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ABSTRACT

In this paper, we study the effect of predictive caching on the de-

lay of wireless networks. We explore the possibility of caching at

wireless end-users where caches are typically very small, orders of

magnitude smaller than the catalog size. We develop a predictive

multicasting and caching scheme, where the Base Station (BS) in a

wireless cell proactively multicasts popular content for end-users

to cache, and access locally if requested. We analyze the impact of

this joint multicasting and caching on the delay performance. Our

analysis uses a novel application of Heavy-Traffic theory under the

assumption of vanishing caches to show that predictive caching

fundamentally alters the asymptotic throughput-delay scaling. This

in turn translates to a several-fold delay improvement in simula-

tions over the on-demand unicast baseline as the network operates

close to the full load. We highlight a fundamental delay-memory

trade-off in the system and identify the correct memory scaling to

fully benefit from the network multicasting gains.

CCS CONCEPTS

• Networks → Packet scheduling; Mobile networks; Network

management.

KEYWORDS

Wireless Caching, Multicast, Heavy-Traffic, Delay Analysis

ACM Reference Format:

Sherif ElAzzouni, Fei Wu, Ness Shroff, and Eylem Ekici. 2020. Predictive

Caching at The Wireless Edge Using Near-Zero Caches. In The Twenty-

first ACM International Symposium on Theory, Algorithmic Foundations, and

Protocol Design for Mobile Networks and Mobile Computing (Mobihoc ’20),

October 11–14, 2020, Boston, MA, USA. , 10 pages. https://doi.org/10.1145/

3397166.3409126

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8015-7/20/10. . . $15.00
https://doi.org/10.1145/3397166.3409126

1 INTRODUCTION

Caching is poised to play a key role in most proposed future net-

work architectures. The huge increase in mobile traffic, expected

to reach 77 exabytes of data per month by 2022 [6], and higher

user expectations in terms of high throughput and low latency

have pushed the networking community to rely on edge caching

as a central tenant of emerging architectures due to its potential to

increase network capacity, reduce latency, and alleviate peak-hour

congestion among other expected benefits. Recently, there has been

a special IEEE JSAC issue that was dedicated to the question of

“What role will caching play in future communication systems?"

[17]. As an example, the Information Centric Networks (ICN) [1]

proposal is an ambitious project to evolve the internet away from

the host-centric paradigm to a new content-centric paradigm that

decouples senders and receivers. In ICN, the sender requests a cer-

tain object, rather than establishing a connection with the object’s

host, and the network then leverages in-network caches to locate

that item and deliver it to the user. The reliance on caching has

motivated modeling ICN as a “network of caches". Another domain

where caching has been gaining significant traction is 5G cellular

networks. There have been many works examining the potential

of caching in both the core and the RAN edge [24][15].

Central to the recent increased interest in caching is the possi-

bility of caching at the wireless edge [16]. Utilizing Base Stations

(BSs)/Access Points (APs) to cache popular content has been pro-

posed [19], which has sometimes been referred to as femtocaching.

This enables users to fetch content from the closest Base Station,

if possible, decreasing the round-trip delay and reducing network

congestion caused by moving content between core servers and

edge devices (such as RANs). Although femtocaching can signifi-

cantly reduce access delay, femtocaching cannot reduce the last mile

wireless network delay, thus, we present the following question: “If

caching content in last mile edge devices can cause significant delay

reduction, can we go one step further and push popular content to

end-users devices’ caches?". Users can access cached content locally

with zero-delay. Furthermore, this helps reduce the overall delay by

avoiding having to continuously transmit redundant content over

the wireless medium, which dissipates expensive wireless resources,

that may be the delay bottleneck especially during the busy hour.

The motivating principle behind our work is the “commonality

of information", i.e., the same content being requested by a large

number of users over a short period of time. Indeed, most content

publishers and sharing platforms often have daily trending content

that is widely requested over a short period of time. This phenomena
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has been empirically studied and statistically modeled [22]. From a

networking standpoint, serving trending content in an on-demand

unicast fashion (as is prevalent in today’s networks) unnecessarily

strains the network, wasting radio resources on fulfilling redundant

requests. Intuitively, the network is better off multicasting trending

content to all users that may request it, exploiting the broadcast

nature of the wireless channel. Thus, instead of using a single

resource (for example the number of 5G-NR resource blocks needed

to transmit a video) per each user request, the operator can use a

single resource to fulfill all requests.

The joint deployment of multicasting and caching has been pre-

viously proposed in [18] for energy minimization for transmissions

that can tolerate a small amount of delay, for minimization of delay,

power, and fetching cost in [25], and maximization of success-

ful transmission probability in [2]. A deep reinforcement learning

approach was undertaken in [20] to determine which content to

multicast. Perhaps closest to our work is [5], which empirically

studied proactively multicasting and caching popular content in

3G/4G networks using real traces, and were able to show that this

has the potential to significantly reduce the download volume sub-

ject to some practical constraints such as cacheability of popular

content. Despite the interest in joint caching and multicasting, a

theoretical study of the effect of combining both on delay has been

absent. The fundamental idea of multicasting popular content for

end users to cache faces two fundamental challenges. The first

challenge is that users are likely to request the same content at

different times. Some works [18] have circumvented that obstacle

by waiting for a constant window before multicasting content to

all users with outstanding requests, forcing users to wait until the

end of the window (on the order of a few minutes) which might

be unacceptable for users less tolerant to delay. Conversely, we

propose proactively multicasting popular content upon generation

then exploiting end-users caches to hold popular content. We refer

to this scheme as Predictive Caching. Predictive Caching consists of

two steps:1. Popular content is proactively multicast to all users in

the cell. 2. End users cache that content upon receipt in their local

caches for a duration equal to the typical requests lifetime, before

discarding that content to empty cache space for newer content.

The users can then access that content any time from the local cache

with zero-delay. The second challenge is that end-users have very

limited cache sizes. Much of the previous work on wireless caching

[19] [9] assumed that the local cache size is on the order of the

catalog size. This assumption is not suitable for a variety of wireless

networks, where the end devices (e.g., smart phones, tablets, etc.)

have limited memory. Thus, we carry out our analysis under the

assumption that cache sizes at end users can be very small. More

precisely, we show that significant delay reductions are attained

even if the end-user cache sizes vanish as the load increases. Our

contributions can be summarized as follows:

1. We propose a predictive caching system whereby a BS (or an AP)

divides the bandwidth into a load-dependentθ -fraction (constrained
by the cache sizes) for predictive caching and a (1 − θ )-fraction for

traditional on-demand unicast. The BS then uses that θ -fraction
to proactively multicast popular content for end-users to cache by

exploiting the wireless broadcast channel.

