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Abstract—Large scale deployment of connected vehicles with
cooperative sensing technologies increases the demand on the
vehicular communication spectrum in 5.9 GHz allocated for the
exchange of safety messages. To support high data rates needed
by such applications, the millimeter-wave (mmWave) automotive
radar spectrum at 76-81 GHz can be utilized for communica-
tion. For this purpose, joint automotive radar-communication
(JARC) system designs have been proposed in the literature
to perform both functions using the same waveform. However,
employing a large band in the mmWave spectrum deteriorates
the performance of both radar and communication functions due
to frequency-selectivity. In this paper, we address the optimal
joint waveform design problem for wideband JARC systems
via Orthogonal Frequency-Division Multiplexing (OFDM). We
show that the problem is a non-convex quadratically constrained
quadratic fractional programming (QCQFP) problem, which is
known to be NP-hard. Existing approaches to solve QCQFP
include Semidefinite Relaxation (SDR) and randomization ap-
proaches, which have high time complexity. Instead, we propose
an approximation method to solve QCQFP more efficiently by
leveraging structured matrices in the quadratic fractional objec-
tive function. Finally, we evaluate the efficacy of the proposed
approach through numerical results.

I. INTRODUCTION

As an integral part of Intelligent Transportation Systems
(ITS), the connected vehicle technology will promote safer and
coordinated transportation through wireless communication
and sensing. To enable vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication with low-latency, Dedi-
cated Short-Range Communication (DSRC) has been designed
for the exchange of safety messages in the 5.9 GHz spectrum
with 75 MHz bandwidth [1]. As an alternative, Cellular-
V2X (C-V2X) has been designed for vehicular communication
based on Long-Term Evolution (LTE) that provides both
cellular and direct communication interfaces for V2I and V2V,
respectively [2].

With the deployment of connected vehicles and the intelli-
gent infrastructure at a larger scale, the 5.9 GHz spectrum will
face a spectrum scarcity problem due to its limited bandwidth.
In addition, emerging cooperative sensing and autonomous
driving technologies require a large amount of raw sensor and
navigation data to be exchanged for improved reliability and
performance [3], [4]. Hence, the allocated spectrum cannot
be used efficiently for larger payloads and non-safety related
data along with high priority basic safety messages. A solution

to alleviate the scarcity problem and attain higher data rates
is to leverage the underutilized millimeter-wave spectrum
(mmWave) with larger allocated bandwidth.

Currently, 76-77 GHz and 77-81 GHz mmWave spectra
are allocated for the automotive long-range radar (LRR) and
short-range/medium-range radar (SRR/MRR) with bandwidths
of 1 and 4 GHz, respectively [5]. Higher bandwidth and
smaller wavelength at mmWave enable better radar sensing
resolution and accuracy in terms of range, velocity, and angle.
The decrease in wavelength also allows smaller size antenna
arrays suitable for automotive systems. As larger bandwidth is
required by both communication and radar systems to achieve
higher data rate and better sensing accuracy, the most direct
solution is the spectral isolation of two systems via regulations.
Moreover, interference mitigation and avoidance schemes have
been studied in the literature to allow co-existence [6], [7].

As an alternative, joint radar and communication systems
have been proposed to eliminate mutual interference by using
the same waveform for both radar sensing and data trans-
mission [8]–[11]. Employing such a joint system promotes
effective utilization of the spectrum while reducing cost and
hardware size. In these works, radar channels are modeled
with simple point targets and independent Gaussian noise-
like clutter. The point target model can be valid for far-
field targets with narrowband radar transmission. However,
wideband radar signal resolves the multiple reflectors on
vehicles that are located close to the transmitter in traffic
[12]. Similar to frequency-selectivity observed in multi-tap
communication channels, radar targets also act as frequency-
selective channels against wideband signals. Correspondingly,
actual clutters are signal-dependent and modeled with non-flat
frequency response as they comprise of unwanted reflections
(e.g., road clutter) [13]. Combined with the reflections from the
signal-dependent clutter, the frequency-selectivity deteriorates
the radar detection and estimation performance [14].

Due to their robustness against frequency-selectivity, Or-
thogonal Frequency-Division Multiplexing (OFDM) wave-
forms are suitable for adaptive joint automotive radar-
communication (JARC) systems for simultaneous data trans-
mission and radar sensing. The subcarrier coefficients of
OFDM pulses can be optimized regarding the frequency-
selectivity of both radar and communication channels. With
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an adaptive approach, the radar performance can be improved
by designing the waveform based on the extended target
response and mitigating the effect of signal dependent clut-
ter. Considering radar and communication requirements, the
optimal OFDM waveform generated adaptively for the dual-
use transmission system can outperform the single carrier and
non-adaptive approaches.

The waveform design problems have been studied in liter-
ature for various performance constraints [15], [16]. In [15],
radar code is designed to improve the detection performance
of radar under similarity and unit modulus constraints. In [16],
a joint OFDM waveform design problem is studied to increase
reflected signal power under interference and autocorrelation
shape constraints. However, designed complex weights impede
the operation of phase-shift modulation schemes. In these
studies, the optimization problems are formulated as non-
convex quadratic programming problems and recast as convex
semidefinite programming (SDP) problems by dropping the
non-convex rank-one constraint. While relaxed SDP problems
are solved by interior-point algorithms in polynomial time, the
time complexity is still high and increases exponentially with
the number of variables. Moreover, the obtained solution is
near-optimal due to the relaxation of the rank-one constraint.

