
EXTRA CREDIT

- Extra Credit-DATAPATH with Shifter

Modify the datapath as follows:

 EMBED Word.Picture.8

 Add a shifter. The shifter is connected to the A input latch so it can only be loaded from the ABUS. The A_ALUsel controlls a multiplexer that can either select the latched input or the shifter output. A value of ‘1’ on A_ALUsel selects the latch input, and a value of ‘0’ selects the shifter output.

The possible shift operations are logical shift left, logical shift right, arithmetic shift left, arithmetic shift right, rotate left, rotate right, rotate left with carry, and rotate right with carry. The mnemonics are (lsl,lsr,asl,asr,rol,ror,rolwc,rorwc). Their effected is illustrated below. In the following diagram the large rectangle is the register and the small square represents the C bit of the Flags.

 EMBED Word.Picture.8

The output of the shifter goes into the A input selector multiplexer. The shfiter will always affect the C bit of the Flags as shown above. If the ALU operation is op_A and the ALU A input is selected to be the shifter, then the carry output of the ALU/shifter is determined by the shift operation. Any other ALU operation will have the effect of overriding the C bit generated by the shifter and causing the C bit to be set accoring to the ALU operation.

The N and Z flags are set accoring to the ALU_operation. Note that the result of a shift operation will pass through the ALU using the ALU operation op_A. This will cause the Z and N flags to be set and the C bit will come from the shifter. During other types of operations, such as a multiply step, the ALU operation of the step will determine the state of the flags.

1) So your first task is to modify your datapath to include a shifter that can perform the above functions and integrate it into the datapath as shown. The testbench for this step produces the appropriate select signal for the A_ALUsel signal. It runs through the same tests that it did in the previous project step and then runs through step to test the correct operation of the shfiter.

You will need a type for the shifter operations in your support package. The testbench assumes that the mnemonic names above are used and the type will be called shift_operations. I strongly you suggest that you get the shifter integrated and working before even considering the next step. (15 points of extra credit for this part)

2) Write a microcode procedure to do integer multiplication. By a microcode routine I mean a routine such as the tworegop, oneregop, shiftop procedures. Your routine will be passed the multiplier and multiplicand register numbers, s1reg, s2reg, and put the result back in register s2reg. On the first cycle you will have to load the multiply control register (already set up in the bus_cycle procedure) and then use its values to do the multiply.

Other information:

The operation multiplies the 8 lsb of each resiter and puts the 16 bit result in the 2nd reg.

The operation should take a constant number of cycles.

The output of the ALU can be driven on the B bus and latched back into the B input, acting as an accumulator.

Enter calls to your procedure as indicted to do the following 8 multiplications as indicated in the testbench.

R0 x R1 --> R1
R2 x R3 --> R3
R4 x R5 --> R5

R6 x R7 --> R7
R8 x R9 --> R9
R10 x R11 --> R11

R12 x R13 --> R13
R14 x R15 --> R15

The call to PROCEDURE bus_cycle is

bus_cycle(

A_regldi - TBLoad or Load - Load value on ABUS into register Aregno

 Drive - Drive Aregno value onto ABUS

 Idle or Accum - Register do not drive or load from ABUS

A_regno -

A_aluldi - Load - Latch value from ABUS for Ainput of ALU

 Drive - Drive value of ALU output onto ABUS

 Idle, TBLoad, Accum - ALU does not latch or drive ABUS

A_aluinsel - ‘1’ - A input to ALU is latched value, ‘0’ shifted value

A_BUS_VAL - Value placed on ABUS by test bench if A_regldi = TBLoad

A_BUS_EXP - Expected value on ABUS

B_regldi, B_regno - same as for ABUS side but for BBUS

B_aluldi - same as ABUS side except

 Accum causes ALU to drive BBUS and then Latch that value.

B_BUS_VAL, B_BUS_EXP - same as for ABUS but for BBUS

Shf_op - the shift operation to be performed - if the shifter is not used it can

be any value

Shf_dist - the distance of the shift - if the shifter is not used it can be any value

MCR_ldi - multiply control register loading - if Load, MCR is loaded from the

8 lsb of the A bus, otherwise no action.

alu_op - the alu_operation to be performed - if the alu is not used can be any value

Cinval - the value of the carry input to the alu and shifter this cycle

exp_cc - the index for the expected condition code

checkbus - if TRUE then the value driven on the bus during Drive signals being

low is checked as well as the flags are checked.

 if FALSE the actual value on the bus is not checked.

)

For example the two register operation does the following

Aalu

Shift
Shift

Cycle
ABUS
BBUS
insel
AluOP
Cin
OP
Dist

1
R(Aregno)->Aalu
R(Bregno)->Balu
‘1’
oper
Cinval
--
--

2
idle
aluout->R(Bregno)
‘1’
oper
Cinval
--
--

and has calls to the bus_cycle procedure as seen in the testbench.

To do a shift operation, the following is needed.

Aalu

Shift
Shift

Cycle
ABUS
BBUS
insel
AluOP
Cin
OP
Dist

1
R(regno)->Aalu
Idle
‘0’
op_A
Cinval
sop
dist

2
idle
aluout->R(Bregno)
‘1’
op_A
Cinval
sop
dist

Set up a similar table for the multiply operation which will make coding the procedure much easier. Do not check the contents on the bus during operation of your multiply routine, i.e., call bus_cycle with the checkbus parameter as FALSE. Check of the correct opertion is done on the subsequent dump of the registers.

As always, turn in:

1) Your VHDL code.

2) A copy of a zoom->full_size waveform.

3) A copy of a waveform for the cycles of the multiply operation.

4) A cycle by cycle table for the multiply operation as to what is on the busses, their sources and destinations, and the value of the relevant control signals.
This step will count be up to 30 points of extra credit toward the projects steps.

Getting the maximum credit requires well documented (commented) code such that your work can be evaluated.

The test bench is in file ~degroat/ee762_assign/pr_step_excr.vhdl

3 of 5

_1013602089.unknown

_1013602088.unknown