2.Wemodel the predictive caching system as a downlink scheduling

problem. We introduce the Heavy-Traffic (HT) queuing framework

to analyze the delay performance under predictive caching. We use

a novel duality framework to simplify the scheduling problem with

a load-dependent capacity region into a single dimensional routing

problem that is easier to analyze using standard HT tools.

3. We analyze the predictive caching system for vanishing cache

sizes vis-a-vis the baseline unicast on-demand system.We show that

predictive caching alters the asymptotic delay scaling in the heavy

traffic limit. This means that the average delay of the predictive

caching regime grows slower than the baseline as a function of the

network load, leading to significant delay savings as the network

approaches full load. We also illustrate via simulations that this

delay scaling altering translates to many-fold savings in delay for

reasonable cache sizes.

4. We characterize the effect of cache sizes, popularity distribution,

number of users in the system, and network load on the delay.

We identify and formalize the inherent delay-memory trade-off

in the system, which is expected to aid in end-user cache dimen-

sioning. We also characterize the memory scaling as a function of

throughput to attain favorable delay scaling.

2 SYSTEM MODEL

2.1 Basline On-demand Unicast System

New 
Content 
generated 
with rate r

Edge 
Server: 
Receives 
and routes 
requests Shared Wireless Channel

Figure 1: On-Demand Unicast Baseline System Model
The system model is shown in Fig. 1. We assume new content is

continuously generated by the network with rate r . Each new con-

tent/item has a popularity p ∈ [0, 1] drawn from a prior popularity

distribution f (p). Upon content generation, each user will request

this new content with probability p. For ease of presentation, we
assume the popularity distribution is homogeneous across different

users. Nevertheless, the theoretical framework could be extended

to the case with heterogeneous popularity distributions. The Base

Station (BS) keeps a queue,Qi , for each user i , to hold their requests
until they are served. Each queue has an arrival rate Ai [t] depend-
ing on the content requests and a service rate Si [t] that depends on
the BS scheduling algorithm. We assume that the channel between

the BS and the end users is a collision channel, where each time

slot, the BS can transfer one item to one user. For simplicity, we

assume that all items are equal in size, which is justified by the

fact that large items can be split up to smaller chunks of equal size.

The BS can deploy any scheduling algorithm to serve outstanding

requests. However, in the on-demand unicast system, requests have

to be fulfilled individually and reactively.
Formally, the on-demand unicast queues evolve as follows:

Qi [t + 1] = (Qi [t ] + Ai [t ] − Si [t ])+, ∀i = 1, . . . , N ,where (1)

Si [t ] ∈ {0, 1}, ∀i = 1, . . . , N .,

N∑
i=1

Si [t ] ≤ 1, ∀i = 1, . . . , N . (2)

λ = E[Ai [t ]] = r
∫ 1

0
pf (p)dp (3)

ϵ = E(SΣ[t ]) − E(AΣ[t ]) = 1 − Nλ, (4)
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Figure 2: Predictive Caching Model

where (x)+ = max(0, x). AΣ[t] and SΣ[t] are the sum of arrivals

and service of all queues at time t , respectively, and ϵ quantifies the
network load, so a network with ϵ → 0 is said to be operating at

full load. Condition (2) highlights that only one user can be served

at a time-slot

We can see from Fig. 1 that popular contents that are requested by

multiple users over a short period of time cause a lot of redundancy

in the queues, which for crowded cells can cause users to experi-

ence large delays. This phenomena was empirically verified in [3],

where the traffic from big events was analyzed (in this case the

superbowl), and it was reported that popular content (in this case

game related content) constituted the majority of traffic requests

by users. However, it was reported that simultaneous requests for

same content were rare, rendering direct multicast ineffective. This

motivates our predictive caching solution that we now present.

2.2 Predictive Caching

In order to reduce the redundancy in the network and exploit the

commonality of information and temporal locality in users’ content

requests, we propose the model in Fig. 2. The main idea is that

content that is known to be popular is likely to be widely requested,

thus, the BS can proactively multicast those items and have end

users cache them and access them locally. In order to do that, we

propose the BS divides the bandwidth into a θ (ϵ )-fraction dedicated

to multicasting, and a (1 − θ (ϵ ))-fraction dedicated to on-demand

unicast.

The choice of θ (ϵ ) is determined by two things: The first is the

network load ϵ , and the second is the amount of physical memory

available at the end users. Physical memory imposes a constraint

on how large θ (ϵ ) can be independent of the load. To see this,

assume that all items have a lifetime T , for which they can be

requested. This approximates the temporal locality phenomenon of

content requests reported in [22]. Assuming a physical cache size

ofM (with respect to a normalized item size), θ (ϵ ) can be bounded

proportionally to M
T to ensure that items are available in the cache

for a duration no shorter than their lifetime. From hereon, we will

use the multicast bandwidth fraction, θ (ϵ ), as representative of the
amount of end user cache used to hold content.

We further assume that the multicast channel has a rate of 1 to
transmit an item to all users. Once new content is generated in the
network, the BS makes a choice on whether to predictively multi-
cast that content and have end-users cache it. The BS makes that
decision by simply setting a popularity threshold γ (θ, ϵ). Any item

that has popularity greater than γ (θ, ϵ) is automatically multicast,
where the threshold is chosen to ensure that the multicast queue is
stable. Thus, the contents are divided into two sets, as shown in Fig.

2(a), a popular set to be multicast, C(θ ,ϵ ), and a unicast on-demand

set, C
(θ ,ϵ )

.

C (θ ,ϵ ) =
{
c ∈ Contents |p(c) ≥ γ (ϵ , θ ) = F−1 (1 − θ (ϵ )

r

)}
, (5)

where F−1 denotes the inverse CDF of the popularity distribution.
This can be equivalently written in terms of the cache arrival rate
by picking the threshold to ensure a certain arrival rate of items to
the cache size that guarantees that, with high probability, items stay
in the cache for a duration no shorter than their request lifetime:

r

∫ 1

γ (θ ,ϵ )
f (p)dp = θ (ϵ ) (6)

Predictive caching reduces both the arrival rates and service rates
of unicast queues. We denote those two quantities as A∗

i [t], S∗i [t],
respectively. We can now write down the equations that make up
the unicast queues of the Predictive Caching system as follows:

Qi [t + 1] = (Qi [t ] + A∗
i [t ] − S∗i [t ])+, ∀i = 1, . . . , N . (7)

S∗i [t ] ∈ {0, 1}, ∀i = 1, . . . , N ,

N∑
i=1

S∗i [t ] =
{
0 w.p. θ (ϵ ),
1 w.p. 1 − θ (ϵ ) .

