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Abstract—Large-scale deployment of connected vehicles with
cooperative sensing technologies increases the demand on the
vehicular communication spectrum in 5.9 GHz allocated for the
exchange of safety messages. To support the high data rates
needed by such applications, the millimeter-wave (mmWave)
automotive radar spectrum at 76-81 GHz can be utilized for
wideband communication as well. For this purpose, various
joint automotive radar-communication (JARC) systems have
been proposed in the literature to perform both functions using
the same wideband waveform. However, the wideband joint
waveforms encounter frequency-selectivity in both radar and
communication channels due to multi-path propagation. In this
paper, we address the optimal joint waveform design problem to
exploit the frequency-selectivity for wideband JARC operations
via orthogonal frequency-division multiplexing (OFDM) wherein
subcarrier coefficients are designed for optimal power allocation
and phase coding. We show that the problem is a non-convex
quadratically constrained quadratic programming (QCQP) prob-
lem which is known to be NP-hard. Existing approaches to solve
QCQP include semidefinite relaxation (SDR) which incurs high
time complexity. Instead, we propose approximation methods to
solve QCQP more efficiently by leveraging structured matrices
and using convex approximations. Finally, we demonstrate the
efficacy of the proposed approaches through numerical simula-
tions.

Index Terms—joint radar-communication, automotive radars,
adaptive waveform design, nonconvex optimization.

I. INTRODUCTION

As an integral part of Intelligent Transportation Systems
(ITS), connected vehicles will promote safer and coordinated
transportation through wireless communication and sensing
technologies. To enable vehicle-to-everything (V2X) commu-
nication with low-latency, a limited amount of bandwidth is
allocated at 5.9 GHz spectrum for the exchange of basic
safety messages. With the deployment of connected vehicles
and the intelligent infrastructure at a larger scale, the V2X
spectrum will face a spectrum scarcity problem due to its
limited bandwidth. In addition, emerging cooperative sensing
and autonomous driving technologies require a large amount of
raw sensor and navigation data to be exchanged for improved
performance [2], [3]. Hence, the allocated spectrum cannot be
used efficiently for broadband applications along with high-
priority basic safety messages. A solution to alleviate the
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scarcity problem and attain higher data rates is to leverage
the underutilized millimeter-wave spectrum (mmWave) with
larger bandwidths.

Currently, 76-81 GHz mmWave spectrum is allocated for
the automotive radar systems with up to 4 GHz of contiguous
bandwidth [4]. Higher bandwidth and smaller wavelength
in mmWave spectrum enable better radar sensing resolution
and accuracy in terms of range, velocity, and angle. The
decrease in wavelength also allows smaller size antenna arrays
suitable for automotive systems. Since both communication
and radar systems compete for spectrum resources to achieve
higher data rates and better sensing accuracy, the most direct
solution is the spectral isolation of two systems via regulations.
Moreover, interference mitigation and avoidance schemes have
been studied in the literature to allow co-existence [5].

As an alternative, joint radar and communication systems
have been proposed to eliminate mutual interference by using
the same waveform for both radar sensing and data transmis-
sion [1], [6]–[11]. Employing such a joint system promotes the
effective utilization of the spectrum while reducing cost and
hardware size. In these studies, radar channels are modeled
with simple point targets and white Gaussian noise. The point
target model can be valid for far-field targets with narrow-
band radar systems. However, wideband radar signals resolve
multiple reflectors on vehicles that are modeled as extended
targets with multiple scatterers [4], [12]. Similar to frequency-
selectivity in multi-tap communication channels, extended
targets also act as frequency-selective channels for wideband
radar signals. Combined with the interference with non-flat
frequency response, the frequency-selectivity can deteriorate
the radar detection and estimation performance [13], [14].

Due to their robustness against frequency-selectivity, or-
thogonal frequency-division multiplexing (OFDM) waveforms
are suitable for adaptive joint automotive radar-communication
(JARC) systems for simultaneous data transmission and radar
sensing. The subcarrier coefficients of OFDM pulses can be
optimized accounting for the frequency-selectivity of both
radar and communication channels. With an adaptive ap-
proach, the radar detection performance can be improved by
designing the waveform based on the extended target response
and mitigating the effect of interference (i.e., clutter plus noise)
in the radar channel. Considering radar and communication
requirements, the optimal OFDM waveform generated adap-
tively for the dual-use transmission system can outperform the
single carrier and non-adaptive approaches.

The waveform design problems have been studied in litera-
ture for various performance constraints [14]–[18]. In [15],
radar code is designed to improve the detection perfor-
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Fig. 1. (a) The operation of the joint communication and radar system on a vehicle (Blue) which receives reflections from the target vehicle (Black) and
interference while transmitting data. (b) An illustration of discrete received radar signal.

mance of radar under similarity and unit modulus constraints.
In [14], [18], radar waveform is designed to improve the
mutual information between the target’s impulse response
(TIR) and signal that increases the radar’s TIR estimation
accuracy based on the target’s known statistics. In [17], a
joint OFDM waveform design problem is studied to increase
reflected signal power under interference and autocorrelation
shape constraints. However, designed complex weights impede
the operation of phase-shift modulation schemes. In these
studies, the optimization problems are formulated as non-
convex quadratic programming problems and recast as convex
semidefinite programming (SDP) problems by dropping the
non-convex rank-one constraint. While relaxed SDP problems
are solved by interior-point algorithms in polynomial time,
the time complexity is still high due to the use of higher-
dimensional variables. Moreover, the obtained solution is near-
optimal with a higher rank due to the relaxation of the rank-one
constraint [19]. In this work, our goal is to improve the radar
detection performance of the joint OFDM waveform by lever-
aging previously estimated radar channel, while transmitting
communication symbols on the same waveform.

In this work, we consider a JARC transceiver that operates
as monostatic radar with colocated transmit and receive an-
tennas. The proposed joint system adaptively optimizes the
amplitude and phase values of complex subcarrier weights of
transmitted OFDM waveform by leveraging the available in-
formation about the radar and communication channels. Since
we consider a joint system, the transmitted OFDM waveform
also carries communication symbols that are modulated with
phase-shift keying (PSK) modulation as illustrated in Fig. 1.
Thus, we formulate a joint waveform design problem that
improves the radar detection performance while meeting data
rate requirements for communication. The proposed waveform
design problem is a non-convex quadratically constrained
quadratic programming (QCQP) problem and we propose
approaches to solve it with lower time complexity by exploiting
the matrix structures and using convex approximation meth-
ods. We also apply the SDP formulation to our problem to
compare the time complexity and achieved objective values
with the proposed method. Moreover, we propose a general-
ized approach with lower time complexity. The remainder of
this paper is organized as follows: In Section II, we define the
system model by formulating the dual-use wideband OFDM
signal along with radar and communication channels. In Sec-
tion III, we formulate the optimization problem to design the
OFDM waveform based on given metrics. In Section IV, V, and

VI, we propose approximation methods to solve the problem
to obtain optimal subcarrier coefficients in real and complex
domain with lower time complexity. We present numerical
results for the proposed methods in Section VII and conclude
our work in Section VIII.

Notations: Boldface lower-case letters denote column vec-
tors as x, boldface upper-case letters denote matrices as X, and
plain lower-case letters denote scalars as x. xi represents the
ith element of x. R, C, and H define the sets of real numbers,
complex numbers, and Hermitian matrices, respectively. The
transpose, conjugate transpose, trace, and Frobenius norm of
X are denoted by XT , X†, tr(X), and ‖X‖F , respectively. The
conjugate, argument, and modulus of a complex number x are
given by x∗, arg(x), and |x|, respectively. Re(x) and Im(x)
return real and imaginary parts of complex number x. Also,
‖·‖, �, and (·)� represent the Euclidean norm, Hadamard (i.e.,
element-wise) product and Hadamard power operators. The
operator diag(X) returns a vector with the diagonal elements
of square matrix X and the operator Diag(x) returns a diagonal
square matrix with the elements of x.

