L8 - Reduction of State Tables

Reduction of states

- Given a state table reduce the number of states.
\square Eliminate redundant states
- Ref: text Unit 15

Objective

\square Reduce the number of states in the state table to the minimum.

- Remove redundant states
- Use don't cares effectively
\square Reduction to the minimum number of states reduces
- The number of F/Fs needed
- Reduces the number of next states that has to be generated \rightarrow Reduced logic.

An example circuit

- From 14.3, example 1
- A sequential circuit has one input X and one output Z. The circuit looks at the groups of four consecutive inputs and sets $\mathrm{Z}=1$ if the input sequence 0101 or 1001 occurs. The circuit returns to the reset state after four inputs. Design the Mealy machine.
- Typical sequence
- $\mathrm{X}=0101001010010100$
- $\mathrm{Z}=0001000000010000$

A state table for this

- Set up a table for all the possible input combinations (versus rationalizing the development of a state graph).
\square For the two sequences when the $4^{\text {th }}$ input completes a sequence, return to reset with $\mathrm{Z}=1$.

Notes on state table generation

\square When generated by looking at all combinations of inputs the state table is far from minimal.
\square First step is to remove redundant states.

- There are states that you cannot tell apart
- Such as H and I - both have next state A with $\mathrm{Z}=0$ as output.
- State H is equivalent to State I and state I can be removed from the table.
- Examining table shows states $\mathrm{K}, \mathrm{M}, \mathrm{N}$ and P are also the same as I was - they can be deleted.
- States J and L are also equivalent.

Can take state table to graph

ㅁ Reset and states B and C
\square Will also be able to see redundancies in graph

The next level

- Now add D, E,F, G

And the final level

- Adding state H,I,J,K,L,M,N,P

$1^{\text {st }}$ state reduction

- First need to indicate that H, I, K, M, N and P are the same
- AND J and L are the same
- So remove all but
 H and J

Reduction continued

\square Having made these reductions move up to the D E F G section where the next state entries have been changed.

- Note that State D and State G are equivalent.
- State E is equivalent to F.
\square The result is a reduced state table.

The result

\square Reduced state table and graph

Present	Next State		Output	
State	$X=0$	$X=1$	$X=0 \quad X=1$	
A	B	C	0	0
B	D	E	0	0
C	E	D	0	0
D	H	H	0	0
E	J	H	0	0
H	A	A	0	0
J	A	A	0	1

(a)

(b)
\square Original - 15 states - reduced to 7 states

Equivalence

\square Two states are equivalent if there is no way of telling them apart through observation of the circuit inputs and outputs.

- Formal definition
- Let N_{1} and N_{2} be sequential circuits (not necessarily different). Let \underline{X} represent a sequence of inputs of arbitrary length. Then state p in N_{1} is equivalent to state q in N_{2} iff $\lambda_{1}(p, \underline{X})=\lambda_{2}(q, \underline{X})$ for every possible input sequence \underline{X}.
- The definition is not practical to apply in practice.

As not practical

- Theorem 15.1
- Two states p and q of a sequential circuit are equivalent iff for every single input X , the outputs are the same and the next states are equivalent, that is, $\lambda(p, \underline{X})=\lambda(q, \underline{X})$ and $\delta(p, \underline{X}) \equiv \delta(q, \underline{X})$ where $\lambda(p, \underline{X})$ is the output given present state p and input X , and $\delta(p, \underline{\mathrm{X}})$ is the next state given the present state p and input X .
\square So the outputs have to be the same and the next states equivalent.

Implication Tables

- Now a procedure for finding all the equivalent states in a state table.
- Use an implication table - a chart that has a square for each pair of states.

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Step 1

\square Use a X in the square to eliminate output incompatible states.
$\square 1^{\text {st }}$ output of a differes from c, e, f, and h

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Step 1 continued

\square Continue to remove output incompatible states

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Now what?

- Implied pair are now entered into each non X square.
ㅁ Here $\mathrm{a} \equiv \mathrm{b}$ iff $\mathrm{d} \equiv \mathrm{f}$ and $\mathrm{c} \equiv \mathrm{h}$

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Self redundant pairs

\square Self redundant pairs are removed, i.e., in square a-d it contains a-d.

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Next pass

- X all squares with implied pairs that are not compatible.
- Such as in a-b have d-f which has an X in it.
- Run through the chart until no further X's are found.

Final step

\square Note that a-d is not Xed - can conclude that $\mathrm{a} \equiv \mathrm{d}$. The same for c-e, i.e., $c \equiv e$.

Reduced table

\square Removing equivalent states.

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Summary of method

- 1. construct a chart with a square for each pair of states.
- 2. Compare each pair of rows in the state table. X a square if the outputs are different. If the output is the same enter the implied pairs. Remove redundant pairs. If the implied pair is the same place a check mark as $\mathrm{i}=\mathrm{j}$.
- 3. Go through the implied pairs and X the square when an implied pair is incompatible.
- 4. Repeat until no more Xs are added.
\square 5. For any remaining squares not Xed, $i=j$.

Another example

- Consider a previous circuit

NEXT STATE		OUTPUT		
Present State	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$	$\mathbf{X = 0}$	$\mathbf{X = 1}$
S0	S1	S4	0	0
S1	S1	S2	0	0
S2	S3	S4	1	0
S3	S5	S2	0	0
S4	S3	S4	0	0
S5	S1	S2	0	1

Set up Implication Chart

- And remove output incompatible states

	NEXT STATE		OUTPUT	
Present State	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$
S0	S 1	S 4	0	0
S1	S 1	S 2	0	0
S2	S 3	S 4	1	0
S3	S 5	S 2	0	0
S4	S 3	S 4	0	0
S5	S 1	S 2	0	1

\square Also indicate implied pairs

Step 2

\square Check implied pairs and X
$\square 1^{\text {st }}$ pass

and $\quad 2^{\text {nd }}$ pass

What does it tell you?

- In this case, the state table is minimal as no state reduction can be done.

Lecture summary

- Have covered the method for removal of redundant states from state tables.
- Work problem 14.26 by enumerating all the possible states and then doing state reduction. See web page.
- Look at 15.2 through 15.8 (answers in text)