In this work, we formulate our problem as a non-convex
Quadratically Constrained Quadratic Fractional Programming
(QCQFP) problem and propose an approach to solve it with
lower time complexity by exploiting the Toeplitz structures in
the objective function. We also apply the SDP formulation to
our problem to compare the time complexity and achieved
objective values with the proposed method. The remainder
of this paper is organized as follows: In Section II, we
define the system model by formulating the dual-use wideband
OFDM signal along with radar and communication channels.
In Section III, we formulate the optimization problem to
design the OFDM waveform based on given metrics. In
Section IV, we cast the problem as a convex SDP problem
by dropping the non-convex constraint. In Section V and VI,
we propose approximation methods to solve the non-convex
QCQFP problem with lower time complexity. We present
numerical results for the proposed methods in Section VII and
conclude our work in Section VIII.

Notations: Boldface lower-case letters denote column vec-
tors a, boldface upper-case letters denote matrices A, and
plain lower-case letters denote scalars a. ai represents the
ith element of the vector a. R, C, and H define the sets
of real numbers, complex numbers, and Hermitian matrices,
respectively. The superscripts (·)T , (·)∗, (·)†, and (·)� denote
the transpose, the complex conjugate, the transpose conjugate,
and the Hadamard power, respectively. tr(·), arg(·), | · |,
‖ · ‖, and ‖ · ‖F denote the trace operator, the argument of a
complex number, the absolute value, the Euclidean norm, and
the Frobenius norm, respectively. � represents the Hadamard
product operator. The operator diag(A) returns a vector with
diagonal entries of A input and the operator Diag(a) returns
a diagonal square matrix with the elements of a.

II. SYSTEM MODEL

A. Signal Model

The dual-use radar and communication system transmits an
OFDM pulse in each pulse repetition interval (PRI) carrying
communication symbols modulated with phase-shift keying
(PSK). After the transmission of P pulses, the radar receiver
processes the reflected pulses by pulse-Doppler processing
to generate the range-Doppler map of the illuminated en-
vironment. The transmitted baseband OFDM pulse with N
subcarriers denoted as x̃ = [x̃1 . . . x̃N ] ∈ CN×1 in time
domain and it is generated by precoding symbols with the
inverse discrete Fourier transform (IDFT) as

x̃ = W†Nx, (1)

where WN ∈ CN×N is the unitary DFT matrix for the N -
point Fourier Transform and x ∈ CN×1 is the OFDM signal
in frequency domain. Elements in x correspond to complex
symbols in subcarriers and it is expressed as

x = a� s = Diag(s)a, (2)

where a ∈ CN×1 is the subcarrier coefficients, and s ∈ CN×1
is the modulated symbols comprised of Np pilot symbols and
Nd data symbols. The transmitted symbols s is formulated as

s = Ppp + Pdd, (3)

where p = [p1, p2, ..., pNp
]T is pilot symbols, d =

[d1, d2, ..., dNd
]T is data symbols. Pp ∈ {0, 1}N×Np and

Pd ∈ {0, 1}N×Nd are the permutation matrices for the
placement of pilot and data symbols in the frequency domain,
respectively. Every column of P contains exactly single 1, and
the row index of each 1 indicates the index of the correspond-
ing symbol in s. Thus, the OFDM signal in frequency domain
is formulated as

x = Ppxp + Pdxd, (4)

where xp = ap � p and xd = ad � d. So, ap and ad are the
subcarrier coefficients for pilot and data symbols, respectively.
In matrix form, they are ap = PT

p ax and ad = PT
d ax.

B. Target and Clutter Model

For the narrowband signal model, the multiple scatterers
on a target are not resolved in range, so their response
is contained in a single range cell. Thus, the point target
assumption is appropriate to model the response of the targets
for narrowband radar signals. However, transmitting a signal
with a very large bandwidth reduces the size of each range
cell (i.e., improves range resolution). Thus, the response of
the target extends to several range cells. Therefore, the point
target assumption fails to model the response of the target
with multiple scatterers as the wideband radar signal resolves
each scatterer in range with high range resolution. Similar
to multipath propagation in a communication channel, the
extended target acts like a frequency-selective channel and
is represented with a complex finite impulse response (FIR)
vector denoted by g ∈ CL×1, where L is the order of target’s
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Fig. 1. (a) The operation of the joint communication and radar system on a vehicle (Blue) which receives reflections from both the target vehicle (Black)
and clutter while transmitting data. (b) An illustration of discrete radar operation with reflections from an extended target and clutter.

FIR. The exact knowledge of g is not attainable in practice,
because it varies due to changes in the target’s orientation and
alignment. Therefore, the target FIR is modeled as a zero-mean
circularly symmetric complex Gaussian vector with covariance
Σg ∈ HL which is obtained as prior information.

Since the response of the target spans L range cells,
M = N + L − 1 samples are taken in each observation
window to be filtered by the receive filter as investigated
in [17]. In the range cells of interest, where the target is
located, the dominant scatterers are from the target. However,
reflections from unwanted scatterers (e.g., road reflections) and
reverberation are also received in the same range cells along
with the target’s response as shown in [17]. These reflections
are known as clutter and modeled with a random FIR vector
denoted by c ∈ CK×1, where K = M + N − 1 is the order
of clutter FIR. The length of clutter is defined as the sum of
observation window length and the signal length.

The received discrete baseband signal is denoted by ỹ ∈
CM×1 and it is the sum of the reflected signals from the
target ỹg and clutter ỹc plus the additive noise component
ñ. The reflected signal from the target which is denoted ỹg is
formulated as

ỹg = g1


x̃1
x̃2

...
x̃N

0L91

+ g2


0
x̃1

...
x̃N

0L92

+ · · ·+ gL


0L91
x̃1
x̃2

...
x̃N

 ., (5)

where 0L is a vector with L zeros. Similarly, the reflection
from the clutter, which is denoted by ỹc, is formulated as

ỹc = c9N+1

 x̃N
0
...
0

+ c9N+2

 x̃N91
x̃N

...
0

+ . . .

