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Abstract—Large MIMO transceivers are integral components
of next-generation wireless networks. However, for such systems
to be practical, their channel estimation process needs to be fast
and reliable. Although several solutions for fast estimation of
sparse channels do exist, there is still a gap in understanding
the fundamental limits governing this problem. Specifically, we
need to better understand the lower bound on the number of
measurements under which accurate channel estimates can be
obtained. This work bridges that knowledge gap by deriving a
tight asymptotic lower bound on the number of measurements.
This not only helps develop a better understanding for the
sparse MIMO channel estimation problem, but it also provides
a benchmark for evaluating current and future solutions.

I. INTRODUCTION

Through the use of a large number of antennas, wireless
transceivers can focus their signal transmission and/or recep-
tion through very narrow angular directions [1]. This helps
increase the channel capacity in two main ways. First, it
improves the spatial multiplexing capability of transceivers,
which allows simultaneously serving multiple users while
keeping cross interference low. Second, it allows more signal
power to be propagated from a transmitter (TX) to a receiver
(RX). For the latter reason, large MIMO transceivers have
emerged as the prominent solution to solve the severe path
loss problem in millimeter-wave (mmWave) systems [2], [3].

The main challenge of large MIMO, however, is that the
channel estimation process can be complex [4] since channel
matrices have large dimensions. This problem is further ex-
acerbated by the practically-viable transceiver designs used to
overcome the cost and power consumption problems attributed
with the traditional fully-digital transceiver architectures.

Reducing the number of channel measurements is thus one
of the main challenges facing large MIMO implementations.
This problem has largely been tackled as an application of
Compressed Sensing (CS) [5], [6], which relies on channel
sparsity as a key enabler for reducing the number of mea-
surements1. The closest effort to understanding how changing
the number of measurements affects the quality of channel
estimates, to the best of our knowledge, is [7], where com-
puter simulations were conducted to measure the quality of
channel estimates as the number of measurements increases.
Nonetheless, there is still a gap in the current literature in
understanding the lower bound on the number of necessary
measurements needed for accurate channel recovery. To the
best of our knowledge, the tightest known bound scales as
Ω
(
k log ntnr

k

)
[8], [9], where k is the channel sparsity level

and nt and nr are the numbers of antennas at TX and RX,
respectively. This bound, however, is a naive application of the
CS bound for recovery of sparse vectors of length n = ntnr

1Sparsity here means that the number of signal propagation paths is small
compared to the number of TX and RX antennas (e.g., mmWave channels).

and k non-zero values. In fact, the nature of the channel es-
timation problem poses limitations on how measurements are
obtained, as opposed to the standard CS problem. Thus, more
attention needs to be paid when deriving measurement lower
bounds. In this paper, we show that the aforementioned bound
is too loose, and we provide a tighter lower bound which has
order of Ω

(
k2 log

(
nt
k

)
log
(
nr
k

))
. We argue the tightness of

this bound by showing that, under a mild constraint on the
channel sparsity level, there exists a solution with a number
of measurements upper bounded as O(k2 log

(
nt
k

)
log
(
nr
k

)
).

Notations: Let x be a scalar quantity, x be a vector and X
be a matrix. The Conjugate, Transpose and Hermition of X
are denoted by X∗, XT and XH , respectively. The pth norm
is denoted by ‖x‖p (if the subscript p is dropped, then assume
p=2), and the `0 norm ‖x‖0 is the number of non-zero ele-
ments of x. Denote by vec (X) the vectorization of columns
of X , and denote by ⊗ the Kronecker product. Finally, we use:
(i) Ω (·) to denote the Big Omega notation, i.e., the asymptotic
lower bound2, (ii) O (·) to denote the Big O notation, i.e., the
asymptotic upper bound3, and (iii) we say that f(n)∈Θ (g(n))
if both f(n)∈Ω(g(n)) and f(n) ∈ O(g(n)).

