ECE 762 Theory and Design of Digital Computers, II

(A real course title: Design and Specification of Digital Components with an HDL)

Lecture Overview

- Course Intro/ Syllabus/ Grading Policy
- General Intro to Digital Design
- Backgound

Syllabus

- The topics list is a guide.
- Note course objective.
- Note grading policy
- There are many, many books. Most are not texts; these books are more for reference.
- Note general policies.

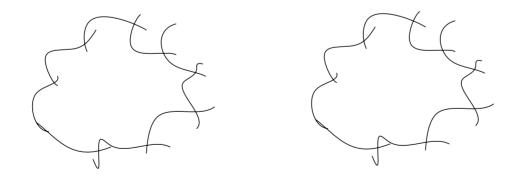
Intro

• What is a digital system?

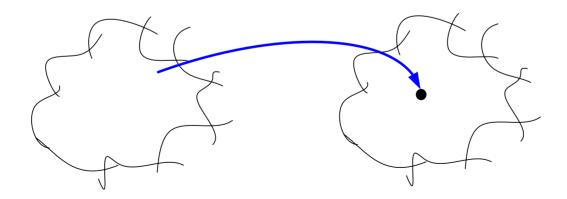
- Digital (Webster)

Intro

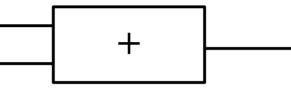
- What is a digital system?
- **Digital (Webster)** Of or relating to the technology of computers and data communications wherein all information is encoded as bits of 1s and 0s that represent on or off states. Contrast with analog. *Digital implies discrete states.*
- System A composite of equipment, skills, techniques, and information capable of performing and/or supporting an operational role in attaining specified management objectives. A complete system includes related facilities, equipment, material, services, personnel, and information required for its operation to the degree that it can be considered a self-sufficient unit in its intended operational and/or support environment.


Graphical Perspective

- A Digital System may be an Application Specific IC (ASIC) or a general purpose computer.
- "Computers are the most important type of digital system"
- "Virtually every aspect of digital system design is encountered in computer design" (Hill and Peterson)


Digital System Design Process

 "Design is a series of transformations." At each step decisions are made that bind the design, moving it toward an implementation. Design begins at a high level of abstraction and moves to a very detailed level of abstraction.


Digital System Design Process

 "Design is a series of transformations." At each step decisions are made that bind the design, moving it toward an implementation. Design begins at a high level of abstraction and moves to a very detailed level of abstraction.

Example

• Addition of 2 number to produce a sum

- Design Decisions
 - 2 inputs
 - Addition operation
 - A & B format ?? Binary numbers, 16 bits each, unsigned
 - Architecture ?? ripple adder, carry lookahead
- Design Decisions are significantly impacted by the specifications

B

HDL Design Process

- Start with design idea
- Do a behavioral design for reference
- RTL level design
 - Design data path
 - Design control path
- Use a synthesis tool to produce a gate netlist
- Physical Design place gates and wire
- Production

An example

 From ASiC Technology & News – "Why ASICs fail in the system.

– Listen to story

- Key points from story.
 - "Designers knew design was right"
 - "found a functional error"
 - Chips still exploded.
 - Months passed slowly.

HDL motivations

- HDL used to describe hardware for purpose of:
 - Simulation
 - Documentation
 - Modeling
 - Testing
 - Design
- HDLs provide a convenient and compact format for the hierarchical representation of function and wiring details of digital systems.

PAST HDLs

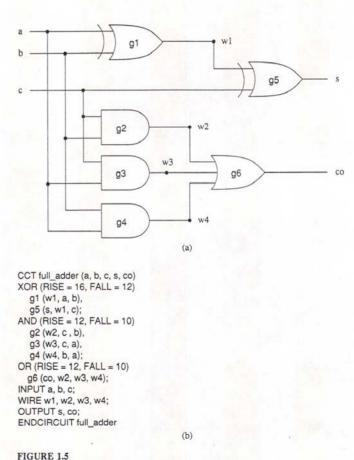
- ISPS Instruction Set Processor
 Specification
 - Language for describing the behavior of digital systems
 - Developed at CMU
 - Based on ISP notation

mark1 := BEGIN ** memory.state ** m[0:8191]<31:0>, ** processor.state ** pi/present.instruction<15:0>' f\function<0:2> := pi<15:13>, s<0:12> := pi<12:0>. cr\control.register<12:0>, acc\accumulator<31:0>, ** instruction.execution ** {tc} MAIN i.cycle := BEGIN pi = m[cr] < 15:0 > NEXTDECODE f =>BEGIN $0 \equiv cr = m[s],$ 1\irp := cr = cr + m[s],2\ldn := acc = - m[s],:= m[s] = acc, 3\sto 4:5\sub := acc = acc - m[s], 6\cmp := IF acc LSS 0 => cr = cr + 1, 7\stp := STOP(), END NEXT cr = cr + 1 NEXTRESTART i.cycle END

FIGURE 1.3

An ISPS example, a simple processor. (Source: M. R. Barbacci, The ISPS Computer Description Language, Carnegie-Mellon University, 1981, p. 70.)

PAST HDLs


- AHPL A Hardware Programming Language
 - Designed for representation in an academic environment
 - Developed at the University of Arizona.

