L10 – State Machine Design Topics

States Machine Design

- □ Other topics on state machine design
 - Equivalent sequential machines
 - Incompletely specified machines
 - One Hot State Machines

□ Ref: text Unit 15.4, 15.5, 15.8

Equivalent State Machines

- So far have seen that equivalent states in the state table of a sequential machine are equivalent and can be removed.
- □ How about the equivalence between two sequential circuits?
 - Two sequential circuits are equivalent if they are capable of doing the same work.

Formally

Definition 15.2

- Sequential circuit N_1 is equivalent to sequential circuit N_2 if for each state p in N_1 , there is a state q in N_2 such that $p \equiv q$, and conversely, for each state s in N_2 there is a state t in N_1 such that $s \equiv t$.
- Simply said they have the same states which can be seen if the circuit is small enough.
- An implication table can be used to prove this.

An example

- □ State tables and state graphs of two sequential machines. Figure 15-6 from the text.
- □ Equivalent?

Proving equivalence

- □ Again will use an implication table.
 - Only this time, it is the full square.
 - Along bottom are the states of one machine
 - Along the side are the states of the second.
- □ Start by removing output incompatible states.

The equivalence implication table

X squares where the outputs are incompatible
 Enter implied equivalence pairs for remaining states.

Step 2

- Go back through and remove the implied equivalence pairs that were Xed on the first pass.
 Continue until no further Xs are entered.
- If there is one square not Xed in each row and each column, the state machines are equivalent. (When both are minimal)
- Consider problem 15-17 in text Does this work if the state tables are of different size?

Problem 15.17

□ The problem statement

15.17 Circuits N and M have the state tables that follow.

- (a) Without first reducing the tables, determine whether circuits N and M are equivalent.
- (b) Reduce each table to a minimum number of states, and then show that N is equivalent to M by inspecting the reduced tables.

n an a	<i>X</i> = 0	1	in angling	č narst	X = 0	1	1
So	S3	S ₁	0	A	Е	A	
S ₁	So	S ₁	0	В	F	В	41
S ₂	So	S2 .	1	С	Ε	D	(
S3	So	S ₃	1	D	E	С	(
resu	ing the	No STREET	illy only	Ε	В	D	(
				F	В	С	(

Problem 15.17

- □ Can be Worked on board
- □ Or here in the slides
 - Start with an equivalence implication table

Output compatible

□ Go through and X output incompatible states

Next State

□ Fill in the next state pairs on the table

1st Pass through table

- \Box Check implied pairs (S3-E)x (S0-B)x
 - Remainder are compatible. It seems machine has redundant states
 A B C D E F

Minimize both machines?

□ Start with the Sx machine – can it be minimized? If so, what are implications?

- 15.17 Circuits N and M have the state tables that follow.
 - (a) Without first reducing the tables, determine whether circuits N and M are equivalent.
 - (b) Reduce each table to a minimum number of states, and then show that N is equivalent to M by inspecting the reduced tables.

Minimize both machines

Implied Next States

- 15.17 Circuits N and M have the state tables that follow.
 - (a) Without first reducing the tables, determine whether circuits N and M are equivalent.
 - (b) Reduce each table to a minimum number of states, and then show that N is equivalent to M by inspecting the reduced tables.

	M			N				
	X = 0	1			X = 0	1		
So	S3	S ₁	0	A	Ε	A	1	
S ₁	So	S ₁	0	В	F	В	1	
S ₂	So	S2 .	1	С	Е	D	0	
S3	So	S3	1	D	E	С	0	
				Ε	В	D	0	
				F	В	C	0	

Minimize both machines

□ Can it be reduced?

Reduced machine

- Can be seen from state
 graph
- States S2 and S3 are equivalent – in fact S2 is not reachable unless the machine comes up in that state at startup and it can never reach S2 again.

Now for the A,B,..,E machine

□ Start with incompatible outputs

15.17 Circuits N and M have the state tables that follow.

- (a) Without first reducing the tables, determine whether circuits N and M are equivalent.
- (b) Reduce each table to a minimum number of states, and then show that N is equivalent to M by inspecting the reduced tables.