II. SYSTEM MODEL

Consider a single-tap, block-fading, sparse MIMO channel
between a TX and RX equipped with nt and nr antennas,
respectively. Antennas at TX and RX form Uniform Linear Ar-
rays (ULA), with normalized antenna spacing of ∆t and ∆r,
respectively. The normalization is with respect to the carrier
wavelength, denoted by λc. We consider analog transceiver
architectures at both TX and RX. That is, only one RF chain
exists per transceiver, and all antennas are connected to this
RF chain through phase-shifters and variable-gain amplifiers.

Let the maximum number of resolvable signal propagation
paths in the channel be denoted by k. Recall that we consider
sparse channels. By the sparsity assumption [4], [5], [10]–[13],
only a few signal propagation paths exist, where k � nt, nr.
Note that a wireless transceiver may not be able to resolve
multiple channel paths if they are spatially close. However, as
the number of antennas increases, the transceiver’s ability to
resolve more paths also increases due to its ability to form
narrower antenna beams. This means that k increases with
n. However, the ratio k

n decreases as n increases. We assume
that nt, nr ≥ k1+ε, for some ε>0, which reflects the ability of
transceivers to resolve more channel paths as their number of
antennas increases. For each propagation path p, let αp be its
path-gain, θp be its Angle of Departure (AoD) at TX, φp be its

2We say that f(n) ∈ Ω (g(n)) (or loosely, f(n)=Ω (g(n))) if there exists
a constant c > 0, and n0 ∈ N such that f(n) ≥ cg(n), for all n≥n0.

3We say that f(n) ∈ O (g(n)) (or loosely f(n)=O (g(n))) if there exists
a constant c > 0 and n0 ∈ N such that f(n) ≤ cg(n), for all n≥n0.
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Angle of Arrival (AoA) at RX, and ρp be its path length. The
baseband path gain, αbp, is given by αbp = αp

√
ntnr exp

−j 2πρp
λc .

Let Q ∈ Cnr×nt denote the channel matrix, where qi,j ,
the element at row i and column j in Q, is the channel gain
between the jth TX antenna and the ith RX antenna. Let us
denote the path-loss by µ. Then, we can write Q as

Q =

k∑
p=1

αbp
µ
er(ωr,p)e

H
t (ωt,p), (1)

where et(ω) and er(ω) are the transmit and receive signal
spatial signatures, at angular cosine ω [1, Chapter 7]. The
channel Q, in this form, is not sparse. However, it can be
represented in a sparse form using a simple change of basis:

Qa = UH
r QUt, (2)

where Qa is known as the “angular channel” and is sparse.
The matrices Ut and Ur are Discrete Fourier Transform
matrices whose columns represent an orthonormal basis for
the transmit and receive signal spaces, and are defined as:

Ui =
(
ei (0) ei

(
1
Li

)
ei

(
2
Li

)
. . . ei

(
ni−1
Li

))
, i ∈ {t, r},

where Lt/Lr are the normalized lengths of the TX/RX ULAs.

When transmitting a symbol ζ, the TX uses a precoder
vector f ∈ Cnt while RX uses a combiner vector w ∈ Cnr .
The received symbol at RX is thus given by:

yi,j = wH
i Qf jζ + wH

i ni,j , (3)
where yi,j denotes the received symbol (i.e., measurement
result), wi denotes the ith receive combiner and f j , the jth

transmit precoder. Assume, for simplicity, that ζ = 1. Let the
number of rx-combiners be mr and the number of tx-precoders
be mt. Then, the total number of measurements we can obtain
using all combinations of f j and wi is m = mt×mr. We can
also write the measurement equations for all precoders and
combiners more compactly as:

Y = WHQF + N , (4)
where yi,j is the element at row i and column j of Y . W
and F are defined as:

W ,
(
w1 w2 . . . wmr

)
, F ,

(
f1 f2 . . . fmt

)
(5)

The channel estimation problem, i.e., figuring out what the
matrix Q is, can be broken down into determining the best
set of precoders f j and combiners wi using which we can
accurately recover Q. To speed up the estimation process, the
smallest sets of those f j’s and wi’s should be used. In this
paper, we do not provide a specific design for such precoders
and combiners, but we seek to find a “tight” lower bound on
the number of measurements using which Q can be recovered.