(8)

E[A∗
i [t ]] = λ∗ = r

∫ γ (θ ,ϵ )

0
pf (p)dp (9)

δ (ϵ , θ ) = E[SΣ[t ]] − E[AΣ[t ]] = 1 − θ (ϵ ) − Nλ∗ (10)

Note that the predictive caching regime, arrivals to the unicast

queues exclude items that belong to the setC(θ ,ϵ ), since those items

are multicast, cached, and accessed locally by end-users whenever

requested. Similarly, the channel is accessible by unicast queues in

(8) only for a fraction of 1−θ (ϵ ), and for a θ (ϵ )-fraction, the wireless
channel is dedicated to serving the multicast queue. Thus, the load

of delivering those requests is now deferred to the multicast queue

at the cost of a θ (ϵ )-fraction of the bandwidth.

The key question in this paper is: Can we achieve delay gains

even if the cache available is asymptotically zero as the network

approaches the full load, i.e., θ (ϵ ) → 0 as ϵ → 0? An affirmative

answer to that question means that in practice, even small caches

at end users could be leveraged to reduce the overall user delay. We

carry out a detailed analysis that shows that predictive caching can

improve the asymptotic delay scaling for vanishing caches.

3 ANALYSIS OF UNICAST ON-DEMAND
SYSTEM

We start by analyzing the baseline unicast on-demand system to

provide a basis for comparison when we analyze the predictive

caching scheme. We first derive a lower bound on the sum queue

lengths at the BS by utilizing the resource pooling lower bound [4].

In the unicast problem, the BS scheduler makes a decision on which

user should be served every time slot depending possibly on the

requests’ queue lengths (For example the scheduler can give the

channel to the user with the longest queue of outstanding requests).

It is known that the capacity region is R = Convex Hull(S), where
S is the set of feasible schedules. Under our assumption of a col-

lision homogeneous channel, S could be written as S = {Si , i =
1, . . . ,N , |Si ∈ {0, 1},∀i,∑N

i=1 Si = 1}
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Figure 3: Predictive Caching Model

Since the number of users, N , is finite, the region S is a polyhe-

dron that can be fully described by as intersection of hyperplanes

as follows:

R = {r ≥ 0 : 〈c(k ), r 〉 ≤ b(k ),k = 1, . . . ,K} (11)

whereK is the number of hyperplanes describing the polyhedron.

The notation 〈., .〉 indicates an inner product. The k−th hyperpane,

H(k ), can be described by the pair (c(k ),b(k )). For the special case
of the collision channel, the capacity region can be described by

the single hyperplane R = {r : r ≥ 0, 1√
N
〈1, r〉 ≤ 1√

N
}. We plot in

Fig. 3 the capacity region for the two user case.

Having defined the capacity region, we can now utilize the “re-

source pooling" system to derive a lower bound on the steady-state

queue lengths in the heavy traffic setting. The queue lengths pro-

cess {Qi [t]}Ni=1 can be modelled as a Markov chain that converges

in distribution to steady-state {Qi }Ni=1 when the system is stable,

i.e., the Markov chain is positive Harris recurrent. We are interested

in characterizing the steady-state of the sum queue lengths. Intu-

itively, pooling the resources of all queues into one queue leads to

a natural lower bound on the system. We parameterize the system

with the network load, ϵ = 1 − Nλ, and derive the steady-state

sum queue lengths at this load
∑N
i=1Q

(ϵ )
, in particular, we are in-

terested in the behavior of the system in the Heavy-traffic limit,

i.e., when ϵ → 0 pushing the operating point to the boundary of

the capacity region. This idea was introduced and applied in [4]

for both the routing and scheduling problems. The next Lemma

characterizes the resource pooling lower bound for the on-demand

unicast baseline system:

Lemma 3.1. In the on-demand unicast system described above,
where ϵ = 1 − Nλ, the sum queue lengths in the network is lower-
bounded as follows:

E[
N∑
i=1

Q
(ϵ )
i ] ≥ ζ (ϵ )

2ϵ
− 1

2
(12)

where ζ (ϵ ) =
√
N (σ (ϵ )

A
)2 + ϵ2, and (σ (ϵ )

A
)2 is the variance of the

arrivals for each queue at each time slot. Furthermore, using the

conditional variance of the arrivals, we can show that (σ (ϵ )
A

)2 =
μ
(ϵ )
p −(μ(ϵ )p )2, where μp is themean of the prior popularity distribution.

Furthermore, taking the heavy traffic limit as ϵ → 0, the steady-state
sum queue lengths limit is asymptotically lower bounded as follows:

lim inf
ϵ→0

ϵE

[ N∑
i=1

Q i

]
≥ ζ

2
(13)

Where Qi is the limit of Q
(ϵ )
i as ϵ → 0. ζ =

√
Nσ 2

A
, where σ 2

A
=

lim
ϵ→0

(σ (ϵ )
A

)2. Equivalently, the sum queue lengths in the steady-state

asymptotically scales as Ω( 1ϵ ).

The proof of the result can be directly obtained by applying the

resource pooling lower bound for the generic single queue in [4]

to a queue with an arrival rate of 〈1,A[t]〉, where 1 = [1, 1, . . . , 1]
and a deterministic service rate equal to 1.

In Lemma 3.1, it is important to note that the expected steady state

sum queue lengths in the on-demand system scales as Ω( 1ϵ ). Wewill

show that the predictive caching fundamentally alters this scaling

to a slower scaling leading to arbitrarily large delay saving in the

HT limit. In order to do that we introduce the duality framework

that maps the scheduling problem into an easier routing problem.

4 DUALITY FRAMEWORK

4.1 Capacity of Predictive Caching

In order to motivate our duality framework, it is essential to under-

stand how predictive caching alters the capacity region. Consider a

general capacity region, C, for an on-demand system. Recall that

the predictive caching reserves a fraction θ (ϵ ) for multicasting pop-

ular content for end users to cache. We make the key design choice

of vanishing cache size: θ (ϵ ) → 0 as ϵ → 0, i.e., as the network load

approaches the full load, the multicast bandwidth decreases until

this multicast bandwidth vanishes at the full-load. The motivation

for this choice is two-fold:

1. We aim to show that small memory sizes typical of end-user

devices, such as hand-held devices, can still be used to achieve sig-

nificant delay savings. Having the vanishing cache size assumption

emphasizes that even diminishing caches can be useful at high

network loads, furthermore, a smaller cache at high load can be

more useful than a larger cache at lower load. This is crucial to

show that our results hold for practical systems and do not make

the common assumption in wirless caching previous works [19]

[7] [9] [12] that the cache size can hold a significant fraction of the

content catalog.

2. As the network approaches full-load, less resources could be ded-

icated to predictive caching, and the scheduler needs to dedicate all

of the resources to fulfill on-demand requests to guarantee stability.