+ c0


x̃1
x̃2

...
x̃N

0L91

+ c1


0
x̃1

...
x̃N

0L92

+ · · ·+ cM91


0
0
...
0
x̃1

 .
(6)

The components of the received signal in (5) and (6) are
the output of linear convolution operation that are received
in the observation window. Thus, the observation window
contains the targets response along with the clutter response
with delayed signals. In matrix form, the received wideband
signal ỹ in the observation window is formulated as

ỹ = Tg x̃ + Tcx̃ + ñ, (7)

where Tg ∈ CM×N is a lower triangular Toeplitz matrix, and
Tc ∈ CM×N is a full Toeplitz matrix, which are defined as

Tg =



g1 0 ··· 0

... g1
. . .

...

gL

...
. . . 0

0 gL
. . . g1

...
. . . . . .

...
0 ··· 0 gL


, Tc =



c0 c91 ··· c9N+1

c1 c0
. . .

...
... c1

. . . c91

cM9N

. . . . . . c0
...

. . . . . . c1
...

. . . . . .
...

cM91 ··· ··· cM9N


. (8)

We assume that ñ ∈ CM×1 is a zero-mean circularly
symmetric complex Gaussian noise with covariance Σñ =
E[ññ†] = σ2

ñIM , where σ2
ñ is the noise variance. The scattering

coefficients of clutter c are modeled as a zero-mean complex
wide-sense stationary (WSS) Gaussian process with known
covariance Σc ∈ HK , which has a Toeplitz structure.

After ỹ is acquired in the observation window, it is pro-
cessed by the radar receiver by filtering [14] or symbol
processing method [10] to detect the target in clutter and noise
and estimate its range and velocity. The performance of a radar
system is determined by the signal-to-clutter-plus-noise ratio
(SCNR) as it affects the detection statistics and the estimation
accuracy [14]. The SCNR is formulated as

Ψ(x̃) =
E
[
‖Tg x̃‖2

]
E
[
‖Tcx̃‖2

]
+ E
[
‖ñ‖2

] (9)

which is the ratio of the reflected signal power from the
target to the reflected power from the clutter plus additive
noise power. As Ψ(x̃) increases, the detection performance
of the radar receiver improves as studied in [13] for the
frequency domain representation. Thus, by designing the dual-
use waveform, the detection and estimation performance can
be improved based on available second-order statistics of the
target and clutter (i.e., Σg and Σc), respectively.

C. Communication Channel Model

The vehicular channel is modeled as a doubly-selective
channel due to high mobility and multi-path propagation. But,
the time-selectivity due to relative velocities can be ignored
considering the maximum Doppler spread is low and the
coherence time Tc is longer than symbol time Ts. Also, the
channel is assumed to be invariant for a symbol duration and
variant for longer periods where the change in the channel can
be estimated via pilot symbols. By omitting the time-varying
property, the FIR of the communication channel is given as
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h = [h1, h2, . . . , hJ ]T , where each channel tap hj is modeled
as a complex Gaussian with zero-mean and variance of σ2

h.
In matrix form, the received OFDM signal z is formulated

as
z = Hx + n (10)

where H = Diag(WNJh) = Diag(H0, H1, ...,HN ) and WNJ

is the N-point DFT matrix with the size of (N × J). To
decode the received symbols correctly and acquire the CSI,
the communication receiver uses pilot symbols to estimate the
channel’s FIR h with a linear minimum mean squared error
(LMMSE) estimator. The estimated channel FIR denoted with
ĥ is sent back to the transmitter. Thus, the channel capacity
with transmitter CSI is expressed as

C(xd) =

Nd∑
i=1

∆f log2

(
1 +
|xd,i|2|Ĥi|2

σ2
n

)
. (11)

To formulate the effective SNR and optimal power alloca-
tion between data and pilot subcarriers, we first derive the
mean squared error (MSE) of the channel estimator. The
received pilot symbols is expressed as

zp = Hp(ap � p) + np = Hpxp + np (12)

where Hp = PT
p HPp. This equation can be simplified as

zp = XpPT
p WNJh + n (13)

where Xp = Diag(xp) and zp is the input of the channel
estimator. According to [18], the LMMSE estimator of the
channel with pilot input is

ĥ =
1

σ2
n

(
Σ−1h +

1

σ2
n

W†pJX†pXpWpJ

)−1
W†pJX†pzp (14)

where Σh = E[hh†], WpJ = PT
p WNJ with size of (Np × J)

and estimation error is Θh = h− ĥ. The MSE of the LMMSE
estimator is given in [18] as

ξ = tr
(
E[ΘhΘ

†
h]
)

= tr

((
Σ−1h +

1

σ2
n

W†pJX†pXpWpJ

)−1)
.

(15)
The MSE is minimized, if E[ΘhΘ

†
h] in (15) is diagonal as

proven in [19]. The matrix is diagonal if we allocate equal
power to pilot symbols and place them equally spaced in
frequency. Then, the MSE due to estimation error becomes

ξ =
Jσ2

hσ
2
n

σ2
n + Ppσ2

h

, (16)

where Pp = a†pap is the total power allocated to pilot sym-
bols. Imperfect channel estimation at the receiver reduces the
effective communication SNR. Based on [19, (25)], effective
SNR is expressed as

SNReff =
PdJσ

2
h − Pdξ

Pdξ + σ2
nNd

(17)

where Pd = a†dad is the total power allocated to data symbols
in terms of ξ. After replacing (16) in (17) and taking the

derivative, optimal power allocation parameter γ = Pd/Pt is
derived as

γopt =
1

1 +

√
1− (Nd−J)σ2

hPt

NdPtσ2
h+Ndσ2

n

(18)

where Pt is the total signal power equal to Pd + Pp. With
CSI, the transmitter adjusts the total power allocated to data
and pilot subcarriers according to γopt = Pd/Pt to maximize
effective SNR. Since equally powered pilot symbols achieve
the minimum MSE, the total pilot power Pp = (1 − γopt)Pt
is shared equally between pilot subcarriers.