Special Cases: Consider the special cases in which either
(i) nt=1 or (ii) nr=1. In the former case, the channel is
Single-Input-Multiple-Output (SIMO), while in the latter it
is Multiple-Input-Single-Output (MISO). In both cases, the
channel becomes a vector q. Tx-precoders in MISO fall back
to just a scalar quantity; f = 1, while in SIMO rx-combiners
fall back to w = 1. Thus, we can rewrite the measurement
equation (Eq. (4)) for SIMO and MISO, respectively, as:

y = WHq + n, y = FHq + n. (6)

III. PROBLEM FORMULATION

In this section, we will provide a brief overview of compressed
sensing (CS). Then, we will formulate the problem of channel
estimation as a CS problem. To that end, we will reshape
the measurement equation given in Eq. (4) to be in the
form yv=Gvq

a
v+nv , which conforms with the traditional

compressed sensing problem, as will be shown in Eq. (7)
below. Here, qav is sparse and has dimensions nrnt×1.
A. Compressed Sensing Background
Compressed sensing is a signal processing technique [6] that
allows the reconstruction of a signal x = (xi)

n
i=1 from a

small number of samples given that x is either: (i) sparse,
or (ii) can be represented in a sparse form, using a linear
transformation U such that x = Us where s is sparse.
Let the number of measurements be denoted by m where
m < n and m,n ∈ N. Each measurement of x is a linear
combination of its components xi. Such measurements are
dictated by the sensing matrix G and are given by y = Gx,
where y denotes the m×1 measurement vector. The matrix
equation y = Gx represents an under-determined system of
linear equations (since m < n). In other words, we have fewer
equations than the number of unknowns we want to solve for.
While, in general, an infinite number of solutions exist, the
sparsity of x allows for perfect signal reconstruction from y
given that certain conditions are satisfied, among which, is a
lower bound on the “spark” of the sensing matrix.

Definition III.1. The spark of a given matrix G is the smallest
number of its linearly dependent columns.

Theorem 1 (Corollary 1 of [14]). For any vector y ∈ Rm,
there exits at most one vector qa ∈ Rn with ‖qa‖0 = k such
that y = Gqa if and only if spark(G) > 2k.

Theorem 1 provides a mathematical guarantee on the exact
recovery of k−sparse vectors using m linear measurements.
An immediate bound on the number of measurements, m, we
get from Theorem 1 is m ≥ 2k. The lower bound on the
spark of G works well under noise-free measurements, but in
practice, measurements get corrupted with a vector n, i.e.,

y = Gx + n. (7)
It is necessary to guarantee that the measurement process is
not adversely affected by such errors in a significant way.
This calls for alternative, stricter requirements on sensing
matrices to guarantee “good” sparse recovery. Mathematically,
we need to design the sensing matrix such that the energy
in the measured signal is preserved. This is quantified using
the Restricted Isometry Property (RIP). The RIP property
guarantees that the distance between any pair of k−sparse
vectors is not significantly changed under the measurement
process. This RIP property is defined as follows:

Definition III.2. A matrix G satisfies the restricted isometry
property (RIP) of order k if there exists a constant δk ∈ (0, 1)
such that for all vectors qa, with ‖qa‖0 ≤ k, we have

(1− δk) ‖qa‖22 ≤ ‖Gqa‖22 ≤ (1 + δk) ‖qa‖22 . (8)

The smallest δk which satisfies Eq. (8) is called the
“k−restricted isometry constant”. Note that in general, a ma-
trix G̃ does not necessarily result in ||G̃qa||2 that is symmetric
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about 1. However, a simple scaling of G̃ results in G such that
the tightest bounds of ‖Gqa‖2 in Eq. (8) are symmetric [15].
From now on, we will only consider matrices whose bounds
are symmetric as shown in Eq. (8).

The following theorem provides a necessary condition for
m×n matrices that satisfy the RIP property with δk∈ (0, 1).

Theorem 2 (Theorem 3.5 of [16]). Let G be an m×n matrix
that satisfies RIP of order k with constant δk∈ (0, 1). Then, m
satisfies

m ≥ cδk log
(n
k

)
, (9)

where cδ = 0.18

log
(√

1+δ
1−δ+1

) , is a function of δ only.