Since θ (ϵ ) of the the bandwidth is sacrificed to predictive caching,
the BS unicast scheduler sees a reduced capacity region C(ϵ ), as
shown in Fig. 4. Specifically, the scheduler gets an aggregate 1−θ (ϵ )
capacity to allocate to unicast traffic. However, the average user

arrival rate is also reduced from λi to λ
∗
i due to predictive caching

of popular content. Thus, the network load changes from ϵ to a

new load: δ (ϵ, θ ) (we write the new load δ as a function of ϵ and

θ to emphasize the dependence). Ideally, we design our algorithm

such that δ (ϵ, θ ) > ϵ . If we can show that the average delay of

the unicast queues under predictive caching scales as O( 1
δ (ϵ ,θ ) ),

then this establishes that predictive caching alters the asymptotic

scaling of delay at the heavy-traffic leading to arbitrarily large delay

savings as ϵ → 0.

We can see in Fig. 4 that the capacity region, C(ϵ ) is dependent
on the load, ϵ , with the property that lim

ϵ→∞C
(ϵ ) = C, due to the

vanishing caches assumption. The standard analysis for scheduling

algorithms in the HT regime [4] [23][13] [11] is carried out under

the assumption of a fixed capacity region independent of ϵ . It is
unclear how the analysis can be altered to fit the load-dependent

regime, since now the Hyperplanes that define the capacity region
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(a) On-demand Unicast Capacity
Region: C

(b) Predictive Caching Capacity

Region: C(ϵ )

Figure 4: Capacity Region of different delivery systems

are dependent on ϵ . To avoid a complicated analysis, we introduce

a duality framework that transforms the scheduling problem into a

simpler routing problem more amenable to standard HT tools. We

note that a version of duality was presented in [21] in finite-buffer

systems (between routing queue states and scheduling residual

capacities) to derive throughput-optimal policies.

4.2 Duality between Scheduling and Routing

We now present a method to map the scheduling problem into an

equivalent routing problem that allows us to extend the existing

HT framework to directly analyze the predictive caching problem.

Intuitively, scheduling a non-empty queue (denoted as i) over a
time-slot leads to reduction of that queue by one request. This can

be equivalently viewed as all queues except queue i adding one

request if all queues have a constant independent service equal

to 1 request/slot, as shown in Fig. 5. Thus, Instead of solving the

scheduling problem by determining which queue to schedule at

time t , we can equivalently solve a routing problem by determining

where to route N − 1 “artificial arrivals". We denote those artificial

arrivals as B[t]. We formalize this intuition in the next Theorem.

Theorem 4.1. Duality of Routing and Scheduling Problems:

Given two SystemsU1 andU2.U1 is a scheduling problem described

by equations (1)-(4) and some (possibly random) scheduling rule

s[t] = д(Q[t]), that depends on the queue lengths at time t . U2 is an

(N − 1)-routing problem described by the following equations:

Qi [t + 1] = (Qi [t ] + Ai [t ] + Bi [t ] − Si [t ])+, ∀i = 1, . . . , N . (14)

Si [t ] = 1, E[Ai [t ]] = λ, ∀i = 1, . . . , N .

Bi [t ] ∈ {0, 1}, BΣ[t ] =
N∑
i=1

Bi [t ] = N − 1, ∀i = 1, . . . , N .

ϵ = E[SΣ] − E[AΣ] − E[BΣ] = 1 − Nλ (15)

Where the router makes routing decisions according to some, possi-

bly random function, B[t] = h(Q[t]), depending on the queue lengths

at time t .
If the scheduling rule inU1 and the routing rule in U2 satisfy:

P{д(Q) chooses Qi for scheduling} = P{h(Q) routes requests to
all queues except Qi } ∀i = 1, . . . ,N (16)

Then the systemsU2 andU1 are Sample-path equivalent, i.e.,

for the same sample path (same realizations of requests arrivals and

scheduling/routing random decisions), Q[t] are equal inU1 andU2

with probability 1 at all times t , assuming the same initial state Q[0].

(a) Single Resource Scheduling
Problem

(b) N − 1-Routing problem

Figure 5: Duality between routing and scheduling problems

The Proof is straightforward by induction. We give two examples

to further illustrate the duality condition (16). The first example is

the Longest-Queue-First (LQF) scheduling algorithm, breaking ties

uniformly at random. Thus д(Q[t]) = RAND{argmax(Q[t])}. This
scheduling rule can bemapped to the Join-the-ShortestN−1Queues
(JS(N − 1)Q), as we can express the routing rule that routes to N − 1

shortest queues as follows д(Q[t]) = Q \ RAND{argmax(Q[t])}.
where ‘\’ is the set difference notation. It is straightforward to see

that LQF and JS(N − 1)Q satisfy (16). Another example is Random

Scheduling (RS) and (N − 1)−Random Routing (N − 1)-RR which

respectively make the routing and scheduling decisions uniformly

at random (where each queue can get at most one request in the

routing system). It is easy to see that RS and (N − 1)RR satisfy (16).

5 PERFORMANCE OF PREDICTIVE CACHING

5.1 Main Result

We now analyze a predictive caching algorithm that we call Predic-

tive Caching Longest-Queue First (PC-LQF) that follows the outline

of Section II. PC-LQF multicasts items that have a popularity p
higher than threshold γ (ϵ, θ ) for end users to cache, and unicasts

all other items. PC-LQF serves the multicast queue with probability

θ (ϵ ), and the unicast queue with probability 1 − θ (ϵ ). In the unicast

mode, the BS schedules the longest queue for unicast transmissions

breaking ties randomly. PC-LQF is summarized in Algorithm 1.

Algorithm 1: Predictive Caching-Longest Queue First (PC-

LQF)

1 for time slot t do

2 Receive new content items generated by the network

3 if new item c has popularity pc ≥ γ (ϵ , θ ) then
4 Send item c to Multicast Queue QM to be sent to all users

to cache
5 else

6 Only forward c to Qi when requested by user i

7 w.p. θ (ϵ )

8 Serve Multicast Queue, QM

9 w.p. 1 − θ (ϵ )

10 Choose the longest unicast queue to serve, i.e.,

s[t ] = RAND{argmax
i

Qi [t ]}

Having described the PC-LQF algorithm. We are now interested

in the delay scaling in the HT limit as ϵ → 0, under the vanishing

caches assumption.
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Theorem 5.1. Main Result: Consider the Predictive Caching Sys-

tem shown in Fig. 2 with homogeneous arrivals equal to λi = r
∫ 1

0
p f (p)dp,

satisfying ϵ = 1 − Nλ > 0. If the BS applies Algorithm 1, then, the

system is stable as long as γ (θ , ϵ) > 1
N , and the limiting steady-state

queue length vector Q(ϵ ) satisfies the following:

E

[ N∑
i=1

Q
(ϵ )
i

]
≤ ζ ∗(ϵ )

2δ (ϵ , θ ) + B
∗(ϵ )

(17)

where ζ ∗(ϵ ) = (N (σ (ϵ )
A

)2+θ (1−θ )+δ (ϵ, θ )2), and B∗(ϵ ) = o( 1
δ (ϵ ,θ ) ),

with (σ (ϵ )
A

)2 being the variance of a single queue arrival at any time

slot. Furthermore, the scaling factor δ (ϵ, θ ) can be bounded as follows

ϵ + θ (Nγ (θ , ϵ ) − 1) ≤ δ (ϵ , θ ) ≤ ϵ + θ (N − 1) (18)

Additionally, in the Heavy-traffic limit as ϵ → 0, which implies

Nrλ → 1, (σ (ϵ )
A

)2 → σ 2
A
, and θ (ϵ ) → 0, by the vanishing caches

assumption, the asymptotic limit becomes:

lim sup
ϵ→0

δ (ϵ , θ )E
[ N∑
i=1

Q i

]
≤ ζ

2
(19)

where ζ = Nσ 2
A
.

