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Abstract—The emergence of bandwidth-intensive latency-
critical traffic in 5G Networks, such as Virtual Reality and Cloud
Gaming, has motivated interest in wireless resource allocation
problems for flows with hard-deadlines. Attempting to solve this
problem brings about the following two key challenges: (i) The
flow arrival and the wireless channel state information are not
known to the Base Station (BS) apriori, thus, the allocation
decisions need to be made in an online manner. (ii) Resource
allocation algorithms that attempt to maximize a reward in
the wireless setting will likely be unfair, causing unacceptable
service for some users. In the first part of this paper, we
model the problem of allocating resources to deadline-sensitive
traffic as an online convex optimization problem, where the BS
acquires a per-request reward that depends on the amount of
traffic transmitted within the required deadline. We address the
question of whether we can efficiently solve that problem with
low complexity. In particular, whether we can design a constant-
competitive scheduling algorithm that is oblivious to requests’
deadlines. To this end, we propose a primal-dual Deadline-
Oblivious (DO) algorithm, and show it is approximately 3.6-
competitive. Furthermore, we show via simulations that our
algorithm tracks the prescient offline solution very closely, sig-
nificantly outperforming several algorithms that were previously
proposed. Our results demonstrate that even though a scheduler
may not know the deadlines of each flow, it can still achieve
good theoretical and empirical performance. In the second part,
we impose a stochastic constraint on the allocation, requiring a
guarantee that each user achieves a certain timely throughput
(amount of traffic delivered within the deadline over a period of
time). We propose a modified version of our algorithm, called
the Long-term Fair Deadline Oblivious (LFDO) algorithm for
that setup. We combine the Lyapunov framework for stochastic
optimization with the Primal-Dual analysis of online algorithms,
to show that LFDO retains the high-performance of DO, while
satisfying the long-term stochastic constraints.

I. INTRODUCTION

Next generation mobile networks are poised to support a set
of diverse applications, many of which are both bandwidth-
intensive and latency-sensitive, having strict requirements on
end-to-end delay. In applications like Virtual Reality, Cloud
Gaming, and Video Streaming, it is critical that end users re-
ceive the bulk of their data within a prespecified hard deadline.
Any extra delay would usually render the transmission useless.
On the other hand, the high bandwidth requirements of those
applications would often make streaming all users’ data within
the deadline impossible, thus, a good scheduler has to balance
those two goals, intelligently making decisions on how to use

the available bandwidth to maximize end users’ satisfaction.
This motivates the design of resource allocation schemes that
jointly account for bandwidth requirements, hard deadlines and
applications’ priorities in terms of what has to be transmitted
to end-users to maintain a seamless experience.
To model the problem of resource allocation and schedul-
ing for bandwidth-intensive latency-critical applications, we
propose approaching the problem as an online scheduling
problem, where requests arrive to the BS carrying a pay-
load, a hard deadline, and a concave reward function that
rewards successful partial transmission within the prespecified
hard deadline. Our motivations is that, in many applications,
completing a request partially within a deadline is acceptable.
For example in video transmission, frame-dropping and error
concealment are used to adapt to lower bandwidths, thus, this
fits our model where 1. transmitting a frame after the deadline
is useless, 2. the portion of the request completed exhibits a
diminishing return. Another example is VR applications and/or
360◦ videos where tiles outside field-of-view can be adaptively
streamed at a lower rate if needed [1]. A third example
is mobile cloud gaming, where the cloud server adaptively
transmit most-likely sequences depending on the bandwidth
availability [2], thus, also an example of a high-bandwidth
hard deadline application with diminishing returns.
Having modeled our problem as an online scheduling problem,
the central question becomes “Can we find a constant-
competitive solution that has low-complexity?”. Specifi-
cally, we are interested in the class of “deadline-oblivious”
algorithms, that make scheduling decisions without taking
individual flows’ deadline requirements into account. Those
algorithms have low complexity, are more amenable to im-
plementation than deadline-aware schedulers, and are robust
against deadline information absence or inaccuracy.
We show that the answer to this question is affirmative. Our so-
lution to the problem follows the online primal-dual approach
presented in [3] for online linear programs and used in [4]
[5] [6] in the context of datacenter scheduling. The problem
of online deadline-sensitive scheduling in wireless networks
presents the following unique challenges: 1. Time-varying
complex non-orthogonal capacity regions due to the nature of
the wireless channel, and a set of power control, coding and
MIMO capabilities, that a Base Station (BS) can use to achieve
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rates within the capacity region. Our problem formulation
treats instantaneous capacity region as a time-varying closed
convex region with no assumptions on the orthogonality of
user rates. 2. Susceptibility of opportunistic scheduling to
unfairness, as any utility-maximizing algorithm would prefer
users with consistently good channels. We tackle long-term
unfairness through stochastic timely-throughput constraints.
Our key contributions can be summarized as follows:
1) We develop a Primal-Dual Deadline Oblivious (DO) algo-
rithm to solve the problem of scheduling deadline sensitive
traffic, and show in Theorem 4.5, that our online solution
provides a 3.6 competitive ratio compared to the offline
prescient solution that has all the information apriori.
2) We show in Theorem 5.4 that the Primal-Dual algorithm
can be modified to satisfy long-term stochastic “Timely
Throughput” constraints. Timely throughput is the amount of
traffic delivered to the end user within the allowed deadline
over a certain time period. We show that this modification
causes minimal sacrifice to performance by utilizing a virtual
queue structure and Lyapunov arguments in a novel way.
3) We show via simulations that our algorithm outperforms
some well-known algorithms proposed in the literature for
deadline-sensitive traffic scheduling. We also show that our
algorithm closely tracks the offline optimal solution. Further-
more, we verify the efficacy of the modified Long-term Fair
Deadline Oblivious (LFDO) algorithm in satisfying timely
throughput constraints.
Online Scheduling of Deadline-constrained traffic is a clas-
sical problem in networking [7]. This problem has received
increased recent attention with the proliferation of deadline-
sensitive applications in datacenters. A preemptive algorithm
that relies on the slackness metric was proposed in [5]. In [6], it
was shown that online primal-dual algorithms are also energy
efficient. Perhaps closest to our setup is the work in [4], where
hard-deadlines and partial utilities are considered for multi-
resource allocation. We compare our algorithm to the one
in [4] in the simulation section and show that our algorithm
has better performance due to reliance on primal-dual updates
rather than only primal updates. The aforementioned works
however do not take into account the fundamental challenges
of the wireless setup that we have discussed.
In the wireless setting, there has been an increasing interest
in deadline-constrained traffic. In particular, the concept of
“timely-throughput” has been proposed and studied exten-
sively [8] [9] [10] for packets with deadlines. However, these
works target packet transmissions and do not consider the
“diminishing returns” properties of bandwidth-intensive traffic
at the flow level.