Theorem 2 demonstrates the popular asymptotic measure-
ment bound: m = Ω

(
k log n

k

)
. Next, we will formulate the

MIMO channel estimation as a compressed sensing problem.

B. The Problem
Recall from Eq. (4) that channel measurements take the form
Y =WHQF +N . This is not the standard form of a noisy CS
problem (see Eq. (7)). Thus, it cannot readily be solved using
compressed sensing. To put this equation in a CS problem
form, let us “vectorize” its left and right hand sides as follows:
(i) let yv, vec (Y ), (ii) nv, vec (N), (iii) qav, vec (Qa),
and finally (iv) by properties of vectorization [17], we have

vec(WHQF ) = (F T ⊗WH) vec(Q) (10)

= (F T ⊗WH) (U∗
t ⊗Ur) vec (Qa) (11)

=
((

FHUt

)∗
⊗
(
WHUr

))
qa
v (12)

Thus, we can rewrite the measurement equation in (4) as
yv = Gvq

a
v + nv, (13)

where Gv =
(
FHUt

)∗
⊗

(
WHUr

)
(14)

is the sensing matrix, with dimensions mtmr×ntnr, while
yv has dimensions mtmr×1 and qav has dimensions ntnr×1.
This form of the problem allows us to employ CS sparse
recovery techniques to estimate qav from yv .

IV. LOWER MEASUREMENT BOUND

We are interested in sensing matrices that preserve the distance
between two different channels qav1 and qav2. This distance is
the norm of qav1−qav2, which has a sparsity level of 2k (recall
that the maximum number of channel paths is k). Thus, to be
able to accurately estimate qav , we need the sensing matrix
Gv to satisfy the RIP property of order 2k with some RIP
constant δ2k ∈ (0, 1). At sparsity level of 2k, Theorem 2 shows
that the recovery of a sparse vector with dimensions n=ntnr
requires a number of measurements, m, lower bounded as
m ≥ cδ(2k) log

(
ntnr
(2k)

)
= 2cδk

(
log
(
nt√
2k

)
+ log

(
nr√
2k

))
.

This demonstrates the popular m = Ω
(
k log

(
nr×nt
k

))
lower

bound for sparse channel estimation. Although this bound is
valid, it is in fact too loose since it assumes that arbitrary
constructions of Gv are possible. This, however, is not the
case for sparse MIMO channel estimation since Gv takes a
special, Kronecker product form, as derived in Eq. (14).

Next, we will derive a tighter bound on the number of
measurements. A bound that considers the special struc-
ture of the sensing matrix. This will result in m =
Ω
(
k2 log

(
nt
k

)
log
(
nr
k

))
. To appreciate how much tighter our

(a) At fixed sparsity level k = 5.

(b) At fixed number of antennas n = nt = nr = 100.
Fig. 1: Unscaled asymptotic measurement lower bounds.

derived bound is, we plot the functions k log
(
nt×nr
k

)
and

k2 log
(
nt
k

)
log
(
nr
k

)
without constant scaling in Fig. 1.

A. Main Results: A “Tight” Measurement Bound
In this section, we will derive the relationship between k−RIP
constants of Kronecker product matrices and those of the
blocks that form it. Then, using Theorem 2, we will derive
an asymptotic lower bound on the number of rows of Gv

and deduce its asymptotic behavior. We will finally show the
tightness of our derived asymptotic bound using the solution
framework in [18].