Finally, PC-LQF is Heavy-Traffic optimal within all algorithms

with predictive caching capability.

Before proving our main result, we highlight a few key observa-

tions from the main theorem:

1. The most important observation is that predictive caching alters

the asymptotic delay scaling, namely, it significantly “slows down"

the delay build-up as ϵ vanishes. To see that it is useful to contrast

the scaling in Theorem 5.1 with Lemma 3.1. We see that for the

baseline unicast system, the sum queue lengths in the steady state

is lower bounded by a Ω( 1ϵ ) scaling, whereas the PC-LQF system
is upper bounded by O( 1

δ (ϵ ,θ ) ) scaling. Under the assumption that

δ (ϵ, θ ) > ϵ (we will show the mild conditions for this assumption

to be true), the average queue lengths under PC-LQF are arbitrarily

smaller than the unicast system as ϵ → 0. This leads to many-

fold delay savings in practical heavily-loaded systems as seen in

simulations.

2. To get a sufficient condition for delay scaling improvement, it

is useful to note that having γ (ϵ ,θ ) > 1
N , guarantees δ (ϵ, θ ) > ϵ .

This means that the BS should use the rule in (5) for caching as

long as the item’s popularity p > 1
N . This is expected since this rule

guarantees that an item that is multicast and cached is expected

to be requested more than once, giving multicasting gains over

the unicast system. Thus, this rule can lead the BS to be more

conservative in multicasting in cases where end users have no

commonality of information to be exploited.

3. The main result answers the question of “How should cache

sizes scale with respect to the network load to maintain asymptotic

reduction in delay?". This can be seen by inspecting (18): To obtain

asymptotic delay improvement, we need the second term in the

bound to be on the order of Ω(ϵ). The next corollary characterizes

the expected improvement in delay according to the cache size

scaling with ϵ .

Corollary 5.2. Under amild condition that lim
ϵ→0

γ (ϵ, θ ) > c , for some

constant c , the cache-size scaling with the network load ϵ determines

the improvement in delay as follows:

1. Case I: θ (ϵ ) = o(ϵ): No improvement in delay asymptotics can be

achieved since δ (ϵ, θ ) and ϵ are on the same order.

2. Case II: θ (ϵ ) = Θ(ϵ): Improves the constant in the delay asymptotics.

3. Case III: θ (ϵ ) = ω(ϵ): Improves the scaling in the delay asymptotics.

This corollary introduces the fundamental requirement for delay

improvement in terms of cache scaling. This requirement can trans-

late practically by having end-users allocate the appropriate device

memory for content caching at high network loads when instructed

by the BS. Thus at congestion, the end-users can still decrease their

cache sizes to zero as long as the decrease is slower than ϵ .
4. From Corollary 5.2 , we see that scaling memory as Ω(ϵ) alters
the asymptotic delay scaling as O

( 1
ϵ+NΩ(ϵ )

)
, reducing the average

delay linearly in the number of users N . This is the Multicasting

Gain that the predictive caching offers over the baseline system.

5. Finally, the theorem points to the effect of “commonality of

information". Given any value of ϵ , we see from (5), that a heavier

tail of the popularity distribution means a higher value for the

thresholdγ (ϵ, θ )which in turn further slows down the delay scaling
lower bound as ϵ grows. This is expected since a heavier tail means

the existence of more high popularity items that are useful to cache.

Equivalently, a heavier tail implies that users are more likely to

request similar contents from the distribution tail which increases

the multicasting gains.

5.2 Proof of Main Result

The proof of the main result utilizes the main idea used in HT

analysis of routing and scheduling algorithms presented in [4]. The

outline of the proof can be broken down into four steps.

(1) We find the appropriate dual system (as in Fig. 5) that satisfies

Theorem 4.1. The analysis is carried out for the dual system.

(2) We derive the resource pooling lower bound to be used to show

Heavy-traffic optimality of PC-LQF.

(3) We show that under PC-LQF, the queue lengths are close to

each other at high network loads. This is formally known as

the State-space collapse.

(4) We use the results from state-space collapse to derive the main

result in Theorem 5.1. We omit proving the stability condition

for space limitations.
5.2.1 Deriving the Dual System. We follow the guidelines implied
by Theorem 4.1 to derive an equivalent dual system to the PC-LQF
system. We refer to the dual system as Predictve Caching-Join the
Shortest (N − 1) Queues (PC-JS(N − 1)Q). The new system retains
the structure of PC-LQF by forwarding the most popular content to
a multicast queue, and splitting the bandwidth between on-demand
unicast and multicast. However, the key difference is that in the
new system model, the queues are not contending for the wireless
shared channel. The dual system equations can be derived from
Theorem 4.1 as follows:

Qi [t + 1] = Qi [t ] + A∗
i [t ] + B∗

i [t ] − S∗i [t ] +Ui [t ], ∀i = 1, . . . , N .

BΣ[t ] =
{
0 w.p. θ (ϵ ),
N − 1 w.p. 1 − θ (ϵ ) .

, Si [t ] =
{
0 w.p. θ (ϵ ),
1 w.p. 1 − θ (ϵ ) .

E[A∗
i [t ]] = λ∗ =

∫ γ (θ ,ϵ )

0
pf (p)dp, δ (ϵ , θ ) = 1 − θ (ϵ ) − rN λ∗
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Where BΣ[t] is the sum of “artificial" arrivals to be routed in the

new equivalent dual problem. Also Si [t] and BΣ[t] are coupled,

meaning they follow the same “coin flip" to decide the value they

take at time t . Finally,Ui [t] denotes the unused service of queue i
at time t , namely,Ui [t] = max(0, Si [t] −Ai [t] − Bi [t] −Qi [t]) .
5.2.2 Resource Pooling Lower Bound. We start by providing a lower

bound for the queue lengths in the next lemma

Lemma 5.3. For any predictive caching system, the steady-state
sum queue lengths for a load 1 − Nλ = ϵ can be lower bounded as
follows:

E[
N∑
i=1

Q
(ϵ )
i ] ≥ ζ ′(ϵ )

2δ (ϵ , θ ) −
N

2
(20)

where ζ ′(ϵ ) = N (σ (ϵ )
A

)2 + θ (1 − θ ) + δ (ϵ, θ )2

The proof is omitted for space limitations but the bound can be

obtained by applying a Lyapunov analysis to the resource pooling

lower bound.

