L9 - State Assignment and gate implementation

States Assignment

ㅁ Rules for State Assignment
\square Application of rule

- Gate Implementation
- Ref: text Unit 15.8

Rules for State Assignment

- Situation: You have arrived at the reduced state table and no further state reduction can be made.
\square Does it matter how you assign the binary encoding to the states - YES!!!
- But how to do it!!!

Guidelines for State Assignment

- To try all equivalent state assignments, i.e., and exhaustive exploration of all possible state assignments. This is a $n-p$ complete problem.
- Do not panic!!! (where does this come from?)
- There are guidelines that help
- 1. States which have the same next state for a given input should be given adjacent assignments.
- 2. States which are the next states of the same state should be given adjacent assignments.
- And third
- 3. States which have the same output for a given input should be given adjacent assignments.

The starting state

- Assign the starting state to the " 0 " square on an assignment map. (An assignment map looks much like a K-map for logic minimization.)

(a) State table

Reason for assign "0"

口 Reasons for assigning " 0 " as the starting state:

- The clear input on Flip Flops can be used for initialization.
- The clear input can also be used on a reset.
- The alternative is error prone - using a combination of preset and clears to set a specific value can lead to implementation errors.
- A good practice even when using FPGAs.

Guidlines

- Adjacency conditions from Guideline 1 and those from Guideline 2 that are required 2 or more times should be satisfied first.
- Example - Guideline 1 for the table S0, S2, S4, and S6 should be made adjacent as they all have S1 as the next state on a 0 input.

$A B C$		$X=0$	1	0	1
000	S_{0}	S_{1}	S_{2}	0	0
110	S_{1}	S_{3}	S_{2}	0	0
001	S_{2}	S_{1}	S_{4}	0	0
111	S_{3}	S_{5}	S_{2}	0	0
011	S_{4}	S_{1}	S_{6}	0	0
101	S_{5}	S_{5}	S_{2}	1	0
010	S_{6}	S_{1}	S_{6}	0	1

(a) State table

- S3 and S5 should have adjacent assignment.
- S4 and S6 should have adjacent assignment.

Using guidelines

\square From the state table find the following groupings:

- 1. (S0,S1,S3,S5) (S3,S5)
(S4,S6) (S0,S2,S4,S6)
- 2. $(\mathrm{S} 1, \mathrm{~S} 2)(\mathrm{S} 2, \mathrm{~S} 3)(\mathrm{S} 1, \mathrm{~S} 4)$

$A B C$		$X=0$	1	0	1
000	S_{0}	S_{1}	S_{2}	0	0
110	S_{1}	S_{3}	S_{2}	0	0
001	S_{2}	S_{1}	S_{4}	0	0
111	S_{3}	S_{5}	S_{2}	0	0
011	S_{4}	S_{1}	S_{6}	0	0
101	S_{5}	S_{5}	S_{2}	1	0
010	S_{6}	S_{1}	S_{6}	0	1

(S2,S5)2x (S1,S6)2x

Two possible ways

- Two possible ways of satisfying the guidelines are:
- 1. (S0,S1,S3,S5) (S3,S5) (S4,S6) (S0,S2,S4,S6)

2. ($\mathrm{S} 1, \mathrm{~S} 2$) ($\mathrm{S} 2, \mathrm{~S} 3$) ($\mathrm{S} 1, \mathrm{~S} 4$) ($\mathrm{S} 2, \mathrm{~S} 5$)2x ($\mathrm{S} 1, \mathrm{~S} 6$)2x

(b) Assignment maps

Next state maps

- Next state maps may help choose the better assignment.
- Look at the next state given current state and input and how this will simplify K-maps for logic.

\[

\]

(b) Assignment maps

Adjacent because S_{0}, S_{2}, S_{4}, and $S_{6} \quad$ Adjacent because S_{3} and S_{5}
have adjacent assignments
have adjacent assignments
(a) Next-state maps for Figure 15-14

Choose an assignment

\square Choose an assignment and implement in gates. Using the left assignment map get the next state map below with encoding.

- Map the encoding to K-maps

XA	00	01	11	10
00	$\begin{gathered} S 1 \\ 110 \end{gathered}$	X	X	$\begin{gathered} \mathrm{S} 2 \\ 001 \end{gathered}$
01	$\begin{gathered} \text { S1 } \\ 110 \end{gathered}$	$\begin{gathered} \text { S5 } \\ 101 \end{gathered}$	$\begin{gathered} \text { S2 } \\ 001 \end{gathered}$	$\begin{gathered} \mathrm{S} 4 \\ 011 \end{gathered}$
11	$\begin{gathered} \text { S1 } \\ 110 \end{gathered}$	$\begin{gathered} \text { S5 } \\ 101 \end{gathered}$	$\begin{gathered} \text { S2 } \\ 001 \end{gathered}$	$\begin{gathered} \text { S6 } \\ 010 \end{gathered}$
10	$\begin{gathered} \mathrm{S} 1 \\ 110 \end{gathered}$	$\begin{gathered} \text { S3 } \\ 111 \end{gathered}$	$\begin{gathered} \mathrm{S} 2 \\ 001 \end{gathered}$	$\begin{gathered} \text { S6 } \\ 010 \end{gathered}$

$\mathrm{DA}=\mathrm{X}^{\prime}$

$\mathrm{DB}=\mathrm{X}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{B}$

Next States

Implement in gates

- Notes on implementation
- All F/F outputs are used
- 6 gates are needed for next state generation only 1 of which is 3 inputs.