II. SYSTEM MODEL

A. Signal Model

The dual-use radar and communication system operates
at the automotive radar spectrum and transmits a wideband
OFDM pulse in each pulse repetition interval (PRI) carrying
communication symbols modulated with phase-shift keying
(PSK). After the transmission of P pulses that are separated
with zeros without cyclic prefix in a coherence processing
interval (CPI), the radar receiver processes the reflected pulses
by pulse-Doppler processing to generate the range-Doppler
image of the illuminated environment [6], [17]. The cyclic
prefix is omitted to prevent ambiguities with the correlation-
based processing [6], [7]. The transmitted baseband OFDM
pulse with N subcarriers denoted as x̃ = [x̃1 . . . x̃N ] ∈ CN
in the time domain and it is generated by precoding symbols
with the inverse discrete Fourier transform (IDFT) [20] as

x̃ = W†Nx, (1)

where WN ∈ CN×N is the unitary DFT matrix for the N -
point Fourier Transform and x ∈ CN is the OFDM signal in
the frequency domain. Elements in x correspond to complex
symbols in subcarriers and it is expressed as

x = a� s = Diag(s)a, (2)
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where s ∈ CN is the modulated symbols comprised of Np pilot
symbols and Nd data symbols. The pilot symbols are included
in s for channel estimation at the communication receiver.
Our goal is to design the subcarrier coefficients denoted with
a ∈ CN in (2) for optimal power allocation and phase coding
considering both radar and communication performance. The
transmitted symbols s is formulated as s = Ppp+Pdd, where
p = [p1, p2, ..., pNp ]T is pilot symbols, d = [d1, d2, ..., dNd

]T

is data symbols. Pp ∈ {0, 1}N×Np and Pd ∈ {0, 1}N×Nd

are the permutation matrices for the placement of pilot and
data symbols in the frequency domain, respectively. Every
column of P contains only single 1 where the row indices
of 1s indicate the indices of the corresponding symbols in s.
Thus, the OFDM signal in the frequency domain is formulated
as

x = Ppxp + Pdxd,

where xp = ap � p and xd = ad � d. So, ap and ad are
the subcarrier coefficients for pilot and data symbols, where
ap = PT

p a and ad = PT
d a.

B. Radar Channel Model

For the narrowband signal model, the multiple scatterers
on a target are not resolved in range, so their response
is contained in a single range cell. Thus, the point target
assumption is appropriate to model the response of the targets
for narrowband radar signals. However, transmitting a signal
with a very large bandwidth reduces the size of each range
cell (i.e., improves range resolution). As the wideband radar
signal resolves each scatterer in range with improved range
resolution, the response of the target vehicle extends to several
range cells [12]. Therefore, the extended targets are modeled
with multiple scatterers when wideband transmission is used.
Similar to multi-path propagation in a communication channel,
the extended target acts like a frequency-selective channel that
is represented with a complex finite impulse response (FIR)
vector denoted by g ∈ CL, where L is the order of target
impulse response (TIR, i.e., target’s radar signature) whose
total reflecting power scales based on target’s distance.

In practice, the TIR is initially unknown but it can be
estimated with minimum mean squared error (MMSE) esti-
mator [21] by using prior information about its mean µg and
covariance Σg . If no prior information is available, it can be
estimated with a maximum likelihood estimator (MLE) [16].
Since the target’s relative velocity and the total duration of
OFDM pulses are relatively small, we assume that the target
is quasi-stationary and its TIR is nonfluctuating over multiple
CPIs [9], [13]. Nevertheless, the automotive radar transceiver
can still track the changes in the TIR and use the latest
estimate for better detection performance as long as the target’s
response is not masked by clutter plus noise components.

Since the response of the target spans L range cells, M =
N +L− 1 samples are taken with the receive antenna, which
is colocated with the transmit anteanna, in each observation
window to decide whether the target is present. In the range
cells of interest, where the target is located, the dominant
scatterers are from the target. However, clutter return and
noise are also received in the same range cells along with

the target’s response. The received discrete baseband signal is
denoted by ỹ ∈ CM and it is the sum of the reflected signals
from the target and the clutter return c̃ ∈ CM plus thermal
noise component ñ ∈ CM as defined in [16] in the frequency
domain. In matrix form, the received wideband signal ỹ in the
observation window is formulated as

ỹ = Tgx̃ + c̃ + ñ,

where Tg ∈ CM×N is a lower triangular Toeplitz matrix are
defined as

Tg =



g1 0 ··· 0

... g1
. . .

...

gL

...
. . . 0

0 gL
. . . g1

...
. . . . . .

...
0 ··· 0 gL


(3)

for linear convolution of the transmitted OFDM signal with
the target’s scattering coefficients. We assume that the clutter
return c̃ is modeled as a zero-mean complex wide-sense
stationary (WSS) Gaussian process with known covariance
Σc̃ ∈ HM , which has a Toeplitz structure. ñ ∈ CM is a
zero-mean circularly symmetric complex Gaussian noise with
covariance Σñ = E[ññ†] = σ2

ñIM, where σ2
ñ is the known

noise variance. Since the automotive radar spectrum is solely
dedicated to vehicles and mmWave signals experience high
attenuation, the interference in the radar channel is composed
of the complex Gaussian clutter return plus noise components.

After ỹ is acquired in the observation window, it is pro-
cessed at the radar receiver with a receive filter denoted with
f̃ ∈ CM . The radar signal-to-clutter-plus-noise ratio (SCNR)
at the output of the receive processing filter is formulated as

Ψ(x̃, f̃) =

E
[∣∣∣̃f†Tgx̃

∣∣∣2]
E
[∣∣∣̃f†c̃∣∣∣2]+ E

[∣∣∣̃f†ñ∣∣∣2] . (4)

which determines the detection performance of the radar
receiver. Thus, our goal is to maximize the the radar SCNR
that can be formalized equivalently for fixed signal as

min
f̃∈CM

f̃
†(

Σc̃ + Σñ

)̃
f s.t. f̃

†
Tgx̃ = 1,

This problem is the well-known the minimum variance dis-
tortionless response (MVDR) beamformer design problem
[22]. Hence, the optimal receive processing f̃

?
is obtained

in closed-form as f̃
?

= κf
(
Σc̃ + Σñ

)−1Tgx̃, where κf =

(x̃†T†g(Σc̃ + Σñ)−1Tgx̃)−1 is the normalization factor which
can be omitted since it does not affect the objective function
in (4).

By substituting f̃
?

into (4), we reformulate the radar SCNR
as

Ψ(x̃) = x̃†T†g
(
Σc̃ + Σñ

)−1Tgx̃ (5)

that depends on the transmitted dual-use waveform denoted
with x̃. As defined in [15], the probability of detection is an
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increasing function of SCNR that is formulated in closed-form
as

PD = Q
(√

2Ψ(x̃),
√
−2 lnPFA

)
, (6)

where Q(·, ·) denotes Marcum Q function and PFA is the
desired value of the probability of false-alarm. Therefore,
optimizing the subcarrier coefficients a allows us to improve
the radar detection performance of the JARC system. While
we focus on designing the waveform for a single target in
this work, the proposed design methods can be extended to
design multiple waveforms for multiple targets where the joint
transceiver employs diverse adaptive waveforms and detectors
in a multiplexing manner to track the targets.

Since the transmitted waveform x̃ is known at the joint radar
transceiver, it operates as a cognitive radar that constantly
estimates the TIR and the interference (i.e., clutter plus noise)
statistics before optimizing the subcarrier coefficients [16],
[18]. While the received signal is the sum of the reflections
from the target and interference, it is assumed that the reflected
signal is stronger than the interference. Thus, the radar receiver
can distinguish whether range cells contain a target to estimate
the TIR or interference statistics as discussed in [16], [18] and
references therein. Once the TIR and interference statistics
are attained, this information can be exploited to increase
the radar SCNR for improved detection performance and
maximum operating range. Thus, our goal is to design the
dual-use waveform to improve the radar performance based
on available information about the target and radar channel
subject to constraints for communication performance and
transmit power limitations.