II. SYSTEM MODEL

The system model is shown in Fig.1. Every time slot, we
model every job/request j arriving at the BS as the tuple
(aj , dj , Yj , fj(.), Uj), representing arrival time, deadline, job
size, concave reward function that rewards the amount of the
job served x with fj(x), and an intended user among an
available N users, that is, Uj ∈ {1, 2, . . . , N}.
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Fig. 1. System Model

At each time slot, t, the BS calculates an instantaneous feasible
rate region R[t], based on the CSI feedback. The feasible rate
region determines the rates that the BS can allocate to different
users at each time slot. We do not make any assumptions on
R[t], except that it is closed, bounded, and convex. We model
the feasible rate regions over time in this way to capture both
the time variability characteristic of wireless networks as well
as the BS capabilities to employ power control, coding, and
MIMO to extend the rate region beyond the simple orthogonal
capacity region (see for example [11]). We remark that this
assumption changes the problem significantly from the typical
datacenter job-resource pairing (e.g. [4]), where the capacity
is assumed to be orthogonal with no time-variation.
Each job j is active between its arrival time, aj , and its
deadline dj , after which the job expire and no reward would
be gained from transmitting it. At each time slot t, each active
job j is allocated a rate xtj . We use the variable Atj as an
indicator of whether a job j is active at time t. We collect
those indicators at time t in a diagonal matrix that we refer
to as At. We denote all the jobs that arrive over the problem
horizon by the set J , and all rates given to all jobs at time t
by xt = (xt1, xt2, . . . , xtJ).
We assume that utility functions fj(.) are continuous, strictly
concave, non-decreasing, and differentiable with a gradient
∂fj(.) and fj(0) = 0 for all jobs j. This captures the
diminishing return properties of the job service. With some
abuse of notation we will refer to the vector of the gradients
of all functions as ∇f( ) = (∂f1( ), ∂f2( ), . . . , ∂fJ( )).

III. PROBLEM FORMULATION

We model the problem as a finite-horizon online convex
optimization problem aiming to maximize the total utility
obtained from the total resources received by each job prior
to expiry. Formally:

max
x1,x2,...,xt

∑
j∈J

fj(
T∑
t=1

Atjxtj) (1a)

subject to
T∑
t=1

xtj ≤ Yj , ∀j (1b)

xt ∈ R[t], ∀t = 1, 2, . . . , T. (1c)

The objective function (1a) is the utility achieved by each
job, due to the sum of resources allocated to that job over
its activity window. The constraint (1b) ensures jobs are not
allocated more than their size. The constraint (1c) ensures that
the rates allocated by the BS are feasible w.r.t the rate region
estimated from the CSI feedback. Technically, this constraint
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should be on the users rates, not on the jobs. However, it
is easy to transform the constraints on users’ sum rates to
constraints on individual jobs, since every job has a single
intended user.
Our performance metric throughout will be the Competitive
Ratio (CR). The Competitive Ratio, γ, guarantees that the
online algorithm always achieves at least, a 1

γ fraction of
the total reward achieved by an optimal offline prescient
solution that knows all jobs’ details before-hand as well
as all the rate regions, independent of the problem size.
Denote the total reward achieved by an online algorithm as
P =

∑
j∈J fj(

∑T
t=1Atjxtj). We call the offline optimal

algorithm OPT, and denote the total reward achieved by OPT
as P ∗ =

∑
j∈J fj(

∑T
t=1Atjx

∗
tj)

Definition 3.1. Competitive Ratio: An online algorithm is
γ-competitive if the following holds:

γ ≤ sup
Sj ,R[1],R[2],...,R[T ]

P ∗

P
(2)

where Sj is the input job sequence over all slots.

Dual Problem
Since our solution is based on simultaneously updating

the primal and dual solutions, we start by deriving the dual
optimization problem:

min
α,β

T∑
t=1

max
xt∈R[t]

< Atα− β,x > +βTY −
J∑
j=1

f∗j (αj)

(3a)
subject to α, β ≥ 0 (3b)

where α = [α1, . . . , αJ ] is the J × 1 Fenchel Dual vector ,
β = [β1, . . . , βJ ] is the J×1 multiplier of the constraint (1b),
and Y = [Y1, . . . , YJ ]. The operator < , > is the inner product
operator. The function f∗j (αj) is the cocave conjugate of the
function fj( ) [12], which can be written as:

f∗j (αj) = inf
x≥0

< αj , x > −fj(x) (4)

A solution (x, α, β) is a primal-dual solution if and only if:

xt = argmax
x∈R[t]

< Atα− β,x >, αj = ∂(fj(

T∑
t=1

Atjxtj)).

