
Project Step 1 Due Friday Apr 4th

A 4-to-1 mux.

The Unit to Model – A 4-to-1 Mux

□ Truth Table

This Unit Can perform any of the logic functions of 2 inputs

Project Step 1

- Objective Model the unit. Connect the data inputs, A and B to the Select inputs, the G inputs to the corresponding data lines.
- You will then have a "generic" logic unit that can perform any of the functions of two inputs.

The 16 functions

The 16 functions are:		
<u>G3 G2 G1 G0</u>	Function	
0		zero
1		NOR
2		A'B
3		A'
4		AB'
5		B '
6		XOR
7		NAND
8		AND
9		XNOR
Α		B
В		A' + B
С		Α
D		A + B'
\mathbf{E}		OR
\mathbf{F}		one

(note that the G values are Hex)

How to model

- □ Model using a dataflow style
 - Concurrent signal assignment statement
 - $\Box \quad Y := (A AND B OR C) NOR D;$
 - Conditional signal assignment statement (pp 207-209)
 - \Box Y <= '1' WHEN Q = "000" ELSE
 - $\square \qquad A AND C \qquad WHEN Q = "001" ELSE \dots$
 - Selected signal assignment statement (pp 272-275)
 - □ WITH bit_vector_signal SELECT
 - □ Y <= '0' WHEN "0000"
 - □ '1' WHEN "0010" | "0011"
 - □ A WHEN OTHERS;
- □ Note that all three of these are <u>concurrent</u> statements of the language.

The testbench

- In this assignment you are given the testbench which will stimulate your model by applying <u>exhaustive</u> testing.
- □ Copy the file pr_step1.vhdl
 - FROM the web page or from ~degroat/ee762_assign
- □ The ENTITY is provided for you. Enter the architecture.

Simulate and get results

- □ Compile the file
- Simulate the design generate both waveform and a listing of the results.
- \Box Turn in
 - Copy of the code
 - Copy of the listing file
 - Copy of the waveform. BE SURE TO GET THE ENTIRE SIMULATION. Use zoom as appropriate. You will need to simulate for 5200 ns to run all the test cases.