5.2.3 State-Space Collapse. In order to prove state-space collapse,

we use the result in [8] for bounding the moments of a Markov

Chain defined on a countable state-space:

Lemma 5.4. [8] For an irreducible and aperiodic Markov chain
{Q[t]}t ≥0 over a countable state space χ , suppose Z : χ → R+ is a
nonnegative-valued Lyapunov function. We define the drift of Z at Q
as:

Δ(Z ) 

= [Z (Q [t + 1]) − Z (Q [t ])]I(Q [t ] = Q ), (21)

where I(.) is the indicator function. If the following conditions are
satisfied:

(1) The exists η > 0 and B < ∞ such that:

E[ΔZ (Q ) |Q [t ] = Q ] ≤ −η, ∀Q ∈ χ with Z (Q ) ≥ B . (22)

(2) There exists a D < ∞ such that

P( |ΔZ (Q ) | ≤ D) = 1 for all Q ∈ χ (23)

(3) {Q[t]}t is positive recurrent.
Then Z (Q[t]) converges in distribution to a random variable that
satisfies

E[eθ ∗Z ] ≤ C∗ (24)

which implies all moments of Z exist and are finite.

A key step of proving our main result is showing that as ϵ → 0,

under PC-JS(N − 1)Q, all user queue lengths are close to each other

in size. This enables us to show that at the steady state, the system

behaves as a single reource pooling queue that scales slower than

the unicast regime.

We parametrize the model by the unicast ϵ = 1 − Nλ(ϵ ), where
λ = r

∫ 1

0
p f (p)dp. We are interested in the queue-length process

{Q(ϵ )[t]}t and its steady state Q(ϵ )
under the PC-JS(N − 1)Q policy.

This is done by decomposing the queue lengths vector into two com-
ponents: a parallel component that averages all queue lengths, i.e.,

a projection of the Q onto the vector c = 1√
N
1, and a perpendicular

component that quantifies the differences in queue lengths:

Q
(ϵ )
‖

Δ
=

∑N
i=1Q

(ϵ )
i

N
1 Q

(ϵ )
⊥

Δ
=

[
Qi − 1

N

N∑
i=1

Q
(ϵ )
i

]N
i=1

From the continuous mapping theorem, we know that the con-

vergence of {Q(ϵ )[t]}t implies the convergence of {Q(ϵ )
‖ [t]}t and

{Q(ϵ )
⊥ [t]}t . Following the approach of [4], we are interested in show-

ing that Q
(ϵ )
⊥ is uniformly bounded for all ϵ > 0.

Proposition 5.5. Under the dual system considered parametrized

by ϵ = 1 − Nλ , applying the JS(N − 1)Q routing to the arrivals

{BΣ[t]}t . Then for any feasible arrival rate, i.e., Nλ < 1, there exists a

sequence of finite numbers {Nr }r=1,2, ... such thatE
[ ���Q(ϵ )

⊥
���r ] < Nr ,

for all ϵ > 0, and for all r = 1, 2, . . ..
Before proving the preposition, we state an important Lemma

from [4] that bounds the Lyapunov function ofQ⊥ in terms of other

functions that are easier to manipulate.
Lemma 5.6. [4] For any queuing system where the arrival and

service processes of each queue are bounded every time slot by Amax
and Smax, respectively. Let ΔL(X ) = (L(X [t + 1]) − L(X [t]))1(X [t] =
X ), denote the single-step drift for any appropriate Lyapunov function,
L, and any state, X . Then the following bounds hold for V⊥(Q):

ΔV⊥(Q) ≤ 1

2 ‖Q⊥ ‖ (ΔW (Q) − ΔW‖ (Q)), ∀Q ∈ RN+ (25)

|ΔV⊥(Q) | ≤ 2
√
N max(Amax, Smax) ∀Q ∈ RN+ (26)

We are now ready to prove the main state-space collapse result:

Proof. We begin the proof by analyzing the Lyapunov drift
of the functionW (Q). For convenience we drop the ϵ superscript
notation and the time index t .

E[ΔW [Q]] = E[ ‖Q[t + 1] ‖2 − ‖Q[t ] ‖2 |Q] (27)

=E[ ‖Q + A + B − S‖2 + 2〈Q + A + B − S, U〉 + ‖U‖2 − ‖Q‖2 |Q]
(a)≤E[ ‖Q + A + B − S‖2 − ‖Q‖2 |Q] (b)≤ 2E[〈Q, A + B − S〉 |Q] + 2N (28)

where (a) follows form (Qi +Ai + Bi − Si )Ui < 0), and (b) is since
Ai , Bi , and Si are all bounded by 1.
We proceed to bound the first term in LHS in (28) by defining a

hypothetical arrival rate λB =
(1−θ )(N−1)

N 1. Denote the expectation
of the service rate as E[Si [t]] = μ. The first term in the RHS in (28)
can be then bounded as follows:

E[〈Q, A + B − S〉 |Q] = E[〈Q, B − λB 〉 |Q] + E[〈Q, λB + A − S〉 |Q]
= 〈Q, E[B |Q]〉 − 〈Q, λB 〉 + 〈Q, λ∗A + λB − μ 〉
(a)≤ (1 − θ )( N∑

i=1

Qi −Qmax
) − N∑

i=1

(1 − θ )(N − 1)Qi

N
− δ (ϵ , θ )√

N

��Q‖
��

=
−(1 − θ )

N

N∑
i=1

(Qmax1 −Qi ) − δ (ϵ , θ )√
N

��Q‖
��

=
−(1 − θ )

N
‖Qmax1 −Q ‖1 −

δ (ϵ , θ )√
N

��Q‖
��

(b)≤ −(1 − θ )
N

‖Qmax1 − Q‖ − δ (ϵ , θ )√
N

��Q‖
��

(c )≤ −(1 − θ )
N

����� 1
∑N
i=1Qi

N
− Q

����� − δ (ϵ , θ )√
N

��Q‖
��

(d )
= − (1 − θ )

