L8 – Reduction of State Tables

Reduction of states

- □ Given a state table reduce the number of states.
- Eliminate redundant states
- □ Ref: text Unit 15

- Reduce the number of states in the state table to the minimum.
 - Remove redundant states
 - Use don't cares effectively
- Reduction to the minimum number of states reduces
 - The number of F/Fs needed
 - Reduces the number of next states that has to be generated \rightarrow Reduced logic.

An example circuit

- □ From 14.3, example 1
 - A sequential circuit has one input X and one output Z. The circuit looks at the groups of four consecutive inputs and sets Z=1 if the input sequence 0101 or 1001 occurs. The circuit returns to the reset state after four inputs. Design the Mealy machine.
- □ Typical sequence
 - **X** = 0101 0010 1001 0100
 - Z= 0001 0000 0001 0000

A state table for this

- Set up a table for all the possible input combinations (versus rationalizing the development of a state graph).
- □ For the two sequences when the 4th input completes a sequence, return to reset with Z=1.

Input	Present	Next S	Present Output		
Sequence	State	X = 0	X = 1	X = 0	X = 1
reset	А	В	С	0	0
0	В	D	E	0	0
1	С	F	G	0	0
00	D	Н	1	0	0
01	E	J	K	0	0
10	F	L	M	0	0
11	G	N	Р	0	0
000	Н	A	A	0	0
001	1	A	A	0	0
010	J	A	A	0	1
011	K	A	A	0	0
100	L	A	A	0	1
101	M	A	A	0	0
110	N	A	A	0	0
111	Р	A	A	0	0

7

Notes on state table generation

- □ When generated by looking at all combinations of inputs the state table is far from minimal.
- □ First step is to remove redundant states.
 - There are states that you cannot tell apart
 - □ Such as H and I both have next state A with Z=0 as output.
 - □ State H is equivalent to State I and state I can be removed from the table.
 - Examining table shows states K, M, N and P are also the same as I was – they can be deleted.
 - □ States J and L are also equivalent.

7

Can take state table to graph

- □ Reset and states B and C
- □ Will also be able to see redundancies in graph

The next level

□ Now add D, E,F, G

And the final level

□ Adding state H,I,J,K,L,M,N,P

1st state reduction

- First need to
 indicate that
 H, I, K, M, N and
 P are the same
- AND J and L are the same
- So remove all but H and J

Input Sequence	Present State	Next St $X = 0$	tate $X = 1$	Pres Out X = 0	ent put X = 1
reset	А	В	С	0	0
0	В	D	E	0	0
1	С	F	G	0	0
00	D	Н	V H	0	0
01	E	J	KH	0	0
10	F	KJ	MH	0	0
11	G	ØН	PH	0	0
000	Н	A	A	0	0
001	1	A	A	0	0
010	J	A	A	0	1
011	K	A	A	0	-0
100	L	A	A	0	-
101	M	A	A	0	-0
110	N	A	A	0	0
111	P	A	A	0	0

Reduction continued

- Having made these reductions move up to the D E F G section where the next state entries have been changed.
- Note that State D and State G are equivalent.
- □ State E is equivalent to F.
- □ The result is a reduced state table.

			Pres	ent
Present	Next	State	Out	put
State	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1
А	В	С	0	0
В	D	E	0	0
С	F E	GD	0	0
D	Н	1 H	0	0
Ε	J	КH	0	0
F	<u> </u>	MH	0	0
G	NH	RH	0	0
Н	A	A	0	0
1	A	A	0	0-
J	A	A	0	1
K	A	A	0	0
L	A	A	0	1
M	A	A	0	0
N	A	A	0	0
P	A	-A	0	0

The result

□ Reduced state table and graph

Present	Next	State	Out	put
State	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1
A	В	С	0	0
В	D	Ε	0	0
С	Ε	D	0	0
D	Н	Н	0	· 0
Ε	J	Н	0	0
Н	А	Α	0	0
J	Α	A	0	1
		(a)		

\Box Original – 15 states – reduced to 7 states

Equivalence

- Two states are equivalent if there is no way of telling them apart through observation of the circuit inputs and outputs.
- □ Formal definition
 - Let N_1 and N_2 be sequential circuits (not necessarily different). Let <u>X</u> represent a sequence of inputs of arbitrary length. Then state *p* in N_1 is equivalent to state *q* in N_2 iff $\lambda_1(p,\underline{X}) = \lambda_2(q,\underline{X})$ for every possible input sequence <u>X</u>.
- □ The definition is not practical to apply in practice.