C. Communication Channel Model

In this part, we will formulate the performance metrics
for channel estimation error and communication capacity for
the joint waveform. The vehicular channel is modeled as a
doubly-selective channel due to high mobility and multi-path
propagation. But, the time-selectivity due to relative velocities
can be ignored considering the maximum Doppler spread is
low and the coherence time Tc is longer than symbol time
Ts. Also, the channel is assumed to be invariant for a symbol
duration and variant for longer periods where the change in
the channel can be estimated via pilot symbols in OFDM
waveform. By omitting the time-varying property, the FIR of
the communication channel is given as h = [h1, h2, . . . , hJ ]T ,
where each channel tap hj is modeled as a complex Gaussian
with zero-mean and variance of σ2

h.
In matrix form, the received OFDM signal z is formulated

as
z = Hx + n,

where H = Diag(WNJh) = Diag(H0, H1, ...,HN ), WNJ

is the N-point DFT matrix with the size of (N × J), and
the additive noise components in n are independent complex
Gaussians with zero-mean and variance of σ2

n. To decode
the received symbols correctly and acquire the CSI, the
communication receiver uses pilot symbols to estimate the
channel’s FIR h with a linear minimum mean squared error

(LMMSE) estimator. The estimated channel FIR denoted with
ĥ is sent back to the transmitter. Since PSK modulated symbols
are transmitted through subcarriers, the channel capacity with
transmitter CSI can be approximated with a saturation limit
denoted with Csat as

R(xd) =

Nd∑
i=1

∆f min

{
log2

(
1 +
|xd,i|2|Ĥi|2

σ2
n

)
, Csat

}
,

(7)
where min{., .} denotes component-wise minimum operator,
and Csat = log2(K) bits/s/Hz for K-PSK modulation as
proposed in [23].

To formulate the effective SNR and optimal power alloca-
tion between data and pilot subcarriers, we first derive the
mean squared error (MSE) of the channel estimator. The
received pilot symbols is expressed as zp = Hp(ap�p)+np =
Hpxp + np, where Hp = PT

p HPp. This equation can be
simplified as zp = xpPT

p WNJh + n, where xp = Diag(xp)
and zp is the input of the channel estimator. As derived in
[24], the LMMSE channel estimator for the pilot symbols is

ĥ =
1

σ2
n

(
Σ−1h +

1

σ2
n

W†pJx†pxpWpJ

)−1
W†pJx†pzp,

where Σh = E[hh†], WpJ = PT
p WNJ with size of (Np × J)

and estimation error is eh = h− ĥ. The MSE of the LMMSE
estimator is given in [24] as

ξ = tr
(
E[ehe

†
h]
)

= tr

((
Σ−1h +

1

σ2
n

W†pJx†pxpWpJ

)−1)
.

(8)
As shown in [20], the MSE of the estimator is minimized

when E[ehe
†
h] in (8) is a diagonal matrix. Thus, we allocate

equal power to pilot symbols and place them equally spaced
in frequency to obtain a diagonal matrix E[ehe

†
h]. Then, the

MSE due to estimation error becomes

ξ =
Jσ2

hσ
2
n

σ2
n + Epσ2

h

, (9)

where Ep = a†pap is the total energy of pilot symbols. Imper-
fect channel estimation at the receiver reduces the effective
communication SNR.

Based on [20, (25)], effective SNR is expressed as

SNReff =
EdJσ

2
h − Edξ

Edξ + σ2
nNd

(10)

in terms of ξ, where Ed = a†dad is the total energy of data
symbols. After replacing (9) in (10) and solving its derivative
equals to zero, optimal power allocation parameter denoted as
γopt = Ed/(PtN) is derived as

γopt =

(
1 +

√
1−

(Nd − J)σ2
hPtN

NdNPtσ2
h +Ndσ2

n

)−1
, (11)

where Pt is the total signal power equal to (Ed + Ep)/N .
With CSI, the transmitter adjusts the total energy allocated

to data and pilot subcarriers according to γopt = Ed/(PtN) to
maximize effective SNR. Since equally powered pilot symbols
achieve the minimum MSE, the total pilot energy Ep = (1−
γopt)PtN is shared equally between pilot subcarriers.
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III. PROBLEM FORMULATION

In this section, we focus on designing an optimal joint
waveform that maximizes the received radar SCNR. Thus,
we aim to maximize (4) in terms of x̃ while preserving
the PSK modulation and meeting the requirements of the
communication system. For communication, we want to min-
imize the MSE in channel estimation and maximize effective
SNR with CSI at the transmitter. To maximize the effective
communication SNR (10), the JARC system allocates power
according to the optimal power allocation γopt derived in (11).

Moreover, equally powered and spaced pilot symbols
achieve the minimum MSE for a given total power as ex-
plained in Section II-C. Based on this observation, we choose
our permutation matrix Pp to place pilots periodically in
frequency and formulate a constraint as x∗p�xp = Ep/Np1Np

to force equal power allocation. Also, we limit the maximum
transmit power by x†x ≤ PtN. Regarding the performance
metrics of radar and communication, we present the op-
timization problem for joint OFDM waveform design that
maximizes the expected detection performance while comply-
ing with communication performance constraints for channel
estimation error and capacity. The optimization problem is
formulated as

max
x̃∈CN

E
[
x̃†T†g

(
Σc̃ + Σñ

)−1Tgx̃
]
,

s.t. C1 : R(xd) ≥ Rmin,

C2 : x∗p � xp = Ep/Np1Np ,

C3 : x†x ≤ PtN,

C4 : l � x∗ � x � u,

(P1)

where Rmin in C1 is the minimum communication rate re-
quirement for (7), C2 ensures the equal power allocation
for pilot symbols for accurate channel estimation, C3 is the
transmit power constraint, and 1Np

is an all-one vector. Also,
l,u ∈ RN≥0 are the lower and upper power limits on each
frequency band to comply with power limitations, respectively.

Notice that the optimization variable x̃ contains PSK mod-
ulated complex symbols s for communication as shown in
(2). Since each symbol in s has unit-energy with phase
modulation, we design complex coefficients in a by restricting
their phase according to the phase of symbols in s. Therefore,
we introduce phase constraints to limit the phase of complex
subcarrier weights and to allow the communication receiver to
demodulate received symbols correctly without the knowledge
of a. However, we note that the phase values of subcarrier
weights should be lower than the minimum phase difference
of the employed PSK modulation (e.g., < π/4 for quadrature
phase-shift keying (QPSK)). Although the use of complex
weights enlarges the feasible region compared to real-valued
weights, it also reduces the minimum distance between con-
stellations and deteriorates the communication performance.

With the phase constraint, we reformulate (P1) as

max
a∈CN

fo(a) = a†Qa,

s.t. C1 : R(ad) ≥ Rmin,

C2 : a∗p � ap = Ep/Np1Np
,

C3 : a†a ≤ PtN,

C4 : l � a∗ � a � u,
C5.1 : arg(an) ∈ [−θ, θ] ∀n ∈ Id,
C5.2 : arg(an) = 0 ∀n ∈ Ip,

(P-O)

where θ is the maximum allowed phase offset and Q =

WNT†g
(
Σc̃ + Σñ

)−1TgW†N �E[ss†]∗. Since pilot subcarriers
carry symbols that are fixed and known at the communication
receiver, the phase of pilot subcarrier weights are set to zero
in C5.2, where Ip denotes the set of pilot subcarriers indices.
Therefore, the phase constraint is used for data symbols whose
set of subcarrier indices is denoted with Id in C5.1.