III. PROBLEM FORMULATION

In this section, we focus on designing an optimal dual-use
waveform that maximizes the received radar SCNR. Thus,
we aim to maximize (9) in terms of x̃ while preserving
the PSK modulation and meeting the requirements of the
communication system. For communication, we want to min-
imize the MSE in channel estimation and maximize effective
SNR with CSI at the transmitter. To maximize the effective
SNR (17), the JARC system allocates power according to
the optimal power allocation γopt derived in (18). Moreover,
equally powered and spaced pilot symbols achieve minimum
MSE for a given total power as explained in Section II-C.
Based on this observation, we choose our permutation matrix
Pp to place pilots periodically in frequency and formulate a
constraint in our design problem as(

PT
p x
)† �PT

p x = x†p � xp = (1− γopt)Pt/Np (19)

to force equal power allocation. In addition, we allocate the
remaining power to data symbols by(

PT
d x
)†PT

d x = x†dxd = γoptPt. (20)

Regarding the performance metrics, we present the opti-
mization problem for joint OFDM waveform design that maxi-
mizes the radar performance with communication performance
constraints for channel estimation error and capacity. The
optimization problem is formulated as

max
x̃∈CN×1

E
[
x̃†T†gTg x̃

]
E
[
x̃†T†cTcx̃

]
+ E
[
ñ†ñ
] ,

s.t. C1 : C(xd) ≥ rmin ,

C2 : x†dxd = γoptPt,

C3 : x∗p � xp = (1− γopt)Pt/Np

C4 : x∗ � x � d,

(P1)

where rmin in C1 is the minimum channel capacity require-
ment for (11), C2 is the power allocation for data symbols,
and C3 ensures the equal power allocation for pilot symbols
for accurate channel estimation. Also, d ∈ RN×1≥0 is the power
constraint on each frequency band to comply with maximum
transmit power limitations.

Notice that the optimization variable x̃ contains PSK mod-
ulated complex symbols s for communication as shown in
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(2). Since each symbol in s has unit-energy with phase
modulation, we design complex coefficients in a by restricting
their phase according to the phase of symbols in s. Therefore,
we introduce phase constraints to allow the communication
receiver to demodulate received symbols correctly without the
knowledge of a. Hence, we reformulate (P1) as

max
a∈CN×1

a†Qgsa
a†Qcsa + σ2

nM
,

s.t. C1 : C(ad) ≥ rmin ,

C2 : a†a = Pt,

C3 : a∗p � ap = Pp/Np,

C4 : a∗ � a � d,
C5 : arg(an) ∈ [−θ/2, θ/2], n = 1, . . . , N,

(P2)

where θ is the maximum allowed phase range. The matrices in
the objective function are defined as Qgs = WNE[T†gTg]W†N�
E[ss†]∗ and Qcs = WNE[T†cTc]W

†
N � E[ss†]∗.

For this problem, we consider two cases: the coefficients
of a are designed (i) with zero-phase constraints (i.e., θ = 0)
which is the domain of non-negative real numbers RN×1≥0 and
(ii) with non-zero phase constraints (i.e., θ ∈ [0, 2π)). (P2) is a
Quadratically Constrained Quadratic Fractional Programming
(QCQFP) problem with a sum of logarithms constraint in
C1 and phase constraint in C5. It is a non-convex problem
due to the maximization of the ratio of two convex quadratic
functions. Thus, obtaining a globally optimal solution is dif-
ficult to achieve efficiently. Thus, we propose relaxation and
approximation methods to recast (P2) as a convex problem.
Then, we resort to interior-point algorithms to obtain near-
optimal solutions in polynomial time as evaluated in [20] for
convex second-order cone programming (SOCP) and semidef-
inite programming (SDP) problems.

IV. SEMIDEFINITE RELAXATION METHOD FOR θ = 0

In this section, we formulate and solve (P2) as an SDP
problem based on the semidefinite relaxation (SDR) method.
The SDR method is studied for different NP-hard and non-
convex problems in literature [21] to obtain near optimal
solutions efficiently. It is also evaluated for Boolean quadratic
programming (BQP) and non-convex quadratically constrained
quadratic programming (QCQP) problems in [22].

The SDP formulation relies on the fact that quadratic
functions of a are linear in the matrix A = aa† and can be
expressed with trace operations,i.e., a†Qa = tr

(
QA
)
. To cast

(P2) as an SDP problem, we change the optimization variable
to A = aa† as

max
A∈RN×N

tr
(
QgsA

)
tr
(
QcsA

)
+ σ2

nM
,

s.t. C1 : C
(
α
�1/2
d

)
≥ rmin ,

C2 : tr(A) = Pt,

C3 : PT
p diag(A) = Pp/Np,

C4 : diag(A) � d,
C5 : A � 0, C6 : rank(A) = 1

(P3)

where αd = PT
d diag(A). The rank-one constraint in C6 is

equivalent to A = aa†, which is a non-convex constraint. The
SDR method is employed by dropping the rank-one constraint
to obtain a relaxed convex SDP problem.

