Micro-Baby

	Micro-Baby is a simple computer architecture, in fact, very simple.  All microcontrollers and microprocessors are computer architectures, in most cases fairly simple ones.  However, in today’s world even microcontrollers and microprocessors are eons beyond basic.  They include many advanced features which often obscure the basic concepts of a stored program computer.

	It is assumed that the reader of this book and this chapter possesses a basic understanding of the binary number system and the implementation of logic equations in digital logic using AND, OR, NAND, NOR, and NOT gates.  If you wish to brush up a quick review of these topics is provided in Appendix A and Appendix B.

	Micro-Baby is an accumulator based load-store architecture.  In fact, that is a good place to start this chapter.  The basic concepts of a stored program computer will be presented and how it can be implemented with this architecture.  Just like the architecture of a home, the architecture of a computer is the ‘how’ the pieces are put together.  Building on this concept the instructions of Micro-Baby will be presented, the stored program that allows Micro-Baby to do something useful.

A.  Accumulator Based Load-Store Architecture







The Micro Baby implementation of this has the following structure:





MircoBaby instructions:

Instructions are 2 bytes in length.  The first byte is the op-code and the second where in data memory the 2nd operand is located.  The first operand is in the accumulator and that is where the result will also be.

Arithmetic:	(0100 0xxx)
ADD		Add value to accumulator
ADDC		Add value and carry to accumulator
SUB		Subtract value from accumulator
SUBC		Subtract value and borrow from accumulator
INC		Increment accumulator
DEC		Decrement accumulator

Logical	(0101 xxxx)
AND		Logically AND the accumulator and value
OR		Logically OR the accumulator and value
INV		Logically invert the accumulator
XOR		Logically XOR the accumulator and value
CLRA	 	Clear Accumulator
SLA		not sure yet
[bookmark: _GoBack]SRA		not sure yet

Jumps:  (64)  (starts 11xx xyyy) – bit x indicates used or not, y indicates clear or set
Carry clear or set
Zero clear or set
Negative clear or set
Jump always – when not using any of the conditions (11000xxx)

Tests		(0100 1xxx)
CMP 	Compare   (executes Accumulator – argument) does not modify accumulator.

Data Movement	(10y x xxmm)  - 2 byte instruction – 2nd byte is address
			mm is addressing mode
LDA		Load Accumulator	(101x xxxmm)
STA		Store Accumulator	(100x xxxmm)

ADDRESSING MODES
Immediate
Direct
Indirect   Not sure yet


Memory
Data divided into data memory and instruction memory
Each is 256 bytes – addressable by 8 bits
CPU to memory signals – 8-bit data bus, 8-bit address bus, r/w signal, and timing with is used to generate and enable signal.  Data is placed on the bus when enable is valid.  Data, address, and r/w go to high impedance when not needed by bus master.

mb Controller
The controller contains the Program counter, the instruction register, and the status register.
The main part of the controller is a state machine which alternates between two main states, Fetch and Execute.  Within each of these there are multiple subcycles.

The first cycle completes the action   MEM(PC)  IR
     					PC + 1  PC

The second cycle then performs the action of the instruction generating the control signals for the datapath to execute the instruction.  

HDL model

The memory module is specified as follows:

Each memory block (data or instruction) has the following features as indicated by the diagram.


               

The bus timing looks as follows:  (the control signals need to be added.






The ALU has the following structure and control signals.




The datapath has the following structure and control signals



The controller has the following structure.






Assignment VP2:

1. Verify the Microbaby structures available.  The one structure that is not yet complete is the controller.  Work on completing its design and verification after completing verification of the components of the architecture.

2.  Write a testplan to test and verify the components of the architecture.  Testplan is due the Monday December 1st.

3. Work on design of the controller.  A microcoded controller is desired.  There is high probability a behavioral controller will be available from the design group soon.  