For this problem, we consider two cases: the coefficients
of a are designed (i) with zero-phase constraints (i.e., θ = 0)
in the domain of non-negative real numbers RN≥0 as power
allocation weights and (ii) with non-zero phase constraints
(i.e., θ ∈ [0, π)) as phase codes. Moreover, for case (i),
we can treat communication symbols in s as either fixed
variables or independent and identically distributed (i.i.d.)
random variables with E[ss†] = IN . While using deterministic
s allows optimizing the actual SCNR, it requires the problem to
be solved for every OFDM pulse. On the other hand, random s
assumption lowers the overall computational complexity since
the designed coefficient can be used as long as the estimated
TIR and communication CSI is available and valid to improve
the expected SCNR.

(P-O) is a quadratically constrained quadratic programming
(QCQP) problem with a nonlinear capacity constraint in C1

and phase constraint in C5. It is a non-convex problem due to
the maximization convex quadratic function and non-convex
capacity constraint C1. Thus, obtaining a globally optimal
solution is difficult to achieve efficiently. To recast (P-O) as
a convex problem, we propose relaxation and approximation
methods. Then, we resort to interior-point algorithms to obtain
near-optimal solutions in polynomial time as evaluated in
[25] for convex second-order cone programming (SOCP) and
semidefinite programming (SDP) problems.

IV. ADAPTIVE JOINT WAVEFORM DESIGN FOR θ = 0

A. Semidefinite Relaxation (SDR) Method

In this section, we formulate and solve (P-O) as an SDP
problem based on the semidefinite relaxation (SDR) method.
The SDRmethod is studied for different NP-hard and non-
convex problems in literature [26] to obtain near optimal
solutions efficiently. It is also evaluated for Boolean quadratic
programming (BQP) and non-convex quadratically constrained
quadratic programming (QCQP) problems in [19].

The SDP formulation relies on the fact that quadratic
functions of a are linear in the matrix A = aa† and can be
expressed with trace operations, i.e., a†Qa = tr

(
QA
)
. To cast
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(P-O) as an SDP problem, we change the optimization variable
to A = aa† as

max
A∈RN×N

tr
(
QA
)
,

s.t. C1 : R
(
α
�1/2
d

)
≥ Rmin,

C2 : PT
p diag(A) = Ep/Np1Np ,

C3 : tr(A) ≤ PtN, C4 : l � diag(A) � u,
C5 : A � 0, C6 : rank(A) = 1,

(P-SDP)
where αd = PT

d diag(A). While the constraints in C1−5
are convex in terms the semidefinite variable A, the rank-
one constraint in C6 is the equivalent of A = aa† and it is
a non-convex constraint. The SDR method is employed by
dropping the rank-one constraint to obtain a relaxed convex
SDP problem. However, the sum of logarithms constraint C1

is not an SDP constraint. Thus, we first reformulate C1 as

Rgm(αd) =

(
Nd∏
i=1

min
{

1 + αd,iλh,i, 2Csat
}) 1

Nd

≥ 2
Cmin
Nd ,

(12)
where Cmin = Rmin/∆f and λh,i = |Ĥi|2/σ2

n. In fact, Rgm

is the geometric mean formulation of the function in (7).
Since (12) is a product of nonnegative affine functions, C1

of (P-SDP) is recast as a second-order cone constraint similar
to formulation in [27, Section 2.3] and converted into an SDP
constraint using the Schur complement lemma [27].

Hence, we have a relaxed convex SDP problem without the
rank-one constraint as

max
A∈RN×N

tr
(
QA
)
,

s.t. C1 : Rgm (αd) ≥ Rmin, C2, C3, C4, C5,
(P-SDR)

where C2−5 from (P-SDP) are not changed. The problem in
(P-SDR) is the relaxed convex SDP formulation of the original
problem in (P-O) for θ = 0. The convex SDP problems can
be solved in polynomial-time using interior-point algorithms
[19] to obtain the optimal solution A?. If A? is a rank-one
matrix, then the optimal weights a? of the original problem
can be obtained as a? =

√
λA,1vA,1 where λA,1 and vA,1

denote the largest eigenvalue and corresponding eigenvector
of A?, respectively.

However, as discussed in [19], the interior-point algorithm
always returns a solution with the maximal rank. Although
a? =

√
λA,1vA,1 is the best rank-one approximation of

a high-rank solution A?, it is a suboptimal and possibly
infeasible solution. On the other hand, a feasible solution can
be obtained by iteratively solving the SDP with a rank penalty
as proposed in [28]. But still, the iterative approach returns
a suboptimal solution at the cost of higher computational
complexity. With lower computation complexity, we extract
a solution as a? = diag(A?)�1/2 that is suboptimal yet a
feasible solution regardless of the rank of A?.

B. Circulant Approximation (CA) Method

Although the interior-point algorithms solve the convex SDP
problem (P-SDR) in polynomial time, the time complexity is

still high due to the polynomial increase in the dimension
of SDP variables and constraints. As it has been discussed in
[19], the SDR approach does not guarantee finding a low-rank
result and the interior-point algorithm will return a higher rank
solution. Thus, we need more time-efficient approaches.

In this section, we show that quadratic objective function
with Toeplitz matrix structures can be formulated as a linear
function by resorting to a circulant approximation method and
by leveraging the properties of circulant matrices. With this
approach, our goal is to reduce the dimension of variables
and constraints by exploiting the Toeplitz structures in T i+n =
Σc̃ + Σñ and the objective function. For this formulation, we
also assume that E[ss†] = IN by treating s as random with
unit-energy symbols.

While Toeplitz matrices are extensively used in signal pro-
cessing and information theory, its special instance called the
circulant matrices provides a more structured form that can be
diagonalized by the DFT matrix [29]. Furthermore, it has been
shown in [30] that a Toeplitz matrix T can be approximated
into circulant form C in the sense of minimizing ‖T − C‖F
and asymptotically equivalent in terms of eigenvalues. Hence,
we first employ the circulant approximation method on T i+n

in which row entries of its circulant approximation Ci+n are
defined as

νi =
(M − i)τi + iτ−(M−i)

M
, i = 0, . . . ,M − 1, (13)

where τi correspond to ith diagonal element of T i+n. Using
the circulant approximation of Σc̃ + Σñ, we express the
objective function of (P-O) as

f ′o(a) = a†WNT†gC
−1
i+nTgW†Na. (14)

Lemma 1. The inverse of an Hermitian circulant matrix C is
also an Hermitian circulant matrix.

Proof. Since the circulant matrices are diagonalizable with the
DFT, its inverse is expressed as

C−1 =
(
W′MDCWM

)−1
= W′MD−1C WM ,

where WM ∈ CM×M is the M -point unitary DFT matrix, and
DC ∈ RM×M is a diagonal matrix. As D−1C is also diagonal
matrix, C−1 is an Hermitian circulant matrix.

Since C−1i+n in (14) is a Hermitian circulant matrix based
on Lemma 1, the matrix product T o = T†gC

−1
i+nTg in (14) is

also in Toeplitz form. Thus, we can compute the circulant
approximation of T o denoted with Co by using (13). As
circulant matrices are diagonalizable with the DFT matrix, the
objective function of (P-O) is formulated as

f ′′o (a) = a†WNCoW
†
Na = a†Λoa = λTo α, (15)

where Λo ∈ RN×N is a diagonal matrix, λo = diag(Λo), and
α = a�2. Using (15), we reformulate (P-O) as

max
α∈RN

λTo α,

s.t. C1 : Rgm (αd) ≥ Rmin, C2 : αp = Ep/Np1Np
,

C3 :

N∑
i=1

αi ≤ PtN, C4 : l � α � u,

(P-CA)
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where αd = PT
dα, and αp = PT

pα.
The problem in (P-CA) is a convex SOCP problem with

a linear objective function, linear constraints C2−4, and a
geometric mean constraint C1, which can be formulated as
a SOCP constraint as explained in Section IV-A. Compared
to (P-SDR), the dimension of variables and constraints are
reduced and do not increase polynomially due to the linear
formulation of the objective function with the circulant ap-
proximation. To find the optimal solution α? for (P-CA), we
also use the interior-point algorithm for SOCP which has better
time complexity compared to SDP [31]. Since our original
variable a is a non-negative real vector, we can compute the
optimal coefficients as a? =

√
α?.