As not practical

□ Theorem 15.1

- Two states p and q of a sequential circuit are equivalent iff for every single input X, the outputs are the same and the next states are equivalent, that is, $\lambda(p,X) = \lambda(q,X)$ and $\delta(p,X) \equiv \delta(q,X)$ where $\lambda(p, X)$ is the output given present state p and input X, and $\delta(p,X)$ is the next state given the present state *p* and input X.
- □ So the outputs have to be the same and the next states equivalent.

Implication Tables

- □ Now a procedure for finding all the equivalent states in a state table.
- □ Use an implication table a chart that has a square for each pair of states.

Present	Next St	ate	Present	
State	<i>X</i> = 0	1	Output	
а	d	с	0	
b	f	h	0	
с	е	d	1	
d	а	е	0	
е	С	а	1	
f	f	b	1	
g	b	h	0	
h	с	g	1	

Step 1

- □ Use a X in the square to eliminate output incompatible states.
- \square 1st output of a differes from c, e, f, and h

Present	Next St	ate	Present
State	<i>X</i> = 0	1	Output
а	d	с	0
b	f	h	0
с	е	d	1
d	а	е	0
е	С	а	1
f	f	b	1
g	b	h	0
h	с	g	1

Step 1 continued

□ Continue to remove output incompatible

states

Present	Next St	ate	Present	
State	<i>X</i> = 0	1	Output	
а	d	с	0	
b	f	h	0	
с	e	d	1	
d	a	е	0	
е	С	а	1	
f	f	b	1	
g	b	h	0	
h	с	g	1	

Now what?

- Implied pair are now entered into each non X square.
- □ Here $a \equiv b$ iff $d \equiv f$ and $c \equiv h$

Present	Next St	ate	Present	
State	<i>X</i> = 0	1	Output	
а	d	с	0	
b	f	h	0	
с	e	d	1	
d	a	е	0	
е	С	а	1	
f	f	b	1	
g	b	h	0	
h	с	g	1	

Copyright 2012 - Joanne DeGroat, ECE, OSU

Self redundant pairs

Self redundant pairs are removed, i.e., in square a-d it contains a-d.

Present	Next St	ate	Present	
State	<i>X</i> = 0	1	Output	
а	d	с	0	
b	f	h	0	
с	е	d	1	
d	а	е	0	
е	С	а	1	
f	f	b	1	
g	b	h	0	
h	с	g	1	

Next pass

- X all squares with implied pairs that are not compatible.
- Such as in a-b have d-f which has an X in it.
- Run through the chart until no further X's are found.

Final step

□ Note that a-d is not Xed – can conclude that a=d. The same for c-e, i.e., c=e.

Reduced table

□ Removing equivalent states.

Present	Next St	ate	Present	
State	<i>X</i> = 0	1	Output	
а	d	с	0	
b	f	h	0	
с	е	d	1	
d	а	е	0	
е	С	a	1	
f	f	b	1	
g	b	h	0	
ĥ	с	g	1	

	Output	Next State $X = 0$ 1	Present State
	0	ас	a
	0	f h	b
	1	са	C
	1	f b	1
1 A	0	b h	9
	1	c g	h

Summary of method

- 1. construct a chart with a square for each pair of states.
- Compare each pair of rows in the state table. X a square if the outputs are different. If the output is the same enter the implied pairs. Remove redundant pairs. If the implied pair is the same place a check mark as i=j.
- □ 3. Go through the implied pairs and X the square when an implied pair is incompatible.
- □ 4. Repeat until no more Xs are added.
- □ 5. For any remaining squares not Xed, i=j.

Another example

□ Consider a previous circuit

	NEXT	STATE	OU	ГРИТ
Present State	X=0	X=1	X=0	X=1
SO	S 1	S4	0	0
S 1	S 1	S2	0	0
S2	S3	S4	1	0
S 3	S5	S2	0	0
<u>S</u> 4	S 3	<u>S</u> 4	0	0
S5	S 1	S2	0	1

Set up Implication Chart

□ And remove output incompatible states

	NEXT STATE		OUTPUT	
Present State	X=0	X=1	X=0	X=1
SO	S1	S4	0	0
S1	S1	S2	0	0
S2	S3	S4	1	0
S3	S5	S2	0	0
S4	S3	S4	0	0
S5	S1	S2	0	1

□ Also indicate implied pairs

Step 2

□ Check implied pairs and X

What does it tell you?

□ In this case, the state table is minimal as no state reduction can be done.

Lecture summary

- Have covered the method for removal of redundant states from state tables.
- Work problem 14.26 by enumerating all the possible states and then doing state reduction. See web page.
- □ Look at 15.2 through 15.8 (answers in text)