To derive a Competitive Ratio bound for our algorithm, we
use the following theorem on primal and dual problems:

Theorem 3.2. (Weak and Strong Duality [12]) Let
(x1, . . . ,xT ) and (α, β) be feasible solutions for the Primal
and the Dual problems respectively, then the following holds:

D =

T∑
t=1

σt(α, β) + βTY −
J∑
j=1

f∗j (αj) ≥
∑
j∈J

fj(

T∑
t=1

Atjxtj) = P

(5)
where σt(α, β) = max

xt∈R[t]
< Atα− β,x >.

For the optimal offline Primal and Dual solutions, assuming
strong duality, the following holds:

D ≥ D∗ = P ∗ ≥ P (6)

This gives us a method to bound the competitive ratio of
any primal-dual online algorithm by showing that D ≤ γP ,
which implies that P ∗ ≤ D ≤ γP . This technique is covered
in depth for online linear programs in [3] (e.g. Theorem 2.3),
for many applications. We use the same idea to analyze our
online algorithm presented in the next section.

IV. DEADLINE OBLIVIOUS (DO) ALGORITHM

A. Algorithm

Before presenting our algorithm, we give some intuition on
how we developed it. It is useful to think of our problem as
an online fractional matching problem with edge weights on a
bipartite graph. One side of the graph are the jobs, and on the
other side are the time slots. Each time slot brings new infor-
mation on the capacity, edge weights, and utility functions. It is
well known that for the simplest online matching problem with
linear rewards, there exists an e− 1-competitive Primal-Dual
algorithm that outperforms the simple Greedy Algorithm that
is 2-competitive [13]. Later, this framework was extended for
concave reward functions for covering/packing problems [14],
and for online matching problems [15]. In fact, our algorithm
builds on the algorithm presented in [15] for online matching
with capacity constraints only and no job size constraints. We
develop a complete resource allocation algorithm for deadline
sensitive traffic with job sizes constraints, as well as tackling
the long-term stochastic constraints.

Algorithm 1: Deadline Oblivious (DO) Algorithm

1 Initialize: At t = 0, set βtj = 0, ∀j
2 for t = 1 to T do
3 BS receives new jobs arriving at time t, and

calculates R[t]
4 Calculate the pair (αt,xt) that solves the following

saddle point problem:

min
α≥0

max
x∈R[t]

− f∗(α)+ < α− βt−1,

t−1∑
s=1

Asxs + Atx >

Update the dual variable for every job βtj as
follows:

βtj =
∂f(
∑t
s=1Asjxsj)

∂f(
∑t−1
s=1Asjxsj)

(
1 +

Atjxtj
Yj

)
βt−1j

+
∂f(
∑t
s=1Asjxsj)Atjxtj

(C − 1)Yj

5 end

The algorithm continuously allocates resources to active
jobs by controlling xt, and updates the per-job dual variables
αt = [αt1, . . . , αtJ ], and βt = [βt1, . . . , βtJ ] every time slot
accordingly. Line 4 of the algorithm jointly allocates the primal
and dual variables by solving a low complexity saddle point
problem. We will later show how to use approximation to
further reduce the complexity of the problem. Line 5 updates
the dual variable β that ensures that no job is allocated more
resources than its size. This discounts the reward obtained
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from any job as it gets closer to completion, hence, this dis-
counting gives priority to jobs that have more work remaining.
Note that the instantaneous primal and dual allocations of all
jobs do not use the knowledge of the activity window after
time t. Since the algorithm is deadline oblivious, decisions
only depend on current activity of a job and do not take into
account the future activity until the deadline.
We define the capacity-to-file-size ratio, Fmax, as the maxi-
mum ratio between the resources any job can receive at any
one time slot and the total job size. We assume, that Fmax > 1,
i.e., no job can be fully transmitted over one time-slot. This
assumption is essential to obtain a constant competitive ratio.
This is equivalent to the “bid-to-budget” ratio assumption
in online matching problems [13]. Also, let C in line 5 of
the algorithm be C = (1 + Fmax)

1
Fmax . Note that as Fmax

approaches zero, C approaches e, which will be useful when
we derive the competitive ratio.

B. Analysis

In the next few Lemmas, we will show that the DO
algorithm has some useful properties that enable us to derive
a relationship between the primal and dual objectives. We first
define a complementary pair

Definition 4.1. x and α are said to be a Complementary Pair
if any one of those properties hold (It can be shown that they
are all equivalent)

f ′(x) = α, f∗
′
(α) = x, f(x) + f∗(α) = xα,

where f∗(α) is the concave conjugate defined in (4).

Lemma 4.2. DO produces a primal-dual solution (x, α, β)
that guarantees the following for all time slots:

1) (αtj ,
∑t
s=1Asjxsj) are a complementary pair for all

time slots t, and for all jobs j ∈ J , i.e., αtj ∈
∂fj(

∑t
s=1Asjxsj)

2) xt ∈ argmax
x∈R[t]

< α− β,
∑t−1
s=1 Asxs + Atx >

The Proof of the Lemma is immediate from the properties
of the concave-conjugate property and the inner maximization
problem in line 4 of the algorithm. The next two Lemmas
ensures that DO produces a feasible primal-dual solution

Lemma 4.3. For any job j, the dual variable βtj grows as a
geometric series that can be bounded from below as follows

βtj ≥
∂f(
∑t
s=0Asjxsj)

C − 1
(C

∑t
s=0 Asjxsj

Yj − 1) (7)

Proof. We prove the Lemma by induction. The base case is
t = 0, where βtj ≥ 0 is trivially satisfied. Suppose the claim
is true for t − 1, then substituting in the update equation in
Algorithm 1, line 5, we obtain the following:

βtj =
∂f(
∑t
s=1Asjxsj)

∂f(
∑t−1
s=1Asjxsj)

(
1 +

Atjxtj
Yj

)
βt−1j

+
∂f(
∑t
s=1Asjxsj)Atjxtj

(C − 1)Yj

(8)

(a)

≥
∂f(
∑t
s=1Asjxsj)

C − 1

(
C

∑t−1
s=0 Asjxsj

Yj
(
1 +

Atjxtj
Yj

)
− 1

)
(9)

(b)

≥
∂f(
∑t
s=1Asjxsj)

C − 1

(
C

∑t
s=0 Asjxsj

Yj − 1

)
, (10)

where (a) is from the induction hypothesis and (b) follows
the inequality log(1+y)

y ≤ log(1+x)
x when y ≥ x, and we have

chosen Fmax ≥ Atjxtj
Yj

,∀j, ∀t.

