L9 – State Assignment and gate implementation

States Assignment

- Rules for State Assignment
- Application of rule
- □ Gate Implementation
- □ Ref: text Unit 15.8

Rules for State Assignment

- Situation: You have arrived at the reduced state table and no further state reduction can be made.
- Does it matter how you assign the binary encoding to the states YES!!!
- □ But how to do it!!!

Guidelines for State Assignment

- □ To try all equivalent state assignments, i.e., and exhaustive exploration of all possible state assignments. This is a *n*-*p complete* problem.
- □ Do not panic!!! (where does this come from?)
- □ There are guidelines that help
- □ 1. States which have the same next state for a given input should be given adjacent assignments.
- □ 2. States which are the next states of the same state should be given adjacent assignments.
- □ And third
- □ 3. States which have the same output for a given input should be given adjacent assignments.

The starting state

Assign the starting state to the "0" square on an assignment map. (An assignment map looks much like a K-map for logic minimization.)

Reason for assign "0"

- □ Reasons for assigning "0" as the starting state:
 - The clear input on Flip Flops can be used for initialization.
 - The clear input can also be used on a reset.
 - The alternative is error prone using a combination of preset and clears to set a specific value can lead to implementation errors.
 - A good practice even when using FPGAs.

Guidlines

- Adjacency conditions from Guideline 1 and those from Guideline 2 that are required 2 or more times should be satisfied first.
- Example Guideline 1 for the table S0, S2, S4, and S6 should be made adjacent as they all have S1 as the next state on a 0 input.
- □ S3 and S5 should have adjacent assignment.
- □ S4 and S6 should have adjacent assignment.

ABC		X = 0	1	0	1	
000	So	S ₁	S ₂	0	0	
110	S ₁	S ₃	S ₂	0	0	
001	S ₂	S ₁	S ₄	0	0	
111	S3	S ₅	S ₂	0	0	
011	S ₄	S ₁	S ₆	0	0	
101	S ₅	S ₅	S ₂	1	0	
010	S ₆	S ₁	S ₆	0	1	

(a) State table

Using guidelines

- From the state table find the following groupings:
 - 1. (\$0,\$1,\$3,\$5) (\$3,\$5)
 (\$4,\$6) (\$0,\$2,\$4,\$6)
 - 2. (S1,S2) (S2,S3) (S1,S4)
 (S2,S5)2x (S1,S6)2x

ABC		X = 0	1	0	1	
000	So	S ₁	S ₂	0	0	
110	S ₁	S ₃	S ₂	0	0	
001	S ₂	S ₁	S ₄	0	0	
111	S ₃	S ₅	S ₂	0	0	
011	S ₄	S ₁	S_6	0	0	
101	S5	S ₅	S ₂	1	0	
010	S ₆	S ₁	S ₆	0	1	
0.0	50	(a) State t	able		and a	

Two possible ways

- Two possible ways of satisfying the guidelines are:
 - 1. (S0,S1,S3,S5) (S3,S5) (S4,S6) (S0,S2,S4,S6)
 - 2. (S1,S2) (S2,S3) (S1,S4) (S2,S5)2x (S1,S6)2x

Next state maps

- Next state maps may help choose the better assignment.
- □ Look at the next state given current state and input and how this will simplify K-maps for logic.

Choose an assignment

- □ Choose an assignment and implement in gates. Using the left assignment map get the next state map below with encoding.
- □ Map the encoding to K-maps

Next States

Implement in gates

- Notes on implementation
 - All F/F outputs are used
 - 6 gates are needed for next state generation only 1 of which is 3 inputs.

Another example

- □ Example 15-16 in text
 - Use guidelines
 - Next states (b,d) (c,f) (b,e)
 (a,c)
 - Next state of a state (a,c)2x
 (d,f) (d,b) (b,f) (c,e)
 - But is state table minimum?

Assignment map

- □ State table is not minimum but will continue
- □ The two assignment maps are

Transition table

Resulting in a transition table of and equations of

	$Q_1^+Q_2$	$^{+}Q_{3}^{+}$		
$Q_1 Q_2 Q_3$	<i>X</i> = 0	1	<i>X</i> = 0	1
100	100	000	0	0
111	011	010	0	1
000	000	100	0	0
011	011	111	0	1
101	111	010	1	0
010	000	101	1	0

(Figure 15-17) from the transition table. The D flip-flop input equations can be read directly from these maps:

 $D_1 = Q_1^+ = X'Q_1Q_2' + XQ_1'$ $D_2 = Q_2^+ = Q_3$ $D_3 = Q_3^+ = XQ_1'Q_2 + X'Q_3$

and the output equation is

 $Z = XQ_2Q_3 + X'Q'_2Q_3 + XQ_2Q'_3$

The cost of realizing these equations is 10 gates and 26 gate inputs.

Next state generation K-maps

□ The K-maps for next state generation are

Another example

□ From our previous work.

	NEXT STATE		OUTPUT	
Present State	X=0	X=1	X=0	X=1
SO	S1	S4	0	0
S 1	S 1	S2	0	0
S2	S3	S4	1	0
S 3	S5	S2	0	0
<u>S</u> 4	S 3	<u>S</u> 4	0	0
S5	S 1	S2	0	1

Use guidlines

- □ Same next state
 - (S0,S1,S5) (S2,S4) (S0,S2,S4) (S1,S3,S5)
- □ Next state pairs
 - (S1,S4) (S1,S2) 2x (S3,S4) 2x (S2,S5)

	NEXT STATE		OU	ГРИТ
Present State	X=0	X=1	X=0	X=1
SO	S1	S4	0	0
S1	S1	S2	0	0
S2	S3	S4	1	0
S3	S5	S2	0	0
S4	S3	S4	0	0
S5	S1	<u>S</u> 2	0	1

The assignment map

- Choose S0 as the "0" state and then use guidelines
- □ A possible solution

Next State Table

- □ Enter the state assignment onto the table
- □ Then generate K-maps and generate logic

Present State	Next State		Output	
ABC	<u>X =0</u>	<u>X=1</u>	<u>X=0</u>	<u>X=1</u>
S0 000	S1 001	S4 101	0	0
S1 001	S1 001	S2 100	0	0
S2 100	S3 111	S4 101	1	0
S3 111	S5 011	S2 100	0	0
S4 101	S3 111	S4 101	0	0
S5 011	S1 001	S2 100	0	1

The K maps

□ Generate the K maps

Next State logic A (2 gates) B (1 gate) C (2 gates)

K map for the output Z

- $\square 3 \text{ gates for the output (2-3 input AND)}$ $\square (1 \text{ OR})$
- Total logic count
 - **3** D F/Fs
 - 2-3 input AND gates
 - 3-2 input AND gates
 - 2-2 input OR gates
 - 1 3 input OR gate

 $\mathbf{Z} = \mathbf{X'AC'} + \mathbf{XA'B}$

Lecture summary

 Have seen several examples of implementation from the statement of the problem (specification) to implementation.