Optimum Measurement Length: Among all possible ma-
trices which satisfy the RIP property, we are interested in the
ones that have the least number of rows (since the number of
rows equals the number of measurements). This leads to the
notion of “Optimum Measurement Length (OML)”. We define
OML as the smallest number of measurements such that the
RIP property is satisfied. OML is dependent on the length of
unknown vectors n, the maximum sparsity level k and the
k−RIP constant δ. Hence, we can define a function µ,

µ : N ×K × (0, 1)→ N+
0 (15)

which maps the space of all possible values for n, k, and δ,
given by4 N ⊆ N+

0 , K ⊆ N+
0 and (0, 1), respectively, to the

corresponding OML quantity.
Now, let us focus on the special case of matrices which can

be arbitrarily constructed. In such case, let µ be denoted by
µa (‘a’ stands for ‘arbitrary’ matrix construction). We define
µa to be the solution of the following optimization problem:

P1 : minimize
Ma∈Cma×n

ma (16a)

subject to Ma ∈ F (k)
δ (16b)

where F (k)
δ is the feasible set, and it is defined as

F (k)
δ , {Ma ∈ Cma×n :(1−δ) ‖x‖22 ≤ ‖Max‖22 ≤ (1+δ) ‖x‖22 ,

∀x ∈ Cn : ‖x‖0 ≤ k}
Lemma 3. Let n and k be fixed. Then, δ1 ≥ δ2 implies
µa(n, k, δ1) ≤ µa(n, k, δ2).

Proof. The proof directly follows by observing that δ1 ≥ δ2
implies that F (k)

δ2
⊆ F (k)

δ1
. Since the problem is a minimization

problem, then µa(n, k, δ1) ≤ µa(n, k, δ2).
4We define N+

0 to be the set of non-negative integers.

2836
Authorized licensed use limited to: The Ohio State University. Downloaded on March 16,2022 at 15:14:14 UTC from IEEE Xplore.  Restrictions apply. 



Kronecker Product Matrices: The standard compressed
sensing problem assumes that all elements of the sensing
matrix are independently chosen. On the contrary, in sparse
channel estimation, we are restricted to a specific sensing ma-
trix structure, as shown in Eq. (14). The only free parameters
in this sensing matrix are the tx-precoders fj and the rx-
combiners wi. This limitation suggests that more measure-
ments may be needed to achieve the same RIP constant, com-
pared to matrices whose elements are independently selected.

At the heart of our results lies the relationship between the
k−RIP constant of Kronecker product matrices and the k−RIP
constants of the matrices that form them. We formally state
this relationship in the following lemma.
Lemma 4 (RIP of Kronecker Products). Let δa and δb be the
k−RIP constants of the matrices A and B, respectively. Then,
the k−RIP constant of A⊗B, denoted by δ, is bounded as

δ ≥ max{δa, δb} (17)
A similar result to Lemma 4 was derived in [19], but under

the stronger assumption of matrices with normalized columns.
Our more general result implies that even if the normalized
columns assumption is loosened, we still cannot obtain a
matrix, through a Kronecker Product, which satisfies the RIP
property with a constant smaller than the maximum of the
k−RIP constants of the matrices that form it. To prove Lemma
4, we define two matrices: C = A ⊗B and C′ = B ⊗A,
whose k−RIP constants are δc and δc′ , respectively. We will
then show that: (1) δc ≥ δb, (2) δc′ ≥ δa, and that (3) δc = δc′ ,
by which Lemma 4 follows. A proof outline is provided next,
while the detailed proof is provided in [20]. To show part
(1), let the number of columns of A and B be na and nb,
respectively. And define Xc and Xb to be the sets of vectors
with sparsity levels ≤ k and whose lengths are nanb and
nb, respectively. Since C and B satisfy k−RIP with δc and
δb. Then, ‖Cxc‖2 is bounded between (1± δc) ‖xc‖2 for all
xc ∈ Xc. Similarly, ‖Bb‖2 is bounded between (1±δb) ‖b‖2.
View xc, whose length is nanb, as na blocks of length nb
each, and focus on a strict subset of Xc, call it X (b)

c , with
vectors defined as x

(b)
c = (bT 0T . . . 0T )

T for all b ∈ Xb.
Now examine that ||Cx(b)

c ||2 = ‖a1‖2 ‖Bb‖2, where a1 is
the first columns of A, which leads to these two bounds:

(1− δc) ‖b‖2 ≤ ‖a1‖2 (1− δb) ‖b‖2 ≤ ‖a1‖2 ‖Bb‖2 (18)

