L5 – Sequential Circuit Design

Sequential Circuit Design

- Mealy and Moore
- Characteristic Equations
- Design Procedure
- Example Sequential Problem from specification to implementation

Ref: Unit 14 of text

Types of State Machines

Mealy Machine

Types of State Machines

Moore Machine

Characterized by – Outputs are a function of the current state only.

Notes on Mealy and Moore

- Both Mealy and Moore machine implementation can be implemented with any sequential element.
- □ Why choose one elements over another?
 - Efficiency The next state logic may differ significantly when using different F/F types.
 - Efficiency of implementation is also drastically affected by choice of state assignment.

The characteristic equation

- The Characteristic Equation formally specifies the flip-flop's next state as a function of its current state and inputs
- Q* means the next state value for the Q output of the F/F

Characteristic equations for F/Fs

- □ *Ref: Lect 1*
- □ S-R Latch
- D Latch
- D F/F
- □ D F/F with Enable
- □ J-K F/F
- \Box T F/F

 $\Box Q^* = S + R' Q$ $\Box \quad Q^* = D$ $\Box \quad \mathbf{O}^* = \mathbf{D}$ $\Box \quad \mathbf{Q}^* = \mathbf{EN} \ \mathbf{D} + \mathbf{EN'} \ \mathbf{Q}$ $\Box Q^* = JQ' + K'O$ $\Box \quad \mathbf{Q}^* = \mathbf{Q}'$ when T = 1

Summary of the Design Procedure

- I. Given the problem statement, determine the relationship between input and output. Understand the specification and or problem statement. Resolve any questions. Then generate a state graph and/or state table.
- □ 2. Reduce the state table to the minimum number of states.
- □ 3. From the number of states determine the number of flip-flops (m states →n flip-flops where m $\leq 2^n$)
- □ 4. Generate a transition table (current state next state)
- □ 5. Use K-maps to derive flip-flop input equations.
- □ 6. Derive output functions and implement.

Example – problem statement

- □ Sequential Code Converter (16.3 example)
- Word description: Design a sequential circuit to convert BCD to excess 3 code. The inputs arrive sequentially, 1sb first, i.e. serial input stream. After 4 inputs the circuit resets to the initial state ready for another group of 4 inputs. The excess 3 code is output serially at the same time.
- □ First question is it possible to generate the output serially without delay?

Input – output table

□ Input BCD – Output excess 3

X Input (BCD)				Z					
				()				
t ₃	t ₂	t ₁	t ₀	t ₃	t_2	t_1	to		
0	0	0	0	0	0	1	1		
0	0	0	1	0	1	0	0		
0	0	1	0	0	1	0	1		
0	0	1	1	0	1	1	0		
0	1	0	0	0	1	1	1		
0	1	0	1	1	0	0	0		
0	1	1	0	1	0	0	1		
0	1	1	1	1	0	1	0		
1	0	0	0	1	0	1	1		
1	0	0	1	1	1	0	0		

Construct a state Graph

□ Walk through the sequences

Build a state table

From the State Graph can build the state table
Note the relationship between the two

Time	Input Sequence Received (Least Significant Bit First)	Present	Next St X = 0	ate 1	Present Output (Z) X = 0 1		
$\overline{t_0}$	reset	A	B	C	1	0	
	0	В	D	F	1	0	
t_1	1	С	E	G	0	1	
	00	D	Н	L	0	1	
	01	E	1	M	1	0	
τ ₂	10	F	J	N	1	0	
	11	G	K	Ρ	1	0	
	000 ·	Н	A	A	0	1	
	001	1	A	A	0	1	
	010	J	A	_	0	_	
	011	K	A	-	0	_	
τ_3	100	L	A	-	0	_	
	101	М	A	-	1	-	
	110	N	A	-	1	-	
	111	Р	A	-	1	_	

5

Then reduce the state table

- And just how is that done (the coming attraction)
- □ How many flip-flops are needed?

	Present	Next State	Present Output (Z)		
Time	State	X = 0 1	X = 0 1		
t _o	А	BC	1 0		
t ₁	В	DE	1 0		
of the	С	E E	0 1		
t ₂	D	н н	0 1		
theilig	E	H M	1 0		
t ₃	Н	AA	0 1		
COMPANY.	М	A -	1 -		

What next?

- □ Choose state assignment
- □ Pick flip-flop of implementation here D F/Fs

Next state logic

□ Logic to generate the next state is generated □ Use K-maps $Q_2Q_3^{XQ_1} = Q_2Q_3^{XQ_1} = Q_2Q_3^{XQ_1} = Q_2Q_3^{Q_2} =$

	$\backslash Q_1$	0	mple	Marchine of the second		$Q_1^+ Q_2^+ Q_3^+$		Z		
	Q_2Q_3	0		y share	8	$Q_1 Q_2 Q_3$	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1
	00	Α	B	yordh Ti	A	000	100	101	1	0
	outpi	2.00	1	Lind	В	100	111	110	1	0
	01		C	linds Ir	С	101	110	110	0	
	and a	S. Same	in mil	hilling	D	111	011	011	0	1
	11	Н	D	00.0.1	Ε	110	011	010	1	0
			-	rest and	Н	011	000	000	0	1
	10	M	F	1.0.00	М	010	000	ххх	1	х
	10	IVI			-	001	xxx	ххх	x	x
	(a)	Assigr	nment m	ap			(b) Tran	sition ta	ble	

From there: implement the design

□ D flip-flop implementation

Implementation with other F/Fs?

- □ Use the characteristic equation for generation of the transition table.
- □ Say T flip-flops example for T1

■ 000 → 100 (x=0) 101 (x=1)

5

Assignment

Work through the problem in this lecturee on your own and be comfortable with them.

Work through of Programmed Exercise 14.1 and 14.2.

5