However, the objective function of (P3) is still a fractional
function (i.e., quasilinear) and the sum of logarithms constraint
C1 is not an SDP constraint. Thus, we first reformulate C1 as

Cgm(αd) =

(
Nd∏
i=1

[
1 + αd,iλh,i

]) 1
Nd

≥ 2cmin/Nd (21)

where cmin = rmin/∆f and λh,i = |Ĥi|2/σ2
n. In fact, Cgm in

(21) is the geometric mean formulation of the function in (11).
Since (21) is a product of nonnegative affine functions, C1 of
(P3) can be recast as a second-order cone constraint similar
to formulation in [23, Section 2.3]. Moreover, a second-order
cone constraint can be expressed as a linear matrix inequality
(LMI) and can be converted into an SDP constraint using the
Schur complement lemma [23].

Next, we want to formulate the objective function of (P3)
as a convex function while preserving the convexity of con-
straints. The Charnes-Cooper transformation is proposed in
[24] to eliminate quasilinear objective function by formulating
the linear fractional programming (LFP) problems as linear
programming (LP) problems. Inspired by the Charnes-Cooper
transformation, we change variable B = µA where µ ∈ R≥0
is an auxiliary variable that satisfies tr

(
QcsA

)
+σ2

nM = 1/µ.
Hence, we have a relaxed convex SDP problem as

max
B∈RN×N

µ∈R

tr
(
QgsB

)
,

s.t. C1 : Cgm,µ

(
βd, µ

)
≥ µ2cmin/Nd

C2 : tr(B) = µPt,

C3 : PT
p diag(B) = µ(Pp/Np),

C4 : diag(B) � µd,
C5 : B � 0,

C6 : tr
(
QcsB

)
+ µσ2

nM = 1, C7 : µ ≥ 0

(P4)

where βd = PT
d diag(B). With the change of variable, C1 of

(P4) is redefined as

Cgm,µ(βd, µ) =

(
Nd∏
i=1

[
µ+ βd,iλh,i

]) 1
Nd

≥ µ2cmin/Nd (22)

which is the equivalent of C1 of (P3) with auxiliary µ.
(P4) is the relaxed convex SDP formulation of the original

problem in (P2) for θ = 0. The convex SDP problems can
be solved in polynomial-time using interior-point algorithms
[22]. As we obtain the optimal solution (B?, µ?) for (P4),
A? = B?/µ? is the solution for (P3) neglecting the rank-one
constraint. Since the optimization variable a is in the non-
negative domain RN×1≥0 for this problem, we can extract the
optimal vector by a? = diag(A?)�1/2. However, we drop the
rank-one constraint C6 of (P3) for the relaxation. Hence, if
obtained A? is not rank-one, then it is a suboptimal solution
to the original problem. Otherwise, it is an optimal solution.
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V. CIRCULANT APPROXIMATION (CA) METHOD FOR θ = 0

Although the interior-point algorithms solve the convex SDP
problem (P4) in polynomial time, the time complexity is still
high due to the exponential increase in the dimension of SDP
variables and constraints. Moreover, the SDR approach does
not guarantee to find a low-rank result as it has been proven
in [22] that the interior-point algorithms will return a higher
rank solution. Thus, we need more time-efficient approaches.

In this section, we show that quadratic fractional function
with Toeplitz matrices can be formulated as linear fractional
function. Hence, we can formulate (P2) with a linear objective
function and constraints and a geometric mean constraint
(22) by using the Charnes-Cooper transformation. With this
approach, our goal is to reduce the number of variables
by exploiting the Toeplitz structure of T g = E[T†gTg] and
T c = E[T†cTc] which are contained in Qgs and Qcs of (P2).
For this formulation, we also assume that E[ss†] = IN by
treating s as random with unit-energy symbols.

We first show that T g and T c are structured as Toeplitz
matrices.

Lemma 1. T g = E[T†gTg] is structured as a Toeplitz matrix
for a given lower Toeplitz matrix Tg ∈ CM×N .

Proof. A complex square Toeplitz matrix T ∈ CN×N can
be defined by a vector τ ∈ C(2N−1)×1 whose entries τi
correspond to ith diagonal elements. Since Tg is a lower
triangular Toeplitz matrix, T†gTg is a Toeplitz matrix defined
by τ g = gzp ∗ g∗zp, where gzp is the zero-padded g of length
N given in (8). Thus, its expectation T g is also a Toeplitz
matrix defined by τ ′g , whose entries are

τ ′g,i = tr
(
ΛiΣg

)
, i = −L+ 1, . . . , L− 1 (23)

and zeros elsewhere, where Λi is a Toeplitz matrix with ones
in ith diagonal and zero elsewhere.

Unlike T†gTg , one can observe that T†cTc is not a Toeplitz
matrix but its expectation is structured as Toeplitz.

Lemma 2. T c = E[T†cTc] is a Toeplitz matrix for a given
Toeplitz matrix Tc ∈ CM×N whose coefficients are modeled
as a zero-mean complex WSS process.

Proof. Its entries em,n are equal to c†mcn, where cn is the nth

column vector of Tc as in (8). Since Σc is structured as a
Toeplitz matrix, the expectation of each element E[em,n] in ith

diagonal (i.e., n−m = i) are equal and calculated as

τc,i = Mσc,i, i = −N + 1, . . . , N − 1 (24)

where σc,i is the ith diagonal element of Σc.