C. Sequential Convex Approximation (SCA) Method

With the CA method, we propose an approximation by
exploiting the Toeplitz structured matrices that are formed due
to the linear convolution operation and the WSS property of
the interference. Compared to the CA, the SDR provides a
generalized solution without relying on any assumptions about
the structure of matrices. Since SDR is a generalized approach,
it can be used to obtain close to optimal power allocation
weights for the scenarios with arbitrary interference covariance
and deterministic communication symbols s at the expense
of higher time complexity. Although both the CA and SDR
approaches find feasible power allocation weights that improve
the radar performance, both approaches are restricted in terms
of the requirements of matrix structures and semidefinite
variables, respectively.

To address the deficiencies of other approaches, we propose
a sequential convex approximation (SCA) as a generalized
solution that is more computationally efficient than SDR and
can handle arbitrary constraints that are affine in terms of
subcarrier coefficients a. The problem in (P-O) is a non-
convex problem due to the maximization of convex objective
function and the non-convex constraint in C1. As studied in
[32], local optimal solutions can be obtained for non-convex
problems by solving its locally convex approximations sequen-
tially (i.e., sequential convex programming). Therefore, we
resort to the first-order Taylor approximation to linearize the
non-convex parts of the problem. The Taylor approximation
of the objective function of (P-O) on a point a(k), which
is the solution obtained at kth iteration of SCA, defined
by f̄o(a)(k) = fo

(
a(k)

)
+ ∇fo

(
a(k)

)T (a− a(k)
)
, where

∇fo
(
a(k)

)
= 2Qa(k).

While the the communication capacity constraint in (12)
is convex in terms of αd, it is a non-convex constraint in
ad =

√
αd. Therefore, we linearize the inside of the geometric

mean function in (12) by using the Taylor approximation as

R̄(k)
gm(ad) =

(
Nd∏
i=1

min
{
ρ̄
(
ad,i, a

(k)
d,i

)
, 2Csat

}) 1
Nd

≥ 2
Cmin
Nd ,

(16)
where

ρ̄
(
ad,i, a

(k)
d,i

)
= 2a

(k)
d,iλh,iad,i − a

(k)2
d,i λh,i + 1.

Algorithm 1: Sequential Convex Approximation

Input: a(0), ηsca: maximum no. of iterations, εsca:
stopping tolerance

Output: a?: designed subcarrier coefficients
1 for k ← 0 to ηsca do
2 a(k+1) ← Solve (P-SCA-SOCP) for (k)
3 if

∣∣f (a(k+1)
)
− f

(
a(k)

)∣∣ /f (a(k)) < εsca then
4 a? ← a(k+1) and break
5 end
6 end
7 return a?

With the Taylor approximation, the capacity constraint (16) is
a convex second-order cone constraint as explained in Section
IV-A. Based on given Taylor approximations and second-order
cone formulations, we formulate the subproblem of SCA as

arg max
a∈RN

f̄o(a)(k),

s.t. C1 : R̄(k)
gm(ad) ≥ 2Cmin/Nd , C2 : ap =

√
Ep/Np,

C3 : a†a ≤ PtN, C4 :
√

l � a �
√

u,
(P-SCA-SOCP)

which is a convex SOCP problem which can be solved
with interior-point algorithms similar to the SDP problems.
Since we resort to local Taylor approximations, we start with
a feasible initial point of a(0) to solve the subproblem in
(P-SCA-SOCP). Then, we sequentially solve (P-SCA-SOCP)
until convergence based on a stopping criterion described in
Algorithm 1 for a maximum number of iterations ηsca and
tolerance εsca for relative change in objective value.

Although CA and SDR methods can find sub-optimal
solutions by relying on numerical approximation and relax-
ation approaches, they do not provide any guarantee that the
obtained solution is a Karush-Kuhn-Tucker (KKT) stationary
point of the original problem. While providing exact con-
vergence properties with SCA methods is hard to achieve
for non-convex problems, we show that SCA converges to a
suboptimal solution in the numerical results. Since we provide
inner approximations with the SCA approach, it converges to a
KKT stationary point, which can be a local or global optimum,
as shown in [32].

D. SCA with Peak-to-Average Power Ratio (PAPR) Constraint

While we propose methods to design optimal power allo-
cation weights, the designed weight can increase the peak-
to-average power ratio (PAPR) of the joint OFDM waveform
that will cause nonlinear distortions and spectral spreading
due to the nonlinearity of power amplifiers at high power
[33]. Although various PAPR reduction schemes have been
proposed in literature based on clipping, filtering, and coding
methods, these schemes incur either additional distortions
that increase in the bit error rate (BER) or computational
complexity and signaling overhead [33], [34]. Therefore, in
this section, we formulate a convex PAPR constraint that can
be integrated into the SCA problem to limit the PAPR of the
adaptive waveform.
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We first define the PAPR constraint for the joint OFDM
waveform as

max
1≤n≤N

|x̃n|2

1/N
∑N
i=1 |x̃i|

2
≤ γpapr, (17)

where γpapr ∈ R is the desired PAPR limit and x̃n ∈ C is the
nth sample of the OFDM signal in the time domain as defined
in (1). The PAPR constraint in (17) is equivalently formulated
without the max operator as |x̃n|2 ≤ γpapr

N

∑N
i=1 |x̃i|

2 for all
time domain samples where n ∈ {1,..., N}. Now, we can
formulate the PAPR constraints in quadratic form as

a†Diag(s†)WN

(
Γn −

γpapr
N

IN
)

W†NDiag(s)a ≤ 0, (18)

for n ∈ {1,..., N} where Γn is a sparse matrix with only
single one at nth element of its main diagonal to indicate the
power of nth time domain sample.

However, the constraints in (18) are non-convex since the
matrices of quadratic forms are indefinite. Hence, we first
decompose the matrices of quadratic form into a sum of
positive semidefinite and negative definite components as
Pn = P+

n + P−n , respectively. Since negative definite matrices
result in non-convexity, we resort to their convex approxi-
mations by linearizing negative definite quadratic components
(i.e., a†P−n a) on current iterate of a(k) as

a†P+
n a + 2Re

(
a(k)†P−n a

)
− a(k)†P−n a(k) ≤ 0, (19)

where Pn = Diag(s†)WN

(
Γn − γpapr

N IN
)

W†NDiag(s). By
incorporating (19) into (P-SCA-SOCP), we ensure that the
PAPR is below the predefined limit γpapr while designing the
power allocation coefficients (18) with Algorithm 1.

V. PHASE CODE DESIGN FOR DUAL-USE WAVEFORM

With the methods proposed in Section IV, we solve the
problem that is originally defined in the complex domain
without the phase constraint C5 of (P-O). Thus, we design
the optimal coefficients in a as power allocation coefficients
without disturbing the phase modulation of complex symbols
in s. However, we can extend the feasible region of the
problem and increase the achievable SCNR by designing the
coefficients of a in the complex domain. Nevertheless, we limit
the phase of complex coefficients to allow demodulation of s
without a.

In this section, we solve the original problem in (P1) with
the phase constraint. Without the phase constraint, it is been
shown that a complex quadratic problem is NP-hard [35]. In
radar literature, similar phase constraints are introduced as
similarity constraint to design radar codes that are similar to
a prefixed sequence. In [15], a method based on the SDR
and Gaussian randomization is proposed to design constant
modulus radar codes with a similarity constraint. The Gaussian
randomization procedure [19] is employed to generate random
codes by using the SDR solution as the covariance matrix.
However, an excessive number of random samples are required
to acquire a near-optimal feasible solution, because randomly
generated codes require scaling for feasibility as pointed out
in [36].