Lemma 4.4. (Properties of DO) DO produces a primal
solution [xtj ],∀j ∈ J , and a dual solution (αtj , βtj),∀j ∈ J ,
for all time slots t, with the following properties:

1) The dual solution is feasible for all jobs at all time-slots:

αtj ≥ 0, ∀j ∈ J, ∀t = 1, 2, . . . , T (11)
βtj ≥ 0, ∀j ∈ J, ∀t = 1, 2, . . . , T (12)

2) The Primal solution is almost feasible for all jobs at all
time slots. The following conditions are satisfied:

xt ∈ R[t], ∀t = 1, 2, . . . , T (13)
T∑
t=1

xtj ≤ Yj(1 + Fmax), ∀j ∈ J (14)

We say that the solution is “almost feasible” since the job
size constraint can be slightly violated as seen in (14). In
particular, allocations of a job can exceed the job size by Fmax,
which we assume to be small. We can easily obtain a feasible
solution by multiplying all allocations xtj by (1− Fmax).

Proof. (11) is straightforward, since by line 4 in the algorithm,
α ≥ 0. (12) can be shown by noticing that for any job j, βtj
is a non-decreasing geometric series that starts from 0, thus,
βtj ≥ 0, ∀j ∀t. (13) is also guaranteed by the choice of xt
by line 4 in the algorithm. (14) is a consequence of Lemma
4.2 and Lemma 4.3. Given that a job is completely served,
i.e.,

∑t
s=1Atjxtj ≥ Yj , Lemma 4.3 guarantees it’s dual

variable βtj ≥ ∂(f(
∑t
s=1Atjxtj)). Lemma 4.2 tells us that

αtj = ∂f(
∑t
s=1Atjxtj) ≤ βtj . Since DO tries to maximize

the inner product < α − β,
∑t−1
s=1Asxs + Atx >, having

αtj ≤ βtj implies that xtj = 0 is optimal. It follows that
when a job is completely served, no resources are allocated to
that job from thereon. There can only be one iteration where a
job can be served over its size, bounding that excess resources
by FmaxYj concludes the Lemma.

To prove a competitive ratio bound, we will bound the Dual
cost in terms of the Primal reward using the next key theorem,
and then use the weak duality in Theorem 3.2 to obtain our
main result.

Theorem 4.5. (Key Theorem) The dual cost given the Primal-
Dual online solution obtained by DO can be bounded as
follows:

D =

T∑
t=1

σt(A
T
t αT − βT ) + βTT Y −

J∑
j=1

f∗j (αTj) (15)

≤ P + P + P

(
1 +

1

C − 1

)
= P

(
3 +

1

C − 1

)
(16)
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To prove the Theorem, we will give three lemmas. Each of
those lemmas is to bound one term on the RHS of (15).

Lemma 4.6. For any time slot t, DO chooses an allocation
that satisfies the following:

< αt, Atxt >≤ 4P (17)

where 4P =
∑
j4Pj =

∑
j fj(

∑t
s=1Atjxtj) −

fj(
∑t−1
s=1Atjxtj) is the instantaneous utility obtained by DO

at time t.

Proof. Let f(y) =
∑
j fj(yj). By Lemma 4.2, we know that

αt ∈ ∇f(
∑t
s=1Asxs). Substituting in the LHS of (17), and

using the concavity of utility function, we get the following

< ∇f(
t∑

s=1

Asxs),Atxt >≤ f(
t∑

s=1

Asxs)− f(
t−1∑
s=1

Asxs) = 4P

Lemma 4.7. The sequence of vectors [β1, β2, . . . , βt] pro-
duced by DO has the following property:

(βt − βt−1)
TY ≤ 4P

(
1 +

1

C − 1

)
(18)

Proof. For any active job j, we can bound each element in
the LHS inner product as follows:

(a)

≤βt−1jYj

(
∂f(
∑t
s=1Asjxsj)

∂f(
∑t−1
s=1Asjxs)

(
1 +

Atjxtj
Yj

)
− 1

)
+
∂f(
∑t
s=1Asjxsj)Atjxtj

(C − 1)

(19)

(b)

≤ ∂f(

t∑
s=1

Asjxsj)Atjxtj

(
βt−1j

∂f(
∑t−1
s=1Asjxsj)

+
1

C − 1

)
(20)

(c)

≤ 4Pj(1 +
1

C − 1
) (21)

Here (a) is due to the update equation of β. (b) is obtained
by noticing that ∂f(

∑t
s=1Asxs) ≤ ∂f(

∑t−1
s=1Asxs) by

concavity. (c) is because βt−1j ≤ ∂f(
∑t−1
s=1Asxs) if xtj > 0

(since this implies that αt−1j > βt−1j).

The next Lemma bounds the last term in (15) by bounding
the concave conjugate in terms of the original function.

Lemma 4.8. The concave conjugate f∗(α) can be bounded
using the term, µf given by

µf = sup{c|f∗(α) ≥ cf(u), α ∈ ∂f(u), u ∈ K} (22)

for a proper cone K, and −1 ≤ µf ≤ 0.

