the performance of ε-greedy-LP and UCB1-SO policies
described earlier. First, we consider a star network with
50 users (user 25 is the center node) and 50 actions. For
each user i, µi2 = 0.9 for action 2 and µia = 0.7 for all
other actions. For the ε-greedy-LP policy, we let c = 10
and d = 0.1 and the optimal solution of the LP P2 for
the star network is z∗1 = 1 and z∗i = 0 for all other i. In
Figure 2, we see that the ε-greedy-LP outperforms UCB1-
SO as expected from Case Study 2. From Figure 3, we see
that the center node explores most in the ε-greedy-LP policy
while the center node explores the least in UCB1-SO policy
verifying our claim in Case Study 2. Next, we consider the
network formed by connecting two star networks, G1 and G2

of size 20 each. We assume that action 2 is optimal for users
in G1 and action 3 is optimal for users in G2. We then add
100 random links between nodes of G1 and G2. The addition
of these links makes z∗i non-zero for non-central users in both
G1 and G2. All optimal actions have a mean reward 0.9 and
suboptimal actions have a mean reward of 0.7. For the ε-
greedy-LP policy, we let c = 2 and d = 0.1. In Figure 4,
we see that the ε-greedy-LP still has better performance than
UCB1-SO policy.

VI. CONCLUSION AND FUTURE WORK

In this work, we modeled and investigated the stochastic
bandit problem in the presence of side observations. The
network-aware exploration of ε-greedy-LP policy leads to
optimal performance in terms of network structure when
the action is suboptimal for all users. However, this policy
does not adapt to the presence of side observations and
this could lead to performance loss when there is more
diversity in the optimal actions in the network. On the other
hand, we showed, using case studies in Section V that,
UCB1-SO policy is agnostic of the network structure. Our

investigations motivate the search for adaptive network-
aware allocation strategies. Next, we present two promising
directions for future work in the development of such
strategies.
Making UCB1 network-aware: The first idea is to change
the exploration term in the index of UCB1-SO policy
to reflect the network structure. More concretely, we
propose to investigate changes in the index of the form
x̄ia(t) +

√
h(i) log(t)
sia(t)

, where h(i) captures the network
position of user i.
Making ε-greedy-LP adaptive: The second idea is to make
the exploration component of ε-greedy adaptive. As we have
more observations in the system with time, we can infer
which users belong to the sets, Ua, Ia, and Oa, respectively.
Using this inference, one could modify the constraints sets
and objective function in LP P2 hoping to converge to the
solution of LP P1 for each action a.
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