N
‖Q⊥ ‖ − δ (ϵ , θ )√

N

��Q‖
�� (29)

where the first term in (a) follows from the fact that the JS(N − 1)Q
routing policy increases the lengths of all queues by 1 except for

one queue having the maximal length whenever N − 1 requests

arrive to the router which happens with probability (1 − θ ), the
second term is by direct computation, and the third term is by the

fact that λ∗
A
+ λB − μ = −[ (1−θ )N − r

∫ τ (θ ,ϵ )
0

p f (p)dp]1 = − δ (ϵ ,θ )
N 1.
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(b) follows from the fact that for any vector x ∈ RN , ‖x ‖1 ≥ ‖x ‖,
i.e., the L1 norm of any vector is always greater than or equal the

L2 norm. (c) follows from the fact that the average is less than or

equal to the maximum. (d) is by definition of Q⊥.
The next step in the proof is finding a lower bound for E[W‖(Q)|Q].
It is straightforward to show the following holds:

E[ΔW‖(Q)|Q] =E[〈c,Q +A + B − S +U 〉2 − 〈c,Q〉2 |Q]
≥2〈c,Q〉〈c, λ∗ + E[B |Q] − μ〉 − 2E[〈c, S〉〈c,U 〉]

≥ − 2
δ (ϵ, θ )√

N

��Q ‖
�� − 2δ (ϵ, θ ) (30)

We can plug the bounds in (28), (29), and (30) in (25) to get:

E[ΔV⊥(Q ) |Q ] ≤ −(1 − θ )
N

+
N + 1

‖Q⊥ ‖ (31)

This inequality establishes the first condition (22) in Lemma 5.4. The

second and third conditions are satisfied by boundedness assump-

tion of arrivals and services and stability of the system, respectively.

Thus, applying the conclusion of the Lemma 5.4 in (24) to V⊥(Q)
concludes the proof.

5.2.4 Deriving Upper Bounds on queues. The next step in our proof

is utilizing Proposition 5.5 to obtain the sum-queue lengths bound

in the main Theorem. We state a Lemma from [4] applied to our

predictive caching systemwhich enables us to bound the sum queue

lengths in the steady-state.

Lemma 5.7. [4] Given the dual predictive caching routing sys-
tem where with arrival A[t], artificial arrival B[t], and service S[t]
vectors at time t , where the artificial arrivals depend on the queue
lengths. Suppose {Q[t]}t converges in distribution to a random vector

Q with all bounded moments, then for any positive vector c ∈ RN+ ,
the following applies

E[〈c, Q〉 〈c, S − A − B(Q)〉] = E[〈c, S − A − B(Q)〉2]
2

+
E[〈c, U(Q)〉2]

2
(32)

+E[〈c, S − A − B(Q)〉 〈c, U(Q )〉], (33)

where the term in (33) can be further bounded as follows

(33) ≤
√
E[‖Q⊥‖2]E[U (‖Q‖2] (34)

The proof of Lemma is a straightforward application of Lemma
8 and Lemma 9 (which utilizes Cauchy-Schwartz) in [4] into our
system.
We can now bound the expression (32) (33) to conclude the main
Theorem. We start by rewriting the LHS in (32) as follows

E[〈c, Q〉 〈c, S − A − B(Q)〉] = δ (ϵ , θ )
N

E

[ N∑
i=1

Q
(ϵ )
i

]
(35)

Denote the first term in the RHS as
ζ (ϵ )
2 . This can be calculated

directly as

ζ (ϵ ) Δ
= E[〈c, S − A − B(Q)〉2] = 1

N
(N (σ (ϵ )

A
)2 + θ (1 − θ ) + δ (ϵ , θ )2)

(36)

The second term in the RHS of (32) can be bounded as follows:

E[〈c, U(Q)〉2] ≤ 〈c, 1〉E[〈c, U(Q)〉] ≤ δ (ϵ , θ ) (37)

Similarly, we can bound (33) by applying Proposition 5.5 into

the bound (34) as follows:

(33) ≤
√
E[‖Q⊥‖2]E[‖U(Q)‖2]

≤
√
E[‖Q⊥‖2]E[〈1,U (Q)〉] ≤

√
N2δ (ϵ, θ ) (38)

Substituting (35), (36), (37), and (38) into Lemma 5.7:

δ (ϵ , θ )
N

E

[ N∑
i=1

Q
(ϵ )
i

]
≤ ζ (ϵ )

2
+
δ (ϵ , θ )

2
+
√
N2δ (ϵ , θ ) (39)

This proves (17). Taking the limit as ϵ → 0 leads to to the expression

in (19). Also taking the limit and comparing to the lower bound in

Lemma 5.3 establishes HT optimality since the lower and the upper

bound match asymptotically.

5.2.5 Deriving δ (ϵ, θ ). To conclude the proof of Theorem 5.1, it
remains to find the bounds characterizing δ (ϵ, θ ). This could be
obtained by rewriting δ (ϵ, θ ) as follows:

δ (ϵ , θ ) = E[S∗Σ] − E[A∗
Σ] = 1 − θ (ϵ ) − rN

∫ γ (θ ,ϵ )

0
pf (p)dp (40)

=1 − λ + rN

∫ 1

γ (θ ,ϵ )
pf (p)dp − θ = ϵ + rN

∫ 1

γ (θ ,ϵ )
pf (p)dp − θ

(41)

We use the fact that
∫ 1

γ (θ ,ϵ ) p f (p)dp ≥
∫ 1

γ (θ ,ϵ ) γ (θ, ϵ)f (p)dp to

obtain the following lower bound:

δ (ϵ , θ ) ≥ ϵ + rNγ (θ , ϵ )
∫ 1

γ (θ ,ϵ )
f (p)dp − θ

(a)
= ϵ + θ (Nγ (θ , ϵ ) − 1)

(42)

Where (a) follows the substitution in (6). Similarly, an upper bound

can be obtained for δ (ϵ, θ ) by using the inequality
∫ 1

γ (θ ,ϵ ) p f (p)dp ≤∫ 1

γ (θ ,ϵ ) 1f (p)dp.

5.3 Closed-Form Delay-Memory Trade-off for
the approximate model

The result in Theorem 5.1 illustrates the fundamental delay-memory

trade-off in the predictive caching system. Intuitively, larger cache

sizes at the users mean more bandwidth can be used to multicasting,

which in turn implies more items can be served locally which leads

to lower delay. We further illustrate that by proposing a specific

approximate model.