In our preliminary work in [1], we proposed a two-step
approach to design optimal power allocation (i.e., modulus)
and phase (i.e., argument) codes for complex subcarriers
coefficients. However, the obtained solutions were suboptimal
due to relaxation of the non-convex problem with the non-
convex unit modulus constraint. In this work, we improve the
two-step approach by introducing an additional step to restrict
the feasible region closer to the unit circle without violating
convexity. Furthermore, we propose another approach to de-
sign optimal phase codes sequentially for each coefficient by
leveraging the Hermitian property of matrices.

A. 3-Step Phase Code Design with SDR

In this section, we present a three-step approach for the
original problem under phase constraint in (P-O) by exploiting
the solution acquired with the SCA, CA methods as the
first step. As shown in (P-SDR), the quadratic functions
and constraints can be linearized with the SDP formulation.
However, the nonlinear phase constraint C5 in (P-O) prevents
linear formulation.

1st Step: In Section IV-B, we show that power coefficients
a can be found efficiently in the real domain. In the first step,
we assume that θ = 0 and find optimal a? ∈ RN≥0 by solving
the problem in the real domain. With a?, we have a feasible
power allocation for each subcarrier that satisfies constraints
C1−4 of (P-O). Hence, we simplify the original problem by
changing the domain as

max
u∈CN

fpcd(u) = u†Qau,

s.t. C1 : |un| = 1,

C2.1 : arg(un) ∈ [−θ, θ] ∀n ∈ Id,
C2.2 : arg(un) = 0 ∀n ∈ Ip,

(P-PCD)

to design optimal phase codes. The matrices in the objec-
tive function are defined as Qa = Diag(a†s)WNT†g

(
Σc̃ +

Σñ

)−1TgW†NDiag(as) where as = a? � s. Notice that
(P-PCD) is a quadratic programming problem with a search
space restricted to an arc on the unit circle. In other words, we
try to find the best possible phase codes for complex subcarrier
coefficients to maximize the radar SCNR.

2nd Step: (P-PCD) is a non-convex problem due to the
unit modulus constraint C1 and the maximization of a convex
quadratic function. To formulate (P-PCD) as an SDP problem,
we first express C2.1 and C2.2 equivalently as

C2 : Re(u) � cos(θ), (20)

in the vector form, where θ ∈ RN is the phase constraint
limits for the subcarriers as shown in Fig. 2-(a). Thus, we
reformulate (P-PCD) as an SDP problem by introducing an
SDP variable U = uu† with a larger feasible region as

max
U,u

tr
(
QaU

)
,

s.t. C1 : diag
(
U
)

= 1N ,
C2 : Re(u) � cos(θ),

C3 : U = uu†,

(P-PCD2)
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While the objective function, C1, and C2 in (P-PCD2) are
linear, C3 is a non-convex constraint. Similar to the SDR, we
relax C3 to U � uu†. By using the Schur complement lemma,
C3 is reformulated as an SDP constraint:

[ U u
u† 1

]
� 0

With the relaxation, a convex feasible region is defined by
(20) and the inside of the unit circle as illustrated in Fig. 2(a)
with green color. Hence, we have a convex SDP problem that
is solved by the interior-point method to obtain the solution
u? for (P-PCD2). Then, the solution for (P-PCD) is acquired
as u′n = u?n/|u?n| in which the coefficients are normalized for
feasibility.

3rd Step: Nevertheless, the obtained solution is a suboptimal
solution for (P-PCD) due to the enlarged feasible region in
(P-PCD2). To improve the optimality of the obtained solution,
we formulate a problem in the third step with more restricted
search space closer to the unit circle based on the obtained
first solution u′. The restricted feasible region is a convex
circular segment inside the unit circle defined by a secant line
expressed as

Ωn = sin(θ)Re(un)− sign
(
Im(u′n)

)(
cos(θ) 9 1

)
Im(un)

� sin(θ) (21)

that is also illustrated in Fig. 2(b) in which two secant lines
are drawn for the positive and negative signs of the imaginary
part of u′. Notice that the search space for (P-PCD2) is shrunk
based on the sign of Im(u′) to search for optimal phase codes
closer to the original feasible region in (P-PCD). Finally, we
formulate the problem for the third step as

max
U,u

tr
(
QaU

)
,

s.t. C1 : diag
(
U
)

= 1N ,
C2.1 : Ωn � sin(θ) ∀n ∈ Id,
C2.2 : un = 1 ∀n ∈ Ip,
C3 :

[ U u
u† 1

]
� 0,

(P-PCD3)

where Ωn is defined in (21). The problem (P-PCD3) is a con-
vex SDP problem with a restricted feasible region compared to
(P-PCD2) and it can be solved by the interior-point algorithm
to find the optimal u′′. Then, the unit modulus coefficients for
(P-PCD) are obtained as u?n = u′′n/|u′′n|. Hence, the optimal
complex subcarrier coefficients are calculated as a = a?�u?,
where a? is the real subcarrier coefficient obtained by the CA
or SCA algorithm in the first step.

Imaginary

Real

(a) (b)

Imaginary

Real

Fig. 2. The feasible regions for the PCD problems.

Algorithm 2: Sequential Phase Code Design

Input: as: power allocated symbols, u(0): initial phase
code, εseq: stopping tolerance,

Output: u?: designed phase codes
1 k ← 0

2 Qa ← Diag(a†s)WNT†g
(
Σc̃ + Σñ

)−1TgW†NDiag(as)
3 do
4 for n← 1 to N do
5 Compute q̂0n, q̂1n for Qa and u(k) in (23)
6 ψ?n ← Solve (P7)
7 u?n ← exp (jψ?n)
8 end
9 u(k+1) ← u?, k ← k + 1

10 while
∣∣fpcd(u?)− fpcd

(
u(k)

)∣∣ /fpcd (u(k)
)
< εseq

11 return u?

B. Sequential Phase Code Design

With the 3-step approach, we design optimal phase codes
by restricting the search space and then applying to both SCA
and SDR methods. However, the time complexity is high since
we solve two SDP problems with the interior-point algorithm.
In this section, we propose a sequential phase code design
method based on [37] to solve quadratic problems with the
unit modulus and phase constraint in (P-PCD) with lower time
complexity. A quadratic function of u can be expressed in
terms of nth coefficient as

u†Qu + c = Re

(
un

N∑
m=1
m6=n

2qmnu
∗
m

)
+

N∑
k=1
k 6=n

N∑
l=1
l 6=n

u∗l qlkuk

+ qnn|un|2 + c, (22)

where Q is a positive semidefinite Hermitian matrix and c is an
arbitrary constant. In more compact form, (22) is reformulated
as

u†Qu + c = |q̂1n| |un| cos
(
φ1n + ψn

)
+ q̂0n (23)

where q̂0n =
∑N

k=1
k 6=n

∑N
l=1
l 6=n

u∗l qlkuk+qnn+c, φ1n = arg(q̂1n),

q̂1n =
∑N

m=1
m6=n

2qmnu
∗
m, and ψn = arg(un).