4.  Write a final verification report that details your outcomes on these tasks.

4

oleObject1.bin
Input
Device


Output
Device


Memory Unit


Central Processing Unit


Control Unit


Arithmetic/Logic
Unit


Accumulator



image2.emf
Controller

CPU

ACC

Instruction Memory

Data Memory

256 bytes

256 bytes

256 bytes

FF  Reset Vector

000000xx    I/O addresses

PC

ALU

Memory Data Bus

Memory 

Address Bus

Instr Reg

8

8

8

SR

Memory

Loader

On startup


oleObject2.bin
CPU


ACC


Instruction Memory


Data Memory


256 bytes


256 bytes


256 bytes


FF  Reset Vector


000000xx    I/O addresses


PC


ALU


Memory Data Bus


Memory Address Bus


Controller


Instr Reg


SR


8


8


8


Memory
Loader
On startup



image3.emf
Memory

RAM

Data

8

8

Address

r/w

ce


oleObject3.bin
Memory
RAM


Data


8


8


Address


r/w


ce



image4.emf
Master

Clock

Bus

Clock

1 cycle

Data

Address

Z

s1

s2

s3

r/w

ce


oleObject4.bin
1


CPU


ACC


Instruction Memory


Data Memory


256 bytes


256 bytes


256 bytes


FF  Reset Vector


000000xx    I/O addresses


PC


ALU


Memory Data Bus


Memory Address Bus


Controller


Instr Reg


SR


8


8


8


Memory
Loader
On startup


Input
Device


Output
Device


Memory Unit


Central Processing Unit


Control Unit


Arithmetic/Logic
Unit


Accumulator


Memory
RAM


Data


8


8


Address


r/w


ce


Master
Clock


Bus
Clock


1 cycle


Data


Address


Z


s1


s2


s3


r/w


ce


ALU


Accum Reg


ld


Data bus


BusDr


BusDr


Logic
Unit


Lout


A


B


F(3 dt 0)


Add/Sub


Cout


Cin


A


B


Sum


Mux


AddSub


Mux


Arlo


Cin


AddSub


Cin’


Csel


Csel(1 dt 0)


8


8


8


8


8


8


8


8


00 – Cin
01 – NOT Cin
10 – ‘0’
11 – ‘1’


1 = B
0 = B’


1 = Sum
0 = Lout


All 0’s


N


Z


mbALU


ALU


Accumulator


Controller


PC


Instr Reg


SR



image5.emf
Logic

Unit

Lout

A B

F(3 dt 0)

Add/Sub

Cout

Cin

A

B

Sum

Mux

AddSub

Mux

Arlo

Cin

AddSub

Cin’

Csel

Csel(1 dt 0)

8

8

8

8

8

8

8

8

00 –Cin

01 –NOT Cin

10 –‘0’

11 –‘1’

1 = B

0 = B’

1 = Sum

0 = Lout

All 0’s

N

Z

mbALU


oleObject5.bin
1


Logic
Unit


Lout


A


B


F(3 dt 0)


Add/Sub


Cout


Cin


A


B


Sum


Mux


AddSub


Mux


Arlo


Cin


AddSub


Cin’


Csel


Csel(1 dt 0)


8


8


8


8


8


8


8


8


00 – Cin
01 – NOT Cin
10 – ‘0’
11 – ‘1’


1 = B
0 = B’


1 = Sum
0 = Lout


All 0’s


N


Z


mbALU



image6.emf
ALU

Accumulator

Cout

Ldac

N

Z

F(3 dt 0)

AddSub

Cin

Arlo

Data Bus

Mux

Aal

Mux

Bbu

B

u

s

D

r

DrAcc

alures

accout

amuxtoacc

bmuxout

zero

Csel

Aal

1 = alures

0 = Dbus

Bbu

1 = zero

0 = Dbus

F function

AND 1000

OR     1110

INV    0011

XOR  0110


oleObject6.bin
ALU


Accumulator



image7.emf
Controller

PC

Instr Reg

SR


oleObject7.bin
Controller


PC


Instr Reg


SR



image1.emf
Input

Device

Output

Device

Memory Unit

Central Processing Unit

Control Unit

Arithmetic/Logic

Unit

Accumulator