The proof is straightforward from Lemma 4.2. A complete
proof of this property is given in Lemma 1 in [15].

Proof. (Theorem 4.5): The first two terms in (15) can be
bounded as follows

D′ =
∑T
t=1 σt(A

T
t αT − βT ) + βTT Y (23)

=
∑T
t=1 < αT − βT ,

∑t
s=1 Asxs > +βTT Y (24)

(a)

≤
∑T
t=1 < αT ,

∑t
s=1 Asxs > +βTT Y (25)

(b)

≤
∑T
t=1 < αt,

∑t
s=1 Asxs > +βTT Y (26)

(c)
=

∑T
t=1 < αt,

∑t
s=1 Asxs > +

∑T
t=1(βt − βt−1)

TY (27)
(d)

≤
∑T
t=14P (2 + 1

C−1
) = P (2 + 1

C−1
) (28)

where (a) is because βT ≥ 0, so dropping the term <
−βT,

∑t
s=1Asxs > can only increase the objective. (b) is

because αt ≥ αT , by Lemma 4.2 and the concavity of
the function, thus decreasing gradients. (c) is true due to
telescoping and the fact that β0 = 0. (d) holds by substituting
the bounds from Lemmas 4.6 and 4.7.
Finally by (15), we have D = D′ −

∑J
j=1 f

∗
j (αTj). We can

bound that extra −
∑J
j=1 f

∗
j (αTj) term on the RHS by P

utilizing Lemma 4.8. Adding that bound to the bound on D′

concludes the proof.

Corollary 4.8.1. The online solution found by DO is (3 +
1

C−1 )-competitive.

We note two things about our results
1) To guarantee primal feasibility, the BS can multiply the

resource allocation solution by (1 − Fmax) at each time
slot. This adds an extra factor to the Competitive Ratio
making the algorithm (3+ 1

C−1 )(1−Fmax)-competitive.
2) Practically, we expect Fmax to be small as the job service

times have a slower time scale than the scheduling job
completion time scale. Thus we expect Fmax → 0 making
the algorithm approximately 3 + 1

e−1 -competitive.

C. Lightweight Algorithm
The complexity of the DO Algorithm can be further reduced

by splitting the saddle point problem in line 4 into two separate
steps as follows:

max
x∈R[t]

< αt−1 − βt−1, Atx >, αtj ∈ ∂(fj(
t∑

s=1

Asjxsj))

This approximation was proposed in [15] in the context of
online bipartite matching. This formulation approximates the
saddle point problem with a Linear Programming problem,
reducing complexity. However, the price of this reduction in
complexity is an increase in the constant-competitive ratio
bound that depends on the specific utility function gradients (
[15] analyzes this penalty in the bipartite matching problem).
We will show using numerical simulations that this approxi-
mation retains the good performance of the DO algorithm.

V. STOCHASTIC SETTING WITH TIMELY THROUGHPUT
CONSTRAINTS

Although the job/reward formulation in (3) has been used
extensively in modeling scheduling with hard deadlines, for
example [4] [5] [6] , a formulation that aims to maximize total
rewards of jobs is susceptible to unfairness. For example, the
BS can maximize the sum of rewards by consistently allocating
resources to a nearby user experiencing better channels all
the time. This phenomenon was reported in previous works
[16] and is further validated by simulations. Furthermore, the
results in the previous section hold for adversarial models,
designed for “worst case” inputs. In practice however, both
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the job arrivals processes and the rate regions are stochastic.
We propose a new model to deal with those two issues that
have the following extra assumptions:

Assumption 5.1.
1) We assume a frame structure: At the beginning of a frame
of size D, some jobs arrive to the BS to be transmitted to users.
By the end of the frame after D slots, all jobs expire, and the
system is empty. Note that jobs can still have different dead-
lines as long as they are all upper bounded by D. The frame
structure has been extensively used in modeling deadline-
constrained traffic [8] [17] [18]. This assumption has been
shown to adequately approximate practical scenarios, while
enabling the design of efficient scheduling algorithms with
deterministic bounds on delay.
2) We assume that there are l-job classes with specified
deadlines, reward functions, and sizes. Each of these l-classes
arrive at the beginning of the frame according to an i.i.d
arrival process Ak. We assume that the number of the new jobs
arriving at the beginning of a frame can be deterministically
bounded, i.e., (m(t)) ≤M , where m(t) is a random variable
representing the number of active jobs at time t.
3) We assume that the instantaneous rate region R[t] is
sampled every time slot from a set of finite convex regions
in an i.i.d manner unknown to the BS. The realization of rate
regions over a frame is denoted as Rk.

The new formulation is presented in (29). Our goal now
is to maximize the long-term average expected rewards over
frames k = 1, . . . ,K. We denote the jobs that arrive at
frame k as Jk. In (29b), we introduce a new constraint to
guarantee fairness by ensuring that every user gets an expected
timely-throughput higher than δn. Timely-throughput is the
amount of traffic delivered within the deadline. It has been
used extensively to analyze networks with real-time traffic [8]
[9]. The function U( ) simply maps the job j to its intended
user n.

max
x1,...,xt

lim inf
K→∞

1

K

K∑
k=1

E
{ ∑
j∈Jk

fj(

(k+1)D−1∑
t=kD

Atjxtj)

}
(29a)

subject to lim inf
K→∞

1

K

K∑
k=1

E
{ ∑
j∈Jk∩U(j)=n

(k+1)D−1∑
t=kD

Atjxtj

}
≥ δn

(29b)
T∑
t=1

xtj ≤ Yj , ∀j (29c)

xt ∈ R[t], ∀t = 1, 2, . . . , T. (29d)

We refer to a random realization of job arrivals and rate
regions over a frame as q. The optimization problem (29) can
be solved by a stationary scheduler that maps q = {Ak,Rk}
into the set of feasible actions over the frame:
χ = {x|