‖a1‖2 ‖Bb‖2 ≤ ‖a1‖2 (1 + δb) ‖b‖2 ≤ (1 + δc) ‖b‖2 (19)

If ‖a1‖ ≤ 1, we can use Eq. (18) to conclude that δc ≥ δb,
otherwise, use Eq. (19) to arrive at the same conclusion. This
concludes part (1), and by analogy part (2) follows. Finally,
since there exists Permutation matrices Pρ and Pc, such that
C′ = PρCPc. This leads to

∥∥C′x′
c

∥∥ = ‖Cxc‖, where x′
c =

Pcxc and xc ∈ Xc if and only if x′
c ∈ Xc. Hence δc = δc′ .

A Generalized Bound: Recall Eq. (14). We will rewrite
Gv , for brevity, in terms of Mt and Mr, where

Mt ,
(
FHUt

)∗
∈ Cmt×nt , Mr , WHUr ∈ Cmr×nr

Thus, we have Gv=Mt⊗Mr, and m=mtmr is the number of
rows of Gv . Now, suppose that Gv satisfies k−RIP with con-
stant δ∈(0, 1). Then, both Mt and Mr must satisfy the k−RIP
with constants δt∈(0, 1) and δr∈(0, 1), respectively. To show
that this is true, assume, without loss of generality (w.l.o.g.),
that there does not exist δt ∈ (0, 1) such that Mt satisfies

k−RIP. Then, there exists a vector v with ‖v‖0≤k such that
Mtv = 0, which implies the existence of at least k dependent
columns of Mt, call them at1,at2, . . . ,atk. In turn, there
exists at least k dependent columns in Gv (let ar1 be a column
in Mr, then the columns at1⊗ar1,at2⊗ar1, . . . ,atk⊗ar1
are dependent). Hence, @δ ∈ (0, 1) such that Gv satisfies
k−RIP with a constant δ. Thus, we arrive at a contradiction.
Further, by Lemma 4, we have that δ ≥ max{δt, δr}.

Since Mt and Mr can be arbitrarily constructed, then we
can lower bound mt and mr by their OML values as follows

mt ≥ µa(nt, k, δt)
(i)

≥ µa(nt, k, δ) (20)

mt ≥ µa(nr, k, δr)
(ii)

≥ µa(nr, k, δ) (21)
where inequalities (i) and (ii) follow from Lemma 3. Thus,
it follows that the number of rows of Gv , m, is bounded as

m ≥ µa(nt, k, δ)× µa(nr, k, δ). (22)
Recall that µa(·) is the value that solves problem P1.

Remark. The implication of Inequality (22) is that the num-
ber of measurements needed for estimating a sparse MIMO
channel, Q, is at least equal to (but possibly higher) than
the product of the number of measurements needed to solve
the following two sub-problems: The first is a SIMO, 1 × nr
channel, with Mr as sensing matrix. The second is a MISO,
nt×1 channel, with Mt

∗ as sensing matrix, where the sparsity
level of both channels is ≤ k. These two sub-problems are
special cases of the original problem, whose measurement
equations are shown in Eq. (6). The only difference is the
conjugation of Mt.

The bound we derive in Eq. (22) highlights the dependence
on the channel dimensions nt and nr, the maximum sparsity
level k and a measure, δ, of how much information the mea-
surements preserve about the channel. This bound, however,
is not explicit, but we can use Theorem 2 to derive a more
concrete lower bound for µa(·). This leads to our main result:

Theorem 5 (Main Theorem). Fix δ ∈ (0, 1). If Gv in Eq. (14)
satisfies RIP with order 2k and constant δ, then the number
of measurements m is asymptotically bounded as:

m = Ω
(
k2 log

(nt
k

)
log
(nr
k

))
(23)

Proof. Since µa(nt, 2k, δ) and µa(nr, 2k, δ) are obtained by
solving the problem P1 (with their respective nt, nr and δ
values), then there exists matrices Xt and Xr, with dimen-
sions µa(nt, 2k, δ)× nt and µa(nr, 2k, δ)× nr which satisfy
2k−RIP with constant δ. Thus, it follows by Theorem 2 that:

µa(nt, 2k, δ) ≥ cδ2k log
(nt
2k

)
, µa(nr, 2k, δ) ≥ cδ2k log

(nr
2k

)
Therefore, by Eq. (22), the following follows

m = mtmr ≥ 4c2δk
2 log

(nt
2k

)
log
(nr

2k

)
(24)

Finally, let c = 0.5 and recall that the ratio nt
k increases (by

assumption). Then, there exists nt0 ∈ N such that log(nt2k ) ≥
c log(ntk ) for all nt ≥ nt0. Similarly, there exists nr0 ∈ N such
that log(nr2k ) ≥ c log(nrk ) for all nr ≥ nr0. Then, it follows
that m ≥ 4c2c2δk

2 log
(
nt
k

)
log
(
nr
k

)
where 4c2c2δ = c2δ is a

constant, from which Eq. (23) follows.
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B. Tightness of the Measurement Bound
To argue that the measurement lower bound in Theorem 5
is tight, we will show that there exists a solution, based on
[18], which yields sensing matrices that satisfy 2k−RIP with
constants ∈ (0, 1) and with m ∈ Θ

(
k2 log

(
nt
k

)
log
(
nr
k

))
. We

briefly discuss the measurement framework of [18] next.
In [18], a source-coding-based framework for the sparse

MIMO channel estimation problem is developed. This solution
proposes a method for obtaining a small number of measure-
ments that are sufficient to estimate the channel. Such mea-
surements are designed based on two carefully chosen binary
linear source codes, Ct and Cr. These codes dictate the design
of tx-precoders (using Ct) and rx-combiners (using Cr) and
produce real-valued measurement (sensing) matrices, namely,
Ht (of size mt×nt) and Hr (of size mr×nr), respectively.
The matrix Ht can estimate k−sparse MISO channel vectors
(i.e., produces unique measurements), while Hr can estimate
k−sparse SIMO channels. Hence, the spark of both matrices
is greater than 2k (by Theorem 1). Measurements are then
obtained using all combinations of mt tx-precoders and mr

rx-combiners, and can be arranged as yv = Hvq
a
v+nv where

Hv = Ht⊗Hr. Then, it follows that spark(Hv) > 2k. This
is shown in detail in our technical report [20]. Hence, either
Hv or a scaled version of it satisfies 2k−RIP with a constant
δh ∈ (0, 1). This measurement framework is shown to produce
a number of measurements, m, that is lower bounded as:

m ≥ m ,

⌈
log2

(
k∑
i=0

(nr
i

))⌉
︸ ︷︷ ︸

≤mt

⌈
log2

(
k∑
i=0

(nt
i

))⌉
︸ ︷︷ ︸

≤mr

. (25)

This lower bound is achievable with equality for specific
examples as shown in [18]. However, it is not immediately
clear how this bound compares to our bound in Eq. (23). The
following lemma sheds more light on this issue:

Lemma 6. The asymptotic behavior of m, defined in Eq. (25)
follows: m = Θ

(
k2 log

(
nt
k

)
log
(
nr
k

))
.

This is the same asymptotic behavior as the lower bound
in Theorem 5. To prove this lemma, we use the following
bound on

(
n
k

)
[21]:

(
n
k

)k ≤ (nk) ≤ (nek )k, and observe that for
k < n+1

2 , we have
(
n
k

)
≤
∑k
i=0

(
nr
i

)
≤ (k+1)

(
n
k

)
. This allows

us to establish upper and lower bounds for
∑k
i=0

(
n
i

)
using

the aforementioned bounds for
(
n
k

)
, which leads to showing

that log
(∑k

i=0

(
n
i

))
= Θ

(
k log

(
n
k

))
. Note that d·e does not

change the asymptotic behavior of its argument. Therefore, we
are able to show that m = Θ

(
k2 log

(
nt
k

)
log
(
nr
k

))
. A rigor-

ous proof of Lemma 6 is provided in our technical report [20].
Next, we will examine a specific solution based on the family
of BCH codes, which results in a number of measurements
upper bounded as m = O

(
k2 log

(
nt
k

)
log
(
nr
k

))
.