AHPLMODULE: multiplier. MEMORY: ac1[4]; ac2[4]; count[2]; extra[4]; busy. EXINPUTS: dataready. EXBUSES: inputbus[8]. OUTPUTS: result[8]; done. CLUNITS: INC[2](count); ADD[5](extra; ac2); 1 ac1 <= inputbus[0:3]; ac2 <= inputbus[4:7]; extra <= 4\$0; => (~^dataready)/(1). 2 busy <= \1\; => (^ac1[3])/(4). 3 extra <= ADD[1:4](extra; ac2). 4 extra, ac1 <= \0\, extra, ac1[0:2]; count <= INC(count); => (^(&/count))/(2). 5 result = extra, ac1; done = 1; busy <= 0; => (1). ENDSEQUENCE CONTROLRESET(1). END.

FIGURE 1.4 An AHPL example, showing a sequential multiplier.

Other HDLs

- Genrad Hardware Description Language
 - Describes
 hardware as a
 netlist of
 components.
 - Developed by
 Genrad
 Corporation, UK

A Full-Adder, (a) logic diagram, (b) GHDL description.

Other HDLs

- CDL Computer Design Language
 - A dataflow language no hierarchy
- CONLAN Consensus Language
 - Attempt to establish a standard language. Family of languages for describing hardware at various levels of abstraction.
- IDL Interactive Design Language
 - Internal IBM Supports Hierarchy Originally designed for generation of PLAs, then extended
- TEGAS Texas Instruments Hardware Description Language
 - Internal TI Multilevel language for design and description hierarchical

Other HDLs (cont)

• ZEUS

- GE language hierarchical functional descriptions structural descriptions – No provision for gate delay specification or timing constraints – Does not support asynchronous designs.
- Verilog
 - Hierarchical Developed by Cadence Design Systems Procedural descriptions for behavior – Built in features for timing and a fixed logic value system. <u>Now also a standard. Used by</u> <u>~60% of market.</u>
- UDL1
 - Standard language that was developed in Japan hierarchical 1 to 1 mapping of language constructs to hardware structures – Designed for synthesis
- System C
 - NEW now also a standard and supported by tools had penetrated to about 10% to 15 % of the market.

VHDL

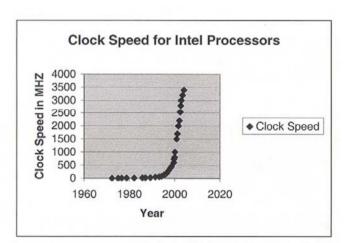
- VHDL VHSIC Hardware Description Language
- A standard language the first.
- Development began in 1980.
- Language Requirements set in 1981.
- 1st Version Version 7.2 with prototype simulation tools 1985-1987
- 1st Standard IEEE Standard 1076-1987 approved in 1987.
- New versions in 1993. Also versions in 2000, 2002 and about to be an new version soon???

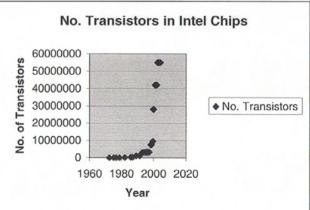
VHDL features

- Procedural Features
 - Would make a very good concurrent programming language. Up until now file I/O support was poor.
- Dataflow design
- Structural Hierarchy
- Self defined Value System and capability to design your own if you would need to.
- Semantics and Paradigm formally defined in LRM

In Summary

- There is no way we would have systems of today's complexity without the development and evolution of HDLs.
- HDLs are living languages.
- Today's systems are just too complex to stay with the design methodologies of the 1980s and even to early 1990s.


The Future ????


Processors, Processor Speed, No. of Transistors Intel Chips

Demel

Jan-05

Year Month Year **Clock Speed Year** No. Transistors Chip 1972 4 1972.3 0.2 1972.3 3500 8008 1974 12 2 1975 1975 6000 8080 1976 8 1976.6 5 1976.6 6500 8085 1978 9 1978.7 10 1978.7 2900 8086 2 1982 1982.1 12 1982.1 134000 286 1985 10 1985.8 1985.8 16 275000 386 1987 2 1987.1 20 1987.1 275000 386 1989 1989.3 25 1989.3 1200000 4 486 6 1991.5 1991 50 1991.5 1200000 486 3 1993 1993.2 60 1993.2 3100000 Pentium 1994 3 1994.2 75 1994.2 3200000 Pentium 3 1995.2 1995 120 1995.2 3200000 Pentium 1995 6 1995.5 133 1995.5 3300000 Pentium 1996 1 1996.1 166 1996.1 3300000 Pentium 1996 6 1996.6 200 1996.6 3300000 Pentium 1997 5 1997.4 300 1997.4 3300000 Pentium II 1998 4 1998.3 400 1998.3 7500000 Pentium II 1998 8 1998.7 450 1998.7 7500000 Pentium II 1999 8 1999.7 600 1999.7 9500000 Pentium III 1999 10 1999.8 733 1999.8 28000000 Pentium III 2000 1 2000.1 800 2000.1 28000000 Pentium III 3 2000 2000.2 1000 2000.2 28000000 Pentium III 2000 11 2000.9 1500 2000.9 42000000 Pentium 4 2001 4 2001.3 1700 2001.3 42000000 Pentium 4 2001 8 2001.7 2001.7 2000 42000000 Pentium 4 2002 2002.1 1 2200 2002.1 42000000 Pentium 4 6 2002 2002.5 2530 2002.5 55000000 Pentium 4 2002 8 2002.7 2002.7 2800 55000000 Pentium 4 2002 11 2002.9 3000 2002.9 55000000 Pentium 4 2003 6 2003.5 3200 2003.5 55000000 Pentium 4 2004 2 2004.1 2004.1 55000000 Pentium 4 3400