∑(k+1)D−1
t=kD xtj ≤ Yj , ∀j ∈ Jk,xt ∈ R[t],∀t =

kD, . . . , (k + 1)D − 1} with probabilities pqχ. Thus, the
optimal solution can be derived by finding the probabilities pqχ
that solve (30). This is practically infeasible as the probabilities

q are typically unknown to the BS. Even if the probabilities
were known, the BS needs to non-causally know the rate
regions for the entire frame. This motivates us to extend our
DO algorithm for the stochastic setting to solve (30) and derive
performance guarantees.

max
pqχ

∑
q

νq

∫
χ∈Xq

pqχ
∑
j

fj(

(K+1)D−1∑
t=KD

Atjxtj)dχ (30a)

subject to
∑
q

νq

∫
χ∈Xq

pqχ
∑

j|U(j)=n

(K+1)D−1∑
t=KD

Atjxtjdχ ≥ δn

(30b)∫
χ∈Xq

pqχdχ = 1 ∀q (30c)∫
χ∈Xq

pqχ ≥ 0 ∀q (30d)

A. Virtual Queue Structure

To deal with the new timely throughput constraints (29b) for
each user n, we define a virtual queue that records constraint
violations. For every frame, the amount of unserved work
under the δn requirement, δn −

∑T
t=1Atjxtj is added to the

queue, i.e., the queue is updated as follows:

Qn[k+1] = (Qn[k]+ δn−
∑

j∈Jk∩U(j)=n

(k+1)D−1∑
t=kD

Atjxtj)
+, (31)

where (x)+ = max(0, x). There are two time-scales at play
here. First, the slower frame-level time scale. At the beginning
of a frame, jobs arrive and by the end of the frame, those
jobs expire. Second, the faster slot level time-scale, where the
channels change and the BS allocates rates x. Each frame
consists of D time slots where all jobs are guaranteed to expire
by the end of the frame by Assumption 5.1.
Virtual queues are used to analyze the time-average constraint
violation for a given scheduling policy. It can be shown that
stability of the virtual queue ensures that the constraint is
satisfied in the long term. We state that well-known result
as a Lemma without proof (The proof is simple and can be
found in [19] [20])

Lemma 5.2. For any user n, the virtual queue length upper
bounds the constraint violation at all times as follows:

Qn[K]

K
−Qn[0]

K
≥ δn−

1

K

K∑
k=1

∑
j∈Jk∩U(j)=n

(k+1)D−1∑
t=kD

Atjxtj (32)

Furthermore the mean rate stability defined as:

lim
K→∞

E(Qn[K])

K
= 0 (33)

implies that the constraint (29b) is satisfied in the long-term.

B. D Look-ahead Algorithm

Before explaining our algorithm, we present and analyze
a non-causal frame-based algorithm that we refer to as the
D look-ahead algorithm. The benefits of this hypothetical
algorithm are two-fold: First, it guides our design of the
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practical LFDO algorithm in the next section, and second, it
will be crucial in analyzing the performance of LFDO.
The D look-ahead algorithm observes the jobs Jk at the
beginning of the frame and non-causally observes all rate
regions over the frame R[k],R[k + 1], . . . ,R[k + D − 1],
and allocates rates x′ of jobs over the frame k by solving the
following optimization problem:

max
xkD,..,x(k+1)D−1

V
∑
j∈Jk

fj(

(k+1)D−1∑
t=kD

Atjxtj)

+

N∑
n=1

Qn[k]

( ∑
j|U(j)=n

(k+1)D−1∑
t=kD

Atjxtj

)
(34a)

subject to
T∑
t=1

xtj ≤ Yj , ∀j ∈ Jk (34b)

xt ∈ R[t], ∀t ∈ [kD, (k + 1)D − 1] (34c)

where V is a free parameter that will be used to manage the
trade-off between the timely-throughput short-term constraint
violation and total reward achieved by the algorithm. The
D look-ahead algorithm is essentially a version of the well-
known drift-plus-penalty algorithm introduced in [19] that has
been used extensively in stochastic constrained optimization
problems, where a queue structure can be used to deal with
long-term constraints.
To simplify the notation, we will refer to the frame k D look-
ahead reward and timely throughput, respectively as follows:

P ′[k] =
∑
j∈Jk

fj(

(k+1)D−1∑
t=kD

Atjx
′
tj) (35)

b′n[k] =

( ∑
j∈Jk|U(j)=n

(k+1)D−1∑
t=kD

Atjx
′
tj

)
(36)

We define the quadratic Lyapunov function L(Q[t]) =
1
2

∑N
n=1Q

2
n[t]. We also define the one step Lyapunov drift

and bound it as follows:

4Θ(Q) = E(L(Q[k + 1])− L(Q[k])|Q[k] = Q)

≤ B +

N∑
n=1

Qn[k](δn − bn[k]) (37)

where B is a bound on the term E
(
(δn − bn[k])2

)
, which

is guaranteed to exist due to the boundedness of the number
of jobs and the job sizes. It can be seen that the D Look-
ahead algorithm in (34) attempts to maximize the reward while
minimizing the drift (and subsequently the queue lengths),
using the parameter V to manage the trade-off. We are now
ready to state the theorem that bounds the performance of the
D look-ahead theorem.