While Toeplitz matrices are extensively used in signal
processing and information theory, its special instance called
the circulant matrices provides a more structured form that
can be diagonalized by the DFT matrix [25]. Furthermore,
it has been shown in [26] that a Toeplitz matrix T can be
approximated into circulant form C in the sense of minimizing
‖T −C‖F . It is proved that these matrices are asymptotically

equivalent in terms of eigenvalues. Hence, we follow the
circulant approximation method for T g and T c in which row
entries are defined by

νi =
(N − k)τi + iτ−(n−i)

N
, i = 0, . . . , N − 1. (25)

for circulant approximations as Cg and Cc, respectively. Since
circulant matrices are diagonalizable with the DFT matrix, the
objective function in (P2) is formulated as

a†WNCgW †Na
a†WNCcW †Na + σ2

nM
=

a†Λga
a†Λca + σ2

nM

=
λTg α

λTc α + σ2
nM

,

(26)

where λ = diag(Λ) which are real diagonal matrices and
α = a�2. Now, we reformulate (P2) as

max
α∈RN×1

≥0

λTg α

λTc α + σ2
nM

,

s.t. C1 : C
(
α
�1/2
d

)
≥ rmin ,

C2 :

N∑
i=1

αi = Pt,

C3 : αp = Pp/Np,

C4 : α � d,

(P5)

which is a quasiconvex problem with a quasilinear objective
function, linear constraints C2−4 and a convex nonlinear ca-
pacity constraint C1. Similar to the SDR approach, we resort to
the Charnes-Cooper transformation to eliminate the quasilinear
objective function. Thus, we change variable β = µα to cast
the problem as

max
β∈RN×1

≥0

µ∈R

λTg β,

s.t. C1 : Cgm,µ
(
βd, µ

)
≥ µ2cmin/Nd ,

C2 :

N∑
i=1

βi = µPt,

C3 : βp = µPp/Np,

C4 : β � µd,
C5 : λTc β + µσ2

nM = 1, C6 : µ ≥ 0

(P6)

where cmin = rmin/∆f and µ is an auxiliary variable similar
to (P4) that satisfies λTc α + σ2

nM = 1/µ.
The problem in (P6) is a convex SDP problem with a linear

objective function, linear constraints C2−6, and a geometric
mean constraint C1, which can be formulated as a SOCP/SDP
constraint. Compared to (P4), the dimension of variables and
constraints are reduced and do not increase exponentially due
to the linear formulation of the objective function with the
circulant approximation. To find the optimal solution (β?, µ?)
for (P6), we also use the interior-point algorithm. The optimal
solution α? of (P5) is computed by α? = β?/µ?. Since a
is a non-negative real vector, we can compute the optimal
coefficients as ai =

√
αi, ∀i ∈ {1, . . . , N}.
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VI. WAVEFORM DESIGN WITH PHASE CONSTRAINTS

With the SDR and CA methods, we solve the problem that
is originally defined in the complex domain without the phase
constraint C5 (i.e., θ = 0). Thus, we design the optimal coeffi-
cients in a as power allocation coefficients without disturbing
the phase modulation of complex communication symbols in
s. However, we can extend the feasible region of the problem
by designing the coefficients of a in complex domain and
increase the maximum achievable SCNR. Nevertheless, we
need to consider the phase shift due to data modulation.

In this section, we solve the original problem in (P1) with
the phase constraint. Without the phase constraint, it is been
shown that complex quadratic problem is NP-hard [27]. In
radar literature, similar phase constraints are introduced as
’similarity constraint’ to design radar codes that are similar
to a prefixed sequence. In [15], a method based on the SDR
and Gaussian randomization is proposed to design constant
modulus radar codes with a similarity constraint. The Gaussian
randomization procedure [22] is employed to generate random
codes by using the SDR solution as a covariance matrix. How-
ever, an excessive number of random samples are required to
acquire a near-optimal solution, because randomly generated
codes requires scaling for feasibility as pointed out in [28].

In this section, we propose a two-stage approach for the
original problem under phase constraint in (P2) by exploiting
the solution acquired with the CA method. As shown in (P4),
the quadratic functions and constraints can be linearized with
the SDP formulation and the Charnes-Cooper transformation.
However, the linear phase constraint C5 in (P2), which is a
QCQFP, complicates the linear formulation with the SDR.

In Section V, we show that power coefficients α can be
found efficiently in the real domain. In the first stage, we
assume that θ = 0 and find optimal α? ∈ RN×1≥0 by solving
the problem in the real domain with the CA method. With
α?, we have a feasible power allocation for each subcarrier
that satisfies constraints C1−4 of (P2). Hence, we simplify the
original problem by changing the domain as

max
u∈CN×1

u†Qgau
u†Qcau + σ2

nM
,

s.t. C1 : |un| = 1,

C2 : arg(un) ∈ [φn − θ/2, φn + θ/2],

(P7)

where n = 1, . . . , N and φn is the phase of communication
symbol in the nth subcarrier. The matrices in the objective
function are defined as Qga = WNE[T†gTg]W†N � Diag(α?)

and Qca = WNE[T†cTc]W
†
N � Diag(α?).

Notice that the domain of coefficients in u is restricted to
the unit circle, where the feasible region is defined according
to the phase of each communication symbol. In other words,
we choose the best possible communication symbols in the
feasible region to maximize the SCNR of the radar. (P7) is
a non-convex problem due to the unit modulus constraint C1
and the maximization of convex quadratic fractional function.

To formulate (P7) as an SDP, we first express C2 equivalently
as

C2 : Re(u� s∗) � cos(θ/2), (27)

in the vector form. We introduce three variables Υ = µuu†,
υ = µu, and µ. Thus, we formulate (P7) equivalently as

max
Υ∈CN×N

υ∈CN×1

µ∈R

tr
(
QgaΥ

)
,

s.t. C1 : diag
(
Υ
)

= µ,

C2 : Re(υ � s∗) � µcos(θ/2),

C3 : tr
(
QcaΥ

)
+ µσ2

nM = 1,

C4 : Γ :=
[

Υ υ
υ† µ

]
= 0,

(P8)

where C4 is a non-convex LMI constraint that is the equivalent
of Υ− υυ†/µ = 0 using the Schur complement.