And then implied next state

□ And run though algorithm

Result is reduced state table

□ Find that

- $\square D \equiv C$
- $\mathbf{E} \equiv \mathbf{F}$
- $A \equiv B$

□ So state table reduces to AND for Sx version

	X=0	X=1	OUTPUT		X=0	X=1	OUTPUT
				S3	S0	S3	1
А	E	А	1	S 1	50	S 1	0
С	Е	С	0	51	50	51	, o
Е	А	С	0	S0	S3	S1	0
							•

Significance

Now consider the equivalence implication table. What is the implication if S2 replaces state S2 and S3?

Incompletely Specified

- Incompletely Specified State Tables
 - State tables that contain don't cares.
 - Results in reduced logic
- Determining the best way to fill in the don't cares is another of the *n-p complete* problems.
 For this course do the most logical approach.

One Hot

- CPLDs and FPGAs have a good number of F/Fs onboard. The F/Fs are there whether they are used or not, so a circuit with the minimum number of F/Fs is not the ultimate objective.
- For these devices the objective is to reduce the total number of logic cells used and the interconnection between cells.
- One hot encoding is one approach to have shorter signal paths and reduce logic cells.

What is one hot?

- One hot is a method where a flip flop is used for each state in the state machine. A state machine with *n* states will require *n* flip flops in its realization.
- One hot realization is excellent for controllers that step through a set sequence of linear steps.
- Text gives example of a multiplier controller state graph which is not linear.

Linear one hot

- Linear one hot sequential controllers requires no next state logic.
- □ On Reset the output of the 4 F/F is 1000
 - On clocks 0100, then 0010, then 0001, then 0000

One hot use

□ Have been use in such things as

- Successive approximation A-D converters
- Various automotive control systems
- Automated machinery control systems
- □ Also commonly used in processor controllers
 - Process controller states
 - □ F1,F2,F3,F4,F5,F6,F7,F8 always followed by
 - □ E0,E1,E2,E3,E4,E5,E6,E7 if direct addressing
 - □ E20,E21,E22,E23,E24,E25,E26,E27 if indirect

One hot application

- One hot could have been used in the sequence detector problems
 - Detect an input sequence ending in 101.
 - Construct a shift register that holds the last 3 inputs of an input X.

The full circuit

- □ Desire Z=1 when $X_{-1} X_{-2} X_{-3}$ is 101.
- □ Simply construct the combinational logic with inputs from the F/F outputs.

Compare the gates

- Traditional implementation for sequence detector (from text)
 - 2 F/Fs
 - 2 2-input AND gates
 - 1 INV
- One hot implementation
 - 3 F/Fs
 - 1 3-input AND gate

Another example

- Design a sequence detector that detects input sequences ending in 010 or 1001. Z = 1 when a sequence is detected.
- Start with a 4 bit shift register to hold the last 4 inputs.

Now add Z generation logic

□ Construct the combinational logic for Z

Implementation comparison

- □ Traditional
 - 3 F/Fs
 - Need to work problem
 - more than 1 hot
- □ One hot
 - 4 F/Fs
 - 2 AND gates (1- 3 inp, 1- 4 inp)
 - 1 OR gate (2 inp)

The state table

□ For the Mealy Machine

	NEXT	OUTPUT		
Present State	X=0	X=1	X=0	X=1
S 0	S1	S4	0	0
S 1	S1	S2	0	0
S2	S3	S4	1	0
S 3	S5	S2	0	0
S4	S3	S4	0	0
<u>S5</u>	S1	<u>S</u> 2	0	1

Comparison

□ This was worked to gates in lect 9.

- **3** D F/Fs
- **2** 3 input AND gates
- 3-2 input AND gates
- 2-2 input OR gates
- 1 3 input OR gate
- □ Versus one hot
 - 4 F/Fs
 - 1 3 input AND gate
 - $\bullet 1 4 \text{ input AND gate}$
 - 1 2 input OR
- □ Comments from class?????

Lecture summary

- □ Have looked at state machine equivalence.
- □ Incompletely specified machine implication.
- One hot encoding and how it may not be all that bad an alternative.