By following the formulation in (23) and by using |un| = 1,
we reformulate the quadratic forms in (P-PCD) in terms of nth
coefficient’s phase ψn as

arg max
ψn∈R

|q̂1n| cos
(
φ1n + ψn

)
+ q̂0n

s.t. C1 : ψn ∈ [−θn, θn],
(P7)

where θn is the phase limit for the nth subcarrier as defined
in C2.1 and C2.2 of (P-PCD) for data and pilot symbols,
respectively. Since the objective function in (P7) is a cosine
function, its maximum is attained at ψ?n = −φ1n, if −φ1n is
in the feasible set of [−θn, θn]. Otherwise, the optimal phase
code is found at the boundaries of the feasible set that is
either ψ?n = −θn or ψ?n = θn based on the attained value
of cos (φ1n + ψ?n).
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This approach is sequentially repeated for all un until
convergence based on a stopping criteria as described in
Algorithm 2. The algorithm stops if the relative change in
objective value is lower than given tolerance εseq. Although
the phase coefficients in different subcarriers are coupled in the
quadratic objective function (22), the sequentially optimizing
phase codes in different subcarriers also improves the objective
value until it converges to a local or the global maximum
depending on the initial starting point [38]. Since the value
of the objective function of (P-PCD) is non-decreasing and
bounded in each step, the solution will converge to an optimum
according to the monotone convergence theorem [39].

VI. PAPR REDUCTION ROUTINE

In Section IV-D, we introduce a convex PAPR constraint
for the SCA method to limit the PAPR of the optimal joint
OFDM waveform. But still, the phase code design methods
proposed in Section V may increase the PAPR of the wave-
form. Therefore, in this section, we propose a PAPR reduction
routine based on [40] as a complex-valued QCQP problem:

min
u∈CN

fpapr(u) = ‖u− uopt‖2,

s.t. C1 : un = 1 ∀n ∈ Ip,
C2 : Re(un) > cos(θmax) ∀n ∈ Id,
C3 : u†Rnu ≤ 0,

C4 : |un| = 1 ∀n ∈ {1,..., N},

(P-PAPR)

where uopt ∈ CN is the designed unit-energy
phase codes in the frequency domain, Rn =
Diag(a†s)WN

(
Γn − γpapr

N IN
)

W†NDiag(as) in C3 is the
matrix of the quadratic form for the PAPR constraint as
explained in Section IV-D where as = a? � s. Also, C1

and C2 are used to keep pilot symbols fixed and limit the
maximum phase shift of data symbols, respectively.

The PAPR reduction problem in (P-PAPR) is used when
the PAPR of the designed waveform is above a predefined
threshold denoted with γpapr to reduce the PAPR at the
expense of deviation from optimized phase codes which can
potentially increase the BER and lower the radar SCNR. We
reformulate the objective function equivalently as

fpapr(u) = u†u− 2Re
(

u†optu
)
. (24)

As both the objective function in (24) and C2 in (P-PAPR)
contain linear terms, (P-PAPR) is a non-homogeneous QCQP
problem. To recast (P-PAPR) as an SDP problem, we convert
non-homogeneous quadratic function in form of u†Bu +
2b†u = c into a homogeneous quadratic function as

[
u† t

] [B b
b† −c

] [
u
t

]
= 0, (25)

where t ∈ R is an auxiliary variable that is t2 = 1. Using
(25), (P-PAPR) is relaxed as an SDP problem by changing the

variable Y =
[
uT t
]T [uT t]∗ ∈ C(N+1)×(N+1) and dropping

the rank-one constraint:

min
Y

f ′papr = Re (tr(OY)) ,

s.t. C1.1 : tr
([

0N 1/2en
1/2eTn −1

]
Y
)

= 0 ∀n ∈ Ip, ,

C1.2 : tr
([

0N j/2en
−j/2eTn 0

]
Y
)

= 0 ∀n ∈ Ip,

C2 : tr
([

0N 1/2en
1/2eTn −cos(θmax)

]
Y
)
≥ 0 ∀n ∈ Id,

C3 : tr
(
R̈nY

)
≤ 0 ∀n ∈ {1,..., N},

C4 : diag(Y) = 1N+1, C5 : Y � 0,
(P-PAPR-SDP)

where O =
[ IN −xopt
−x†opt 0

]
, R̈n =

[
Rn 0
0T 0

]
. Also, en is an

indicator vector that contains only a single one at the nth
index to obtain the equivalent SDP constraints. The problem
in (P-PAPR-SDP) is a convex SDP problem that can be
solved with the interior point algorithm to obtain Y?. The
PAPR-reduced OFDM waveform is computed by x? = x′/t′
where [x′ t]T =

√
λY,1vTY,1 where λY,1 and vY,1 denote the

largest eigenvalue of Y? and its eigenvector. However, we also
note that low values of desired PAPR in C3 can make the
problem infeasible depending on chosen pilot symbols, pilot
placements, and phase constraints defined in C1−2.

VII. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed
methods to design the joint OFDM waveform in terms of
time complexity and achieved SCNR values. For the time
complexity simulations, the number of subcarriers N is the
main parameter that affects the performance of proposed
approaches. Since the original problem is non-convex, the
proposed methods rely on relaxation and approximation ap-
proaches to find near-optimal solutions. Thus, we compare the
achieved objective values obtained with the baseline perfor-
mance that is achieved with equal power allocation.

The dual-use system operates in 77 GHz mmWave automo-
tive radar spectrum with 1 GHz bandwidth which achieves the
range resolution of ∆R = 0.15 m. The number of pilot subcar-
riers is Np = N/8 and total transmit power is determined by
Pt = 1 dB. With given configuration and N = 128 subcarriers,
we can achieve data rates up to 700 Mbps with unencoded
OFDM signal that uses QPSK modulation and guard interval
ratio of 2. Moreover, the communication channel is modeled
with additive noise variance of σ2

n = 1 and J = 7 Rayleigh
fading taps with variance σ2

h = 1, which incurs around
7 ns of maximum delay spread. While the communication
symbols in s are assumed to be i.i.d. unit-modulus random
variables for the CA approach, they are fixed for other
approaches. We consider that the extended radar target is a
vehicle modeled with L = 7 scatterers resolved in range
whose impulse response g is also randomly generated from
CN (0, 1) distribution. The clutter covariance Σc̃ is generated
randomly as a positive definite Toeplitz matrix due to its
WSS property where diagonal entries are the auto-correlation
of a sequence generated from CN (0, 1) distribution. While
the clutter covariance is scaled as tr(Σc̃) = 30 dB, total
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additive noise covariance for the radar receiver is normalized
as tr(Σñ) = 30 dB.

Based on given parameters, the optimal power allocation
parameter γopt is calculated as in (11) for the transmitter.
The minimum capacity requirement Rmin is determined by
the capacity achieved by the equal power allocated waveform
which is the baseline strategy when no prior information is
available. The problems in this work are formulated as convex
SDP and SOCP problems which can be solved with interior-
point algorithms. Thus, we use the convex optimization tool-
box CVX [41] in MATLAB that implements an interior-point
algorithm called SDPT3 [42] for SDP and SOCP problems.
We run simulations on a PC that is equipped with Intel Core
i7-9750H@2.60 GHz processor and 16 GB memory.

A. Achieved SCNR Values

We first evaluate the performance of our proposed ap-
proaches in terms of achieved objective values, which are
the radar SCNRs for joint OFDM waveform with N = 128
subcarriers. The equal power allocated OFDM waveform with
real-valued coefficients is used as the baseline non-adaptive ap-
proach. Since SDR approach relaxes the rank-one constraint,
an upper bound on achieved SCNR is obtained by tr (QA?)
where A? is the solution of the SDR. As explained in [19],
the interior-point algorithm returns higher rank solutions with
SDR method which increases the duality gap which is what
we observe with the SDR upper bound in Fig. 3.

For the evaluation of achieved SCNR values, the to-
tal reflecting power of the target is chosen as the con-
trol parameter. While the total clutter plus noise power
and the total transmit power are fixed, we use differ-
ent reflecting powers as ‖g‖2 ∈ {−3, 0, 3, 6, 9} dB. With
given target and clutter parameters, the target-to-clutter-plus-
noise ratio is defined as tr(T†gTg)/ (tr(Σc̃) + tr(Σñ)) ∈
{−2.9,−5.9,−8.9,−11.9,−14.9} dB.