Theorem 5.3. Suppose there exists a solution that can achieve
a timely throughput strictly greater than δn+ε, for some ε > 0,
for all users. Under the D look-ahead solution, the queues
Qn,∀n are mean-rate stable, and the following holds:

lim inf
K→∞

1

K

K∑
k=1

E(P ′[k]) ≥ P ∗ − B

V
(38)

lim sup
K→∞

1

K

K∑
k=1

N∑
n=1

E(Qn[k]) ≤
B + VMfmax(Ymax)

ε
(39)

Before giving the proof, we point out that Theorem 5.3
shows that the D look-ahead algorithm can be made arbitrarily
close to OPT by increasing V , at the cost of increasing
the queue lengths, which implies higher short term violation
of the timely throughput constraint. The main assumption
of the theorem is a mild assumption that a strictly feasible
solution exists, i.e., timely throughput constraints cannot be set
arbitrarily and must be strictly feasible under some solution.
This corresponds to the “Slater conditions” that are essential
to applying the Lyapunov arguments [19].

Proof. Let the reward achieved and the amount of traffic
served by the D look-ahead be denoted by P ′[k] and b′[k] as
in (35) and (36), respectively. Similarly OPT achieves P ∗[k]
and b∗[k]. By the maximization in (34a), we have:
N∑
n=1

Qn[k](δn−b′n[k])−V P ′[k] ≤
N∑
n=1

Qn[k](δn−b∗n[k])−V P ∗[k]

(40)
for any frame instance, thus, the inequality holds for the

conditional expectation given the queue lengths equal to Q.
Noting the definition of the drift in (37), we can bound
E(4Θ′(Q))− V E(P ′[k]|Q) by the following:

≤ E(4Θ∗(Q))− V E(P ∗[k]|Q) (41)
(a)

≤B +

N∑
n=1

Qn[k]E(δn − b∗n[k])− V E(P ∗[k]|Q) (42)

(b)

≤ B − V E(P ∗[k]|Q) (43)

where (a) is by the bound in (37), and (b) is because the op-
timal stationary solution satisfies the constraint in expectation
independent of Q.
Taking the expectation over Q and taking the time average
over all the frames, we can use telescoping sums to arrive at
the key equation

L(Q[k])− L(Q[0])− V

K

K∑
k=1

E(P ′[k]) ≤ B − V P ∗ (44)

Noting that L(Q[k]) is non-negative, initializing L(Q[0]) to
0, and rearranging the sum gives (38).
To prove (39), we can follow the same steps by comparing
the solution produced by the D Look-ahead algorithm to
another solution that can strictly satisfy the constraint (29b),
i.e., E(δn − bn[k]) < −ε,∀n, for some ε > 0. This solution
is guaranteed to exist by the assumption in the Theorem
statement. We denote the reward of that solution as P (ε).
Repeating the same steps up to (42) we get the following
inequality:
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E(4Θ′(Q[k]))− V E(P ′[k])

≤ B − ε
N∑
n=1

E(Qn[k])− V E(P (ε)[k]|Q) (45)

Similar to last part, we can take the time average over frames
and telescope to get

1

K

K∑
k=1

N∑
n=1

E(Qn[k]) ≤
B + V E(P (ε))− E(P ′)) + E(L(Q[0])

ε

Bounding P (ε) by the Mfmax(Ymax), the maximum achiev-
able reward over the frame, and taking the limit gives (39).

C. Long-term Fair Deadline Oblivious (LFDO) Algorithm

We are now ready to present our modified deadline obliv-
ious algorithm that can satisfy long-term timely throughput
constraints.

Algorithm 2: Long-term Fair Deadline Oblivious
(LFDO) Algorithm
Initialize: At k = 0, set Qn[k] = 0, ∀n

1 for k = 1 to K do
Initialize Frame: Receive jobs at the beginning of

the frame
2 for t = kD to (k + 1)D − 1 do
3 Perform the DO algorithm with the modified

job reward function, gj :

gj(x) = V fj(x) +

N∑
n=1

1(U(j) = n)Qn[k]Atjxtj

(46)

4 end
5 Update the queues according to (31)
6 end

As can be seen in Algorithm 2, LFDO is a modified version
of the DO algorithm incorporating long term timely throughput
guarantees. This is done by building on the virtual queue idea
shown in the D look-ahead solution. There are two time scales
at play here:
• Frame time scale: The slower time scale where virtual queues

are updated according to the LFDO solution over the frame
duration.

• Slot time scale: The faster time scale where the DO algorithm
operates. Every frame length acts as the “horizon” for the DO
algorithm. At the beginning of the frame, DO re-initializes
to serve the jobs that belong to that frame.

The reward function in line 3 has been modified to add the
user queue length information to the job reward function. This
follows the drift-plus-reward maximization used to obtain the
D look-ahead solution in (34). The difference is, unlike the
D look-ahead solution, LFDO does not know the future rate
regions. Thus, on time-slot scale, LFDO uses the primal-dual
optimization used for DO with the modified reward.
We are now ready to combine our results of the DO algorithm
performance and the D look-ahead solution performance to

obtain a powerful performance result for the LFDO algorithm
in the next theorem

Theorem 5.4. Under the LFDO Algorithm in the stochastic
setting, all queues are mean rate-stable. Furthermore, the ex-
pected reward and the expected queue length can be bounded
as follows:

lim inf
K→∞

1

K

K∑
k=1

E(P [k]) ≥ P ∗

γ
− B

γV
(47)

lim sup
K→∞

1

K

K∑
k=1

N∑
n=1

E(Qn[k]) ≤
γB + γVMfmax(Ymax)

ε
(48)

where γ is the Competitive Ratio achieved by the DO
algorithm.

This result asserts that the LFDO algorithm maintains its
power when moving from the adversarial to the stochastic
setting. In particular, LFDO satisfies the timely throughput
constraint by (48). This comes at the cost of a larger queue
length compared to the D Look-ahead algorithm. Similarly,
the LFDO algorithm can be made arbitrarily close to achieve
a 1
γ -fraction of the stationary optimal reward, where γ is the

constant competitive ratio achieved by the DO algorithm in
Corollary 4.8.1. This reduction of reward compared to the D
Look-ahead algorithm is due to the non-causality advantage
that the D look-ahead algorithm has over the LDFO algorithm.
However, Theorem 5.4 shows that LFDO guarantees each user
a long-term stochastic timely throughput while achieving a
constant fraction of the long-term optimal reward independent
of the problem size. Proving 5.4 is straight-forward given the
machinery we have already built.