We use the Poisson Shot Noise model that was found to empirically

fit content requests well in [22] and used in the caching literature

[10] to obtain an approximate request model as follows:

1. The aggregate requests from all users for a single item follows a

Poisson(Nrλ) distribution.
2. The parameter λ is random for every item, sampled from a Pareto

distribution, i.e., λ ∼ βα β

(λ+α )β , λ > 0, where α, β are the scale and

shape parameter, respectively. The Pareto distribution approxi-

mates the well known Zipf distribution [14] used to model content

requests in the infinite catalog regime. We use this model for its

practical utility and analytic tractability, as the scaling term δ (ϵ, θ )
in (17) can be obtained exactly in closed-form in the next corollary:
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Corollary 5.8. For the approximate Poisson-Pareto model, the
PC-LQF algorithm multicasts the items with a Poisson Parameter
λ > γ (θ, ϵ), where the threshold can be quantified as follows:

γ (θ , ϵ ) = α
((
rN

θ

) 1
β − 1

))
(43)

then, PC-LQF achieves the an asymptotic ( 1
δ (ϵ ,θ ) , θ

(ϵ ))-Queue length
scaling-Memory trade-off, where δ (ϵ, θ ), is quantified as follows

δ (ϵ , θ ) = ϵ + Nrα

[
1

(β − 1)( rN
θ

)1−
1
β

+
α
(( rN

θ
)
1
β − 1

)
rN
θ

]
− θ (44)

The Corollary is a straightforward application of Theorem 5.1 ap-

plied to the approximate model. Although the theorem was derived

for a different model, an identical proof can be carried out with

the exception that now the Poisson arrivals every slot cannot be

bounded by a number Amax as required by Lemma 5.6, however, it

was shown in [26] that the boundedness condition could be relaxed

to a bound on the Moment Generating Function, which is satisfied

for our Poisson arrivals, since the parameter γ clips the Poisson

parameter of the arrivals at any slot.

We proceed to plot the Queue length Scaling-Memory trade-off of

the approximate model in Fig. 6, with a Pareto(1,3.5) popularity dis-

tribution, and a cell with 100 users, for different values of network

utilization ρ = E[AΣ]
E[SΣ] , to further illustrate the essential dynamic

in our system. We note two important observations: 1. Reduction

in scaling is more significant at higher network utilization con-

firming the utility of our proposal in congested networks. 2. The

relationship between the queue length scaling and the cache size is

concave and decreasing. The decreasing part highlights that intelli-

gent caching indeed causes continuous decrease in scaling as the

cache sizes increases (as long as items being cached have expected

requests higher than 1, and the unicast regime is stable). The con-

cave part highlights diminishing returns of increasing cache sizes: A

relatively small cache that can hold most of the “trending content"

can offer great savings by eliminating most redundancy. Once the

cache sizes increase beyond that, the BS starts multicasting less

popular items that are otherwise, not widely requested by the users

causing the savings to slow down. This further confirms our main

message that small practical cache sizes can be very beneficial in

reducing delay.
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Figure 6: Scaling of (44)

6 SIMULATIONS

We simulate a cellular downlink channel with 100 users, following

our request system model. We are interested in the effect of predic-

tive caching at the “busy hour", i.e., in a congested network. Thus
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Figure 7: Effect of Predictive Caching on Delay
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Figure 8: Normalized Cache Size supporting Predictive

Caching

we define the network utilization, ρ = E[AΣ]
E[SΣ] , and simulate cells

with varying values of ρ. Note that ρ → 1 is equivalent to ϵ → 0.

We simulate three scenarios, the baseline unicast on-demand sys-

tem, a predictive caching system with cache sizes that scale as c1ϵ ,
and a predictive caching system with cache sizes that scale as c2

√
ϵ

, i.e., a scaling of ω(ϵ) (as ϵ decays to 0).

In Fig. 7, we plot the average delay by varying network utilization,

ρ, for two scenarios: Fig. 7 (a) for contents sampled from the pop-

ularity distribution Beta(1,4). and (b) sampled from Beta(1,9). We

plot the corresponding normalized cache sizes (with respect to the

user request rate, r ) in Fig. 8. Fig 8 constitutes the price we pay to

get delay savings in terms of cache size. Following the vanishing

cache sizes assumption, the normalized cache sizes decay to zero

for both the θ (ϵ) and the θ (√ϵ) scaling. The first thing to note in

both figures, is the vast delay reduction for predictive caching over

the baseline as ρ → 1, for example, as ρ = 0.99, predictive caching

offers 10 times delay reduction for θ (ϵ) cache sizes, and 30 times

delay reduction for θ (√ϵ) cache sizes, which indicates the bene-

fits of predictive caching. This comes at the cost of a normalized

cache sizes of 0.1 and 0.5, roughly meaning a cache size equal to

10% − 50% of user request rate per content lifetime (often on the

order of a day/few days[22]), respectively, indicating the power of

a small cache to offer great delay reduction at a congested network.

The second thing to notice is that the figures further solidify our

intuition gained from Corollary 5.2, since the θ (√ϵ) offers favorable
scaling that empirically alters delay asymptotics as the delay build-

up is very slow compared to the other case. Finally, the discrepancy

between the average delay in Fig. 7 (a) and Fig. 7 (b) points out to the

effect of popularity distributions on the average delay. The reason

case (a) has better delay performance is because the Beta(1,4) distri-

bution has a heavier tail than the Beta(1,9) distribution. Heavier
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tails imply more items with high popularity suggesting more ho-

mogeneity in user requests which increases the multicasting gains

in delay saving. Thus, predictive caching exploits that commonality

information which might offer a guiding principle in design that

users with similar tastes should be grouped in physical or virtual

cells to fully realize the benefits of predictive caching.

In Fig. 9, we plot the empirical delay-memory tradeoff by directly

plotting the delay vs. the cache size for various values of ρ. The
average delay value for the on-demand unicast system (equiva-

lently when the cache sizes are zero) appears on the Y-axis. and the

predictive caching average delay appear on the X-axis. The figure

further highlights that a small cache can offer very significant delay

reductions especially in congested networks.

Figure 9: Empirical Delay-Cache size Trade-off

7 CONCLUSION AND FUTUREWORK

We have studied the potential of predictive caching to reduce delay

at wireless cells especially at high traffic. We introduced a novel

duality framework between routing and scheduling problems that

we expect to be of independent interest in simplifying analysis

of scheduling algorithms. We have shown that under a vanishing

cache size assumption, predictive caching that utilizes multicasting

alters the delay-throughput scaling as the network approaches full-

load, which translates to many-fold reduction in average delay in

simulations. We highlighted a fundamental delay memory trade-off

in the system and characterized the correct delay scaling to obtain

linear multicasting gains in the number of users. Future works in-

clude the treatment of personalized predictions where multicasting

and caching can be done taking into account some information of

user tastes. This combines the advances in recommender systems

and online learning with the delivery problem that aims to build

efficient multicasting trees. Furthermore, we aim to develop the

PC-LQF scheduling algorithm to operate under non-ideal radio

conditions, such as fading, where achievable rates can vary for

various receivers. Choosing the correct multicasting rate becomes

a non-trivial problem. We also plan to test that practical algorithm

with real-life data traces using testbeds to accurately quantify the

empirical effect of memory usage on delay.
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