Example 1 (BCH codes). Although BCH codes are natively
error-correcting codes, they can be used as syndrome-source-
codes, as well5. By the properties of BCH codes, we have

5A linear block error-correcting code (LBC) can be utilized as a syndrome
source code which can uniquely compress sequences that contain a number
of 1’s less than or equal to the number of correctable errors of the used code
[22]. The parity check matrix of the LBC code is used as the generator matrix
for the source code. Hence, the number of parity bits of the LBC code is the
length of the compressed sequences for the corresponding source code.

that for any positive integers t ≥ 3 and k < 2t−1, there exists
a binary BCH code with: i) block length n = 2t − 1, ii)
minimum distance dmin ≥ 2k + 1 (hence, it can correct up to
k errors), and iii) a number of parity check bits m ≤ tk =
k log2 (n+ 1). Using BCH codes to design Ct and Cr, we
obtain a solution whose number of measurements is upper
bounded according to the following lemma:

Lemma 7. The number of measurements achievable using
BCH codes in the framework of [18] is asymptotically
bounded as m = O

(
k2 log

(
nt
k

)
log
(
nr
k

))
.

Proof Sketch. For arbitrary values of nt≥7, there exists t

such that nt≤2t+1,n′t. Then, for all k<
n′t+1

2 , there ex-
ists a BCH code with block length n′t and parity length
of m′t=O(k log n′t). We can then shorten that BCH code
by removing n′t−nt information bits from its codewords
while keeping mt=m

′
t unchanged. We can then show that

mt=m
′
t=O(k log nt), since log 2t+1≤ 4

3 log 2t. Now, recall
that nt ≥ k1+ε, where ε > 0 (by assumption). Then,
1
ε log nt

k ≥ log k. Therefore, we can show that log(nt)≤(1 +
1
ε ) log

(
nt
k

)
, by which we have mt=O(k log

(
nt
k )
)
. Similarly,

mr=O(k log
(
nr
k )
)
. Thus, m = O

(
k2 log

(
nt
k

)
log
(
nr
k

))
. For

a detailed proof, see our technical report [20].

Among all solutions in [18], we are interested in the ones
whose number of measurements, m, is closest to m. These
solutions are “optimum” in the sense of reducing the number
of measurements. Recall that m is the lower bound of all
solutions based on [18] (see Eq. (25)). The following theorem
shows that these optimum solutions scale similarly to m, which
in turn shows that the lower bound of Theorem 5 is tight.

Theorem 8. The number of measurements of “Optimum So-
lutions” of [18] scales as m = Θ

(
k2 log

(
nt
k

)
log
(
nr
k

))
Proof. By Lemma 6, we have that all solutions, including
the optimal, have m = Ω

(
k2 log

(
nt
k

)
log
(
nr
k

))
. Moreover,

Lemma 7 shows that solutions based on BCH codes result
in m = O

(
k2 log

(
nt
k

)
log
(
nr
k

))
. Since optimal solutions

have a number of measurements smaller than or equal to
those obtained by BCH codes, then they also have the same
asymptotic upper bound. Therefore, optimal solutions have
m = Θ

(
k2 log

(
nt
k

)
log
(
nr
k

))
follows.

Remark. Even though we have shown that the bound of
Theorem 5 is tight, we have demonstrated this tightness in
the asymptotic regime of n and k. The dependence on the
RIP constant, δ, however, remains an open question.

V. CONCLUSION

In this paper, we study the fundamental lower bound gov-
erning the number of measurements required for estimating
sparse, large-MIMO channels. We consider a simple analog
transceiver, where each channel measurements is obtained
using a specific combination of beamforming vectors at the
transmitter and receiver. The currently known lower bound on
number of measurements is Ω

(
k log

(
nrnt
k

))
, which we show

to be loose. We then derive a tight lower measurement bound,
which scales asymptotically as Ω

(
k2 log

(
nt
k

)
log
(
nr
k

))
. The

tightness of our derived bound is demonstrated by showing that
there exists a solution with m = O

(
k2 log

(
nt
k

)
log
(
nr
k

))
.
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