Another example

\square Example 15-16 in text

- Use guidelines
- Next states (b,d) (c,f) (b,e) (a, c)
- Next state of a state (a,c)2x (d,f) (d,b) (b,f) (c,e)
- But is state table minimum?

	$X=0$	1	$X=0$	1
a	a	c	0	0
b	d	f	0	1
c	c	a	0	0
d	d	b	0	1
e	b	f	1	0
f	c	e	1	0

(a)

Assignment map

\square State table is not minimum but will continue

- The two assignment maps are

Transition table

- Resulting in a transition table of and equations of

(Figure 15-17) from the transition table. The D flip-flop input equations can be read

		$Q_{1}{ }^{+} Q_{2}{ }^{+} Q_{3}{ }^{+}$			
$Q_{1} Q_{2} Q_{3}$	$X=0$	1	$X=0$	1	
1	0	0	100	000	0
1	1	1	011	010	0
0	0	1			
0	0	0	000	100	0
0	1	1	011	111	0
1	0	1	111	010	1
0	1	0	000	101	1
0	10	0			

$$
\begin{aligned}
& D_{1}=Q_{1}^{+}=X^{\prime} Q_{1} Q_{2}^{\prime}+X Q_{1}^{\prime} \\
& D_{2}=Q_{2}^{+}=Q_{3} \\
& D_{3}=Q_{3}^{+}=X Q_{1}^{\prime} Q_{2}+X^{\prime} Q_{3}
\end{aligned}
$$

and the output equation is

$$
Z=X Q_{2} Q_{3}+X^{\prime} Q_{2}^{\prime} Q_{3}+X Q_{2} Q_{3}^{\prime}
$$

The cost of realizing these equations is 10 gates and 26 gate inputs.

Next state generation K-maps

\square The K-maps for next state generation are

$X Q$				
$Q_{2} Q_{3}$	00	01	11	10
00	0	1	0	1
01	X	(1)	0	X
11	0	0	0	1
10	0	X	X	1

Another example

\square From our previous work.

NEXT STATE				OUTPUT	
Present State	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$	
S0	S1	S4	0	0	
S1	S1	S2	0	0	
S2	S3	S4	1	0	
S3	S5	S2	0	0	
S4	S3	S4	0	0	
S5	S1	S2	0	1	

Use guidlines

ㅁ Same next state

- (S0,S1,S5) (S2,S4) (S0,S2,S4) (S1,S3,S5)
- Next state pairs
- (S1,S4) (S1,S2)2x (S3,S4)2x (S2,S5)

NEXT STATE	OUTPUT			
Present State	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$	$\mathbf{X = 0}$	$\mathbf{X = 1}$
S0	S1	S4	0	0
S1	S1	S2	0	0
S2	S3	S4	1	0
S3	S5	S2	0	0
S4	S3	S4	0	0
S5	S1	S2	0	1

The assignment map

ㅁ Choose S0 as the "0" state and then use guidelines
\square A possible solution

Next State Table

\square Enter the state assignment onto the table

 - Then generate K-maps and generate logic| Present State | Next State | | Output | |
| :---: | :---: | :---: | :---: | :---: |
| ABC | $\underline{X}=0$ | $\underline{X}=1$ | $\underline{X}=0$ | $\underline{X}=1$ |
| S0 000 | S1 001 | S4 101 | 0 | 0 |
| S1 001 | S1 001 | S2 100 | 0 | 0 |
| S2 100 | S3 111 | S4 101 | 1 | 0 |
| S3 111 | S5 011 | S2 100 | 0 | 0 |
| S4 101 | S3 111 | S4 101 | 0 | 0 |
| S5 011 | S1 001 | S2 100 | 0 | 1 |

The K maps

- Generate the K maps

- Next State logic A (2 gates) B (1 gate) C (2 gates)

K map for the output Z

- 3 gates for the output (2-3 input AND)
\square (1 OR)
\square Total logic count
- 3 D F/Fs
- 2 - 3 input AND gates
- 3-2 input AND gates
- 2-2 input OR gates

${ }^{\mathrm{XA}}$	00	01	11	10
00	0	1	0	0
01	0	0	0	0
11	0	0	0	1
10	X	X	X	X

$\mathbf{Z}=\mathbf{X}^{\prime} \mathbf{A C}^{\prime}+\mathrm{XA}^{\prime}{ }^{\prime} \mathrm{B}$

- 1 - 3 input OR gate

Lecture summary

- Have seen several examples of implementation from the statement of the problem (specification) to implementation.