The SDR is applied by replacing the non-convex equality
constraint C4 with its convex relaxation Γ � 0. Hence,
we have a convex SDP problem which is solved by the
interior-point method to obtain near-optimal υ?. Then, the
optimal communication symbol u?n for (P7) is acquired by
u?n = υ?n/(µ|υ?n|) in which the coefficients are normalized for
feasibility. Therefore, the optimal coefficients for the original
problem (P2) are defined by a?n =

√
α?nu

?
n/sn for given

communication symbols sn.

VII. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
methods to design complex coefficients of the joint OFDM
waveform as expressed in (P2) in terms of time complexity and
obtained SCNR values. For the time complexity simulations,
the number of subcarriers N is the main parameter that
affects the performance of proposed approaches. Since the
original problem is non-convex, the proposed methods rely on
relaxation and approximation approaches to find near-optimal
solutions. Thus, we also compare the objective values obtained
by the proposed methods with the baseline performance that
is achieved with equal power allocation.

The dual-use system operates in 77 GHz mmWave auto-
motive radar spectrum with the bandwidth of 1 GHz which
achieves the range resolution of ∆R = 0.15 m. The number
of pilot subcarriers is Np = N/8 and total transmit power is
determined by Pt = 10 log10(N) dB. With given configuration
and N = 256 subcarriers, we can achieve data rates up to
1 Gbps with unencoded OFDM signal that uses quadrature
phase-shift keying (QPSK) modulation and guard interval of
1/4. Moreover, the communication channel is modeled with
J = 7 taps whose coefficients are generated as i.i.d Rayleigh
fading with variance σ2

h = 1 and the total power gain is
normalized to 16 dB. We assume that the radar target is a
vehicle modeled as an extended target with L = 7 scatterers
resolved in range. The target covariance Σg is randomly
generated with the total reflecting power of tr(Σg) = 25 dB.
The variance of the additive thermal noise is σ2

ñ = 1.
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Based on given parameters, the optimal power allocation
parameter γopt is calculated as in (20) for the transmitter. The
minimum capacity requirement rmin is determined by the ca-
pacity achieved by the equal power allocated waveform which
is the baseline strategy for unknown target and clutter. Thus,
the SCNR optimal waveform should achieve the capacity of
equal power allocation.

The problems in this work are formulated as convex SDP
problems which can be solved efficiently with interior-point
algorithms. Thus, we use the convex optimization toolbox
CVX [29] in MATLAB that implements an interior-point
algorithm called SDPT3 [30] for SDP problems. We run
simulations on a PC that is equipped with Intel Core i7-
6700HQ@2.60 GHz processor and 16 GB RAM.

A. Achieved SCNR Values

We first evaluate the performance of proposed approach in
terms of achieved objective values which is SCNR. While the
baseline value is the SCNR for the equal power allocated
waveform (θ = 0), the upper bound is the optimal solution
of (P2) without the phase constraint, which is the equivalent
to θ = 2π. Without the phase constraint, (P2) is solved for
A ∈ CN in the complex domain using the SDR approach given
in Section IV. For the simulations, the total reflected power
from the clutter is chosen as the control parameter. The clutter
covariance Σc is generated randomly as a positive definite
Toeplitz matrix due to its WSS property. We use different
reflecting powers for clutter as tr(Σc) ∈ {5, 8, 11, 14, 17} dB
while the target’s response and total transmit power are fixed.

In Fig. 2, the achieved SCNR values are shown for the
SDR, CA with θ = 0 and, phase constrained design (PCD)
with θ = π/6. As shown in the figure, the waveform design
approaches can improve the SCNR compared to equal power
allocation. As the radar estimation accuracy is scaling with
1/
√

SCNR [14], the optimal waveform can improve the ac-
curacy by approximately 20% over the baseline performance.
The improvement also depends on the response of the target
and clutter. If the target’s response has deep fades over certain
frequency bands, then the improvement with the adaptive
waveform would be greater compared to a frequency-flat
response. Fig. 4 is the zoomed version of Fig. 2 with the
clutter power of 8 dB. We also add additional results for the

Fig. 2. Obtained SCNR values with proposed methods

Fig. 3. Achieved bit error rates for different phase constraints.

PCD approach with different phase constraint values θ. Notice
that the SDR approach performs worse than CA for θ = 0. The
reason is that the SDR approach gives suboptimal results due
to the removal of the rank-one constraint. As explained in
[22], the interior-point algorithm returns higher rank solutions
which are suboptimal.

Furthermore, relaxing the phase constraint with non-zero
θ values can increase the achieved SCNR. However, the
improvement is limited for lower θ values and increasing
θ degrades the communication performance due to reduced
distance between constellations. The degradation is observed
for bit error rate (BER) performances. Fig. 3 shows the
achieved BER values for waveforms designed with different
phase constraints. Since QPSK is used, the increase in BER is
low for θ < π/2 compared to θ = 0 but increases as θ ≥ π/2

B. Time Complexity

For the time complexity evaluations, the clutter covariance is
Σc is randomly generated as a Toeplitz matrix due to its WSS
property with the total reflecting power of tr(Σc) = 15 dB.
The total running times are measured to solve (P2) with the
SDR, CA for θ = 0 and with the PCD approach for θ = π/6.
For the PCD approach the total time is the sum of time
required for the CA approach and the time measured to solve
(P7). The measured time complexities are shown in Fig. 5 for
different number of subcarriers N ∈ {32, 64, 128, 256}. As
shown, the complexity increases exponentially due to matrix

CA
SDR
PCD
PCD
PCD
PCD

Fig. 4. Zoomed version of Fig. 2 with additional phase constraints
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Fig. 5. Time complexity results for proposed methods

variables used in SDR and PCD. Fig. 6 shows the time
complexity improvement of the CA approach over the SDR
approach. We can see that the CA approach solves the problem
around 20× and 100× faster for 256 and 512 subcarriers,
respectively. In [31], it is shown that field-programmable gate
arrays (FPGAs) can solve interior point algorithms 6.5× faster
than CPUs. Combined with the hardware implementation, the
lower time complexity and affine formulation make the CA
approach suitable for designing joint waveform adaptively on
the orders of milliseconds.

