L6 – Derivation of State Graphs and Tables
State Graphs and Tables

- Problem Statement translation
 - To State Graphs
 - To State Tables

- Ref: text : Unit 14
ANY DESIGN METHODOLOGY

- Tradition Design Methodology for creation of a state machine:
 - From a detail word specification of the problem generate a state graph or state table translating the word specification into a more formal description of the state machine.
 - If a state graph is used, create a state table. Choose a state assignment, do K-maps for logic, and implement.

- HDL Methodology
 - From a detail word specification of the problem generate a state graph or state table translating the word specification into a more formal description of the state machine.
 - Write the HDL for the specification. Write a testbench to test out the circuit.
 - Synthesize.
Derivation of State Graphs

- Problem Statement specifies the desired relationship between the input and output sequences. Sometimes called the specification.
- First step is to translate this specification into a state table or state graph.
- In the HDL world, there is a style that allows creation of the next state specification that does not require either a state graph or state table.
A Sequence Detector Example

- The specification

 The circuit will examine a string of 0’s and 1’s applied serially, once per clock, to the X input and produce a 1 only when the prescribed input sequence occurs. Any sequence ending in 101 will produce and output of Z=1 coincident with the last 1 input. The circuit does not reset when a 1 output occurs so whenever a 101 is in the data stream a 1 is output coincident with the last 1.
General Form of the circuit

- The circuit has the general form
 - X – serial input stream
 - Z – serial output stream
 - Clk – the clock

\[
X = 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \\
Z = 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \\
\text{(time: 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15)}
\]
Start construction of the graph.

- Choose a starting state and a meaning for that state. The starting state is typically a reset state.
 - Here meaning of starting state, S0, can be
 - The system has been reset and this is the initial state
 - A sequence of 2 or more 0’s has been received
Transitions from S0

- Two possible transitions – 0 and 1
 - On a 0 stay in S0
 - On a 1 transition to a new state S1 with a new meaning.
Add the next state

- Now add state S1
 - Meaning – a sequence of 0...01 has been received when coming from state S0
 - Meaning – the first 1 has been received.

![Diagram of state transition](image)
Transitions from S1

- What happens when in S1
 - A 0 input causes transition to a new state S2 with new meaning
 - A 1 keeps you in S1 where the first 1 of a possible 101 sequence has occurred.
State S2

- State S2 – what is the meaning of being here?
 - When transition is from S1 it means we have received an input stream of xxx10.
Transitions from S2

- Are currently in S2
 - A 1 arrives and now have a sequence of 101
 - Action – Output a 1, and have the first 1 of a new sequence, i.e., transition to S1
 - A 0 arrives – now have a sequence of 100
 - Action – Move back to state S0 where you do not even have the start of a sequence, i.e., one or more 0 inputs.
The full state diagram

- The now completed state diagram

- This can now be used to generate a state table – more on that later
Another example

- Problem Statement: The circuit has the same form as before and shown below. The circuit will detect input sequences that end in 010 or 1001. When a sequence is detected the output Z is 1, otherwise Z is 0.
The initial state

- The RESET state – have no inputs yet
- Then if you have a 0 input the output is 0 – transition to S1
- If you have a 1 input the output is 0 and transition to S4
Meaning of states

- S0 – Reset
- S1 – 0 but not 10
- S4 – 1 but not 01
More states

- Add S2 having meaning that a 01 sequence has been received.
- Add S3 having meaning that the sequence 10 has been received.
Meaning of states after S2 S3

- S0 – Reset
- S1 – 0 but not 10
- S2 – Sequence of 01
- S3 – Sequence of 10
- S4 – 1 but not 01
Consider inputs when in S2, S3

- In S2 (01) and get a 0 – Transition to S3 (10) – output a 1
- In S3 (10) and get a 1 – Transition to S2 (01)
Add a new state S5

- S5 – Have received input sequence 100
When in S5

In S5

- Input of a 1 means you have had an input of 1001 so transition to S2 as the input sequence now ends in 01 while Z is 1.
Add other transitions

- Complete the transitions not yet covered
- Each state should have an output transition for both a 0 and a 1.
The meaning of the states

- S0 – Reset
- S1 – 0 (but not 10)
- S2 – Sequence of 01
- S3 – Sequence of 10
- S4 – 1 (but not 01)
- S5 – Sequence of 100
Guidelines for Construction of State Graphs

- First, construct some sample input and output sequences to make sure you understand the problem (ref slides 5 and 13).
- Determine under what conditions the circuit is in reset state.
- If only one or two sequences lead to a 1 output construct a partial state graph.
- OR determine what sequences or groups of sequences must be remembered.
- When adding transitions see if you transition to a defined state or a new state is to be added.
- Make sure all state have a transition for both a 0 and a 1 but only 1 of each!
- Add annotation or create a table to expound the meaning of each state.
Look at

- Look at programmed exercise 14.1 – page 449, 450 and 451
- Page 480 in 7th edition of textbook
- Still need to consider Moore type implementations for the state graph.