In Fig. 3, the achieved SCNR values are shown for the
subcarrier coefficients designed by the SDR, CA, SCA with
θ = 0 and, Sequential Phase Code Design (PCD) with
θ = {π/12, π/8, π/6}. As shown in the figure, the adaptive
waveform design approaches achieve around 2× higher SCNR
compared to equal power allocation for the given configu-
ration. We also note that the improvement depends on the

Fig. 3. Obtained SCNR values with proposed waveform design methods

response of the target, clutter, and communication channel. If
the target’s response has deep fades over certain frequency
bands, the improvement with the adaptive waveform would
be greater compared to a frequency-flat response. Moreover,
if both communication and the target’s response have a
similar power spectrum, the adaptive design would achieve
even higher SCNR by leveraging the high gain frequency
bands with low interference in both radar and communication
channels.

Fig. 4 zooms into Fig. 3 with additional results for 2-Step,
3-Step PCD and PAPR reduction approaches. Although the
waveform is designed for fixed s by the SDR approach, it
performs slightly worse than both SCA and CA for θ = 0.
The reason is that the SDR approach gives suboptimal re-
sults due to the removal of the rank-one constraint and the
approximation of power allocation coefficients. Since SCA
does not require structured matrices, we solve the problem for
a given fixed s with the initial point of equal power allocation
and stopping tolerance of εsca = 10−4. While the SCA is a
generalized approach without structured matrix requirement,
it achieves a slightly higher SCNR compared to the CA
method. However, the improvement with the SCA method
in SCNR is limited, so the CA is a better approach for the
WSS clutter considering its time complexity. Since an off-
the-shelf solver fmincon is available in MATLAB, we also
use fmincon as a baseline with default configuration with 105

maximum evaluations to solve our problem. While the same
initialization with SCA is used, fmincon fails to converge to
a better solution compared to SCA.

Furthermore, relaxing the phase constraint with non-zero
θ values increases the achieved radar SCNR by expanding
the feasible region of the problem in the complex domain as
observed in Fig. 4. We observe that 3-Step PCD achieves
higher SCNR than 2-Step PCD with an additional third step
by restricting the feasible region. Although the search space
is restricted for the SDR-based PCD approaches, the interior
point algorithm converges to a local maximum. Compared to
3-Step PCD approach, we obtain slightly higher SCNR with
Sequential PCD by iteratively optimizing phase codes. Since
the search space is restricted to the unit circle, the obtained
solution is always feasible and closer to the global optimal of
the original problem in (P-PCD). In addition, we evaluate the
achieved objective values when the PAPR reduction routine in

Fig. 4. Zoomed version of Fig. 3 with additional results.
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Fig. 5. Achieved probability of detection performance for different distances.

(P-PAPR-SDP) is used with reduction ratios of 50% and 75%.
As shown in Fig. 4 for θ = π/8, reducing PAPR also lowers
the achieved SCNR since the designed phase codes deviate
from the optimal phase codes.

To evaluate the achieved detection probabilities, we con-
sider that the target generates a total reflecting power of
‖g‖2 = 9 dB at R = 80 m away from the transceiver. As
the reflectivity scales with 1/R4, we evaluate the achieved
detection probabilities at different distances for PFA = 10−5.
As shown in Fig. 5, the adaptive approaches increase the
detection probability of the extended target which improves
the radar’s tracking performance and detection distance while
meeting the communication constraints.

As seen in the results, the probability of detection perfor-
mance improves when θ is increased as the feasible search
space expands. While increasing θ improves the radar SCNR,
it degrades the communication performance by increasing the
BER due to reduced distance between symbol constellations
as shown in Fig. 7. The theoretical BER is obtained by
1/2

(
1−

√
(Eb/N0)/(Eb/N0 + 1)

)
as derived in [43]. As

depicted in the figure, the BER increases with larger θ val-
ues. Moreover, the PAPR reduction routine slightly increases
the BER due to additional phase perturbation as shown for
θ = π/8. Since QPSK modulations is used, the increase in
BER is low for θ < π/4 compared to θ = 0.

Fig. 6. Time complexity results for proposed methods for θ = 0.

Fig. 7. Achieved bit error rates for different phase and PAPR constraints.

B. Time Complexity

For the time complexity evaluations, the randomly generated
TIRs are scaled as ‖g‖2 = 1 dB. The total running times
are measured to solve (P-O) with the SDR, CA, SCA,
and fmincon for θ = 0 and with the PCD approaches for
θ = π/6. The measured time complexities are shown in
Fig. 6 for adaptive power allocation approaches proposed in
Section IV for θ = 0 for the different numbers of subcarriers
N ∈ {32, 64, 128, 256, 288, 320}. As shown, the complexity
of SDR and fmincon increases with a higher-order compared
to CA and SCA due to semidefinite variables and constraints.
In addition, fmincon fails to converge in defined maximum
number of evaluations which results in higher time complexity.
Considering both higher time complexity and low objective
value, fmincon is not a suitable option for the problem.

We can see that the CA approach solves the problem around
16× faster than SDR for 320 subcarriers by leveraging the
Toeplitz matrix structures due to linear convolution and the
WSS property of clutter. Furthermore, the SCA approach
solves the same problem 3× faster than the SDR approach
by using sequential approximations. Thus, both of the pro-
posed approaches lower the time complexity for adaptive joint
waveform design problem in the real domain.

Fig. 8 shows the measured time complexities for phase code
design approaches proposed in Section V for the different
numbers of subcarriers N ∈ {32, 64, 128, 256}. Since the 3-
Step PCD approach includes one more additional step than
2-Step PCD, the measured time for 3-Step PCD is higher

Fig. 8. Time complexity results for proposed PCD methods.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3125924

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on March 15,2022 at 15:54:36 UTC from IEEE Xplore.  Restrictions apply. 



1536-1276 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3125924, IEEE
Transactions on Wireless Communications

13

than 2-Step PCD. Due to the use of SDR method in 2-
Step and 3-Step PCD, one can observe a similar trend in
time complexities compared to the SDR method for θ = 0
in Fig. 6. Also, Sequential PCD approach is run with initial
values of ones and tolerance of εseq = 10−6. As shown in the
figure, Sequential PCD method outperforms both 2-Step and
3-Step PCD by around 11× and 19× lower time complexity
and higher achieved objective values. Hence, Sequential PCD
method is a better method to design optimal phase codes
adaptively.

In [44], it is shown that field-programmable gate arrays
(FPGAs) can solve interior point algorithms 6.5× faster than
general-purpose CPUs. Combined with the hardware imple-
mentation, the lower time complexity and affine formulation
make the CA, SCA, and Sequential PCD approaches suitable
for designing joint waveform adaptively on the orders of
milliseconds.

VIII. CONCLUSION

In this work, we study an adaptive OFDM waveform design
problem for JARC systems based on available information
about the extended target, and clutter plus noise. First, we
investigate the power and subcarrier allocation between data
and pilot symbols in the OFDM waveform to minimize the
estimation error for the communication channel. Then, we
present the design problem to maximize SCNR while main-
taining baseline communication capacity achieved with equal
power allocated OFDM waveform. We show that the problem
is a non-convex QCQP with a sum of logarithms and a phase
constraint. For the formulated problem which is a non-convex
QCQP, we propose relaxation and approximation approaches
to obtain near-optimal solutions with lower time complexity.
The numerical results show that both proposed CA and SCA
approaches solve the problem in the real domain with higher
objective value and low complexity by exploiting the struc-
tured matrices and successive approximations. In addition,
we further improve the radar SCNR by solving the problem
in the complex domain with the proposed PCD approaches.
Compared to SDR-based methods, Sequential PCD achieves
higher SCNR with lower time complexity by optimizing
individual phase codes sequentially where convergence to a
local optimum is guaranteed.
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