Proof. We prove the theorem by applying the key Theorem
4.5 with reward-plus-drift function, over the frame length.
Since LFDO maximizes the sum of gj( ) functions over every
frame, Theorem 4.5 guarantees that LFDO achieves a modified
reward that is at least a 1

γ -fraction of the reward achieved by
any offline solution. Thus, we can relate the reward-plus-drift
achieved by the LFDO (in the LHS) to the one achieved by
the D look-ahead (in the RHS) as follows:

γ

( N∑
n=1

Qn[k](δn − bn[k])− V P [k]

)

≤
N∑
n=1

Qn[k](δn − b′n[k])− V P ′[k] (49)

The rest of the proof is straight-forward and follows exactly
the steps of the proof of Theorem 5.3

VI. NUMERICAL RESULTS

We assess the performance of our proposed algorithms with
numerical simulations. We first show that Lightweight DO
tracks the offline solution very closely, outperforming several
existing algorithms in the literature. We compare DO to a state
of the art algorithm that was proposed in [4] in the datacenter
context. We call that algorithm “Primal” since it is also a
deadline oblivious algorithm that only relies on the primal
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Fig. 2. Comparison of performance of different algorithms

but not the dual updates to determine the allocation. Despite
being a datacenter algorithm, Primal also attempts to maximize
total partial job rewards, and is therefore comparable to DO
(although the competitive ratio results were derived for a wired
setting only). We also compare the performance against the
Earliest-Due Date (EDD) that was analyzed in [21] for packets
as a benchmark, and a greedy algorithm that was proposed for
linear reward functions in [22].
Setup: We simulate a downlink cell with three users (we chose
a small number of users to enable the offline solver to run with
reasonable memory requirements). Each time slot, for each
user, a new jobs arrive to the BS intended to that user with
probability p. Thus, p represents the traffic intensity of the
system. The job sizes are uniformly distributed between 5 and
25 units. Each job has a random deadline uniformly distributed
between 2 and Dmax time slots. Dmax represents the laxity
of the system. Smaller Dmax means tighter deadlines. Large
Dmax implies more variety in traffic. The instantaneous rate
region is generated by sampling a uniformly random distribu-
tion for each user, then taking the convex hull of those user
samples. The resultant rate region is non-orthogonal. Finally,
each job has a random reward function of v(0.1+x)

(1−ψ)

1−ψ , where
v and ψ are uniformly distributed between 0 and 1.
Performance of DO: In Fig. 2a, we plot the performance of
different algorithms and OPT while varying traffic intensity,
p. It is clear that DO tracks the OPT very closely, confirming
our premise that Deadline Oblivious scheduling is efficient
for real-time traffic. DO consistently performs 8− 15% better
than Primal at a lower complexity, since lightweight DO has
the complexity of a linear program while primal solves a gen-
eral convex program. Greedy and EDD perform significantly
worse. In Fig. 2b, we vary Dmax between 2 and 40 time slots
to simulate different workloads. The results are similar to the
previous figure with DO closely tracking OPT. Interestingly,
there is a slight performance degradation for very small values
of Dmax when deadlines are very tight. This is consistent with
our findings regarding the dependence of competitive ratio
bound on Fmax, the job-size-to-capacity ratio.
Performance of LFDO: In Fig. 3, we simulate the system

for five users. We set up the simulation, such that User 1
consistently gets low feasible rates compared to other users.
In particular, we sample the random rates such that User 1 can
get a maximum timely throughput of 0.05, and other users can
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Fig. 3. Resource allocation per user under DO and LFDO

get up to 0.5 timely throughput. The instantaneous rate region
is the convex hull of random rates. We set a minimum timely
throughput constraint of 0.045, thus pushing the system to the
boundary of the “capacity region” by forcing User 1 to operate
very close to its upper limit. In Fig. 3a, we show the timely
throughput of all users under DO. Since DO tries to maximize
reward with no regard to timely throughput constraints, we see
that User 1 converges to a timely throughput well below the
requirement. In Fig. 3b, we run LFDO for the same system
with V = 1. Despite the improvement over DO, the conver-
gence to the required timely-throughput level is slow since
virtual queues are allowed to backlog before being cleared.
In Fig. 3c, we set V = 0.1 emphasizing the importance of
timely throughput constraints. The result is that User 1 can
now satisfy the constraint with fairly quick convergence at
the expense of slightly decreased reward (within 95% of DO
reward). This outlines the previously stated trade-off between
the reward and the timely throughput guarantees.

VII. CONCLUSION AND FUTURE WORK

We have studied the problem of resource-allocation of low-
latency bandwidth-intensive traffic. We have formulated the
problem as an online convex optimization problem, developed
a low-complexity Primal-Dual DO algorithm and derived its
competitive ratio. We have demonstrated that our algorithm is
efficient and does not rely on deadline information. We have
also proposed the LFDO algorithm, that modifies DO to satisfy
long-term stochastic timely-throughput constraints. We have
shown via simulations that our proposed algorithms tracks the
offline optimal solution very closely and performs better than
existing solutions. In the future work, we aim to understand
the properties of DO algorithm better, for example, we aim to
analyze how many jobs are served to their completion. This
will enable us to expand the algorithm to serve traffic that
must be served to completion as well as traffic that has the
partial utility property. We aim to develop our work to take
the unreliability of wireless channels and inaccurate channel
estimations into account. We also plan to test our algorithm
with a real-time setup through the variety of traffic seen in 5G
networks.
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