
L10 – State Machine 
Design Topics 



States Machine Design 
 Other topics on state machine design 
 Equivalent sequential machines 
 Incompletely specified machines 
 One Hot State Machines 

 
 

 Ref: text Unit 15.4, 15.5, 15.8 
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Equivalent State Machines 
 So far have seen that equivalent states in the 

state table of a sequential machine are 
equivalent and can be removed. 

 How about the equivalence between two 
sequential circuits? 
 Two sequential circuits are equivalent if they are 

capable of doing the same work. 
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Formally 
 Definition 15.2 
 Sequential circuit N1 is equivalent to sequential 

circuit N2 if for each state p in N1, there is a state 
q in N2 such that p ≡ q, and conversely, for each 
state s in N2 there is a state t in N1 such that s ≡ t. 

 Simply said they have the same states which can 
be seen if the circuit is small enough. 

 An implication table can be used to prove 
this. 
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An example 
 State tables and state graphs of two sequential 

machines.  Figure 15-6 from the text. 
 Equivalent? 
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Proving equivalence 
 Again will use an implication table. 
 Only this time, it is the full square. 
 Along bottom are the states of one machine 
 Along the side are the states of the second. 

 Start by removing output incompatible states. 
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The equivalence implication table 
 X squares where the outputs are incompatible 
 Enter implied equivalence pairs for remaining 

states. 
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Step 2 
 Go back through and remove the 

implied equivalence pairs that 
were Xed on the first pass.  
Continue until no further Xs are 
entered. 

 If there is one square not Xed in 
each row and each column, the 
state machines are equivalent. 
(When both are minimal) 

 Consider problem 15-17 in text  
Does this work if the state tables 
are of different size? 
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Problem 15.17 
 The problem statement 
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Problem 15.17 
 Can be Worked on board 
 Or here in the slides 
 Start with an equivalence implication table 
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S0

S1

S2

S3

A          B            C            D           E           F



Output compatible 
 Go through and X output incompatible states 
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S0

S1

S2

S3

A          B            C            D           E           F



Next State 
 Fill in the next state pairs on the table 
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S3 – E
S1 – D

S0 – E
S1 – D

S0 – E
S1 – C

S0 – B
S1 – D

S0 – B
S1 – C

S0 – E
S2 - A

S0 – F
S2 – B

S0 – E
S3 - A

S0 – F
S3 – B

S0

S1

S2

S3

A          B            C            D           E           F

S3 – E
S1 – C

S3 – B
S1 – D

S3 – B
S1 – C



1st Pass through table 
 Check implied pairs  (S3-E)x  (S0-B)x 
 Remainder are compatible.  It seems machine has 

redundant states 
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S3 – E
S1 – D

S0 – E
S1 – D

S0 – E
S1 – C

S0 – B
S1 – D

S0 – B
S1 – C

S0 – E
S2 - A

S0 – F
S2 – B

S0 – E
S3 - A

S0 – F
S3 – B

S0

S1

S2

S3

A          B            C            D           E           F

S3 – E
S1 – C

S3 – B
S1 – D

S3 – B
S1 – C



Minimize both machines? 
 Start with the Sx machine – can it be 

minimized?  If so, what are implications? 
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S1

S2

S3

S0          S1            S2



Minimize both machines 
 Implied Next States 
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S1

S2

S3

S0          S1            S2

S3-S0
S1-S1

S0-S0
S2-S3

S1

S2

S3

S0          S1            S2



Minimize both machines 
 Can it be reduced? 

9/2/2012 – ECE 3561 Lect 
10 

Copyright 2012 - Joanne DeGroat, ECE, OSU 16 

S1

S2

S3

S0          S1            S2

S3-S0
S1-S1

S0-S0
S2-S3

S1

S2

S3

S0          S1            S2

S3-S0
S1-S1

S0-S0
S2-S3

S1

S2

S3

S0          S1            S2



Reduced machine 
 Can be seen from state 

graph 
 States S2 and S3 are 

equivalent – in fact S2 is 
not reachable unless the 
machine comes up in that 
state at startup and it can 
never reach S2 again. 
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Now for the A,B,..,E machine 
 Start with incompatible outputs 
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And then implied next state 
 And run though algorithm 
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Result is reduced state table 
 Find that  

 D ≡ C 
 E ≡ F 
 A ≡ B 

 So state table reduces to AND for Sx version 
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Significance 
 Now consider the equivalence implication 

table.  What is the implication if S2 replaces 
state S2 and S3? 
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S3 – E
S1 – D

S0 – E
S1 – D

S0 – E
S1 – C

S0 – B
S1 – D

S0 – B
S1 – C

S0 – E
S2 - A

S0 – F
S2 – B

S0 – E
S3 - A

S0 – F
S3 – B

S0

S1

S2

S3

A          B            C            D           E           F

S3 – E
S1 – C

S3 – B
S1 – D

S3 – B
S1 – C



Incompletely Specified 
 Incompletely Specified State Tables 
 State tables that contain don’t cares. 
 Results in reduced logic 

 
 Determining the best way to fill in the don’t 

cares is another of the n-p complete problems. 
 For this course do the most logical approach. 
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One Hot 
 CPLDs and FPGAs have a good number of F/Fs 

onboard.  The F/Fs are there whether they are 
used or not, so a circuit with the minimum 
number of F/Fs is not the ultimate objective. 

 For these devices the objective is to reduce the 
total number of logic cells used and the 
interconnection between cells. 

 One hot encoding is one approach to have shorter 
signal paths and reduce logic cells. 
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What is one hot? 
 One hot is a method where a flip flop is used 

for each state in the state machine.  A state 
machine with n