VIII. CONCLUSION

In this work, we study an adaptive OFDM waveform
design problem for joint automotive radar and communication
systems with given statistics about the extended target and
signal-dependent clutter. First, we investigate the power and
subcarriers allocation between data and pilot symbols in the
OFDM waveform to minimize the channel estimation error and
formulate the effective channel capacity. Then, we present the
design problem to maximize SCNR while maintaining baseline
effective communication capacity compared to equal power
allocated waveform. We show that the problem is a non-convex
QCQFP and propose relaxation and approximation approaches
for the problem. The numerical results show that the proposed
CA approach solves the problem with good optimal value and
low complexity compared to the well-known SDR approach.
Our future work is to integrate peak-to-average power ratio
(PAPR) constraint into our problem and extend this work with
iterative linear approximation methods.

Fig. 6. Time complexity improvement over SDR with CA
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[8] P. Kumari, J. Choi, N. González-Prelcic, and R. W. Heath, “Ieee
802.11ad-based radar: An approach to joint vehicular communication-
radar system,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 4, pp. 3012–3027, April 2018.

[9] C. D. Ozkaptan, E. Ekici, O. Altintas, and C. Wang, “Ofdm pilot-based
radar for joint vehicular communication and radar systems,” in 2018
IEEE Vehicular Networking Conference (VNC), Dec 2018, pp. 1–8.

[10] C. Sturm and W. Wiesbeck, “Waveform design and signal processing
aspects for fusion of wireless communications and radar sensing,”
Proceedings of the IEEE, vol. 99, no. 7, pp. 1236–1259, July 2011.

[11] Y. Han, E. Ekici, H. Kremo, and O. Altintas, “Optimal spectrum
utilization in joint automotive radar and communication networks,” in
2016 14th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks (WiOpt), May 2016, pp. 1–8.

[12] F. Folster, H. Rohling, and U. Lubbert, “An automotive radar network
based on 77 ghz fmcw sensors,” in IEEE International Radar Confer-
ence, 2005., May 2005, pp. 871–876.

[13] S. Kay, “Optimal signal design for detection of gaussian point targets
in stationary gaussian clutter/reverberation,” IEEE Journal of Selected
Topics in Signal Processing, vol. 1, no. 1, pp. 31–41, June 2007.

[14] M. Richards, W. Holm, and J. Scheer, Principles of Modern Radar:
Basic Principles, ser. Electromagnetics and Radar. Institution of
Engineering and Technology, 2010.

[15] A. De Maio, S. De Nicola, Y. Huang, Z. Luo, and S. Zhang, “Design
of phase codes for radar performance optimization with a similarity
constraint,” IEEE Transactions on Signal Processing, vol. 57, no. 2, pp.
610–621, Feb 2009.

[16] T. Guo and R. Qiu, “Ofdm waveform design compromising spectral
nulling, side-lobe suppression and range resolution,” in 2014 IEEE
Radar Conference, May 2014, pp. 1424–1429.

[17] P. Stoica, J. Li, and M. Xue, “Transmit codes and receive filters for
radar,” IEEE Signal Processing Magazine, vol. 25, no. 6, pp. 94–109,
November 2008.

[18] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[19] S. Ohno and G. B. Giannakis, “Capacity maximizing mmse-optimal
pilots for wireless ofdm over frequency-selective block rayleigh-fading
channels,” IEEE Transactions on Information Theory, vol. 50, no. 9, pp.
2138–2145, Sept 2004.

[20] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in
Convex Programming. Society for Industrial and Applied Mathematics,
1994.

[21] S. Boyd and L. Vandenberghe, “Semidefinite programming relaxations
of non-convex problems in control and combinatorial optimization,”
1997.

1417
Authorized licensed use limited to: The Ohio State University. Downloaded on April 05,2021 at 14:45:03 UTC from IEEE Xplore.  Restrictions apply. 



[22] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
of quadratic optimization problems,” IEEE Signal Processing Magazine,
vol. 27, no. 3, pp. 20–34, May 2010.

[23] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Math-
ematical Programming, vol. 95, no. 1, pp. 3–51, Jan 2003.

[24] A. Charnes and W. W. Cooper, “Programming with linear fractional
functionals,” Naval Research Logistics Quarterly, vol. 9, no. 3-4, pp.
181–186, 1962.

[25] R. M. Gray, “Toeplitz and circulant matrices: A review,” Foundations
and Trends R© in Communications and Information Theory, vol. 2, no. 3,
pp. 155–239, 2006.

[26] Z. Zhu and M. B. Wakin, “On the asymptotic equivalence of circu-
lant and toeplitz matrices,” IEEE Transactions on Information Theory,
vol. 63, no. 5, pp. 2975–2992, May 2017.

[27] S. Zhang and Y. Huang, “Complex quadratic optimization and semidef-
inite programming,” SIAM Journal on Optimization, vol. 16, no. 3, pp.
871–890, 2006.

[28] G. Cui, H. Li, and M. Rangaswamy, “Mimo radar waveform design
with constant modulus and similarity constraints,” IEEE Transactions
on Signal Processing, vol. 62, no. 2, pp. 343–353, Jan 2014.

[29] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[30] K. C. Toh, M. J. Todd, and R. H. Tütüncü, “Sdpt3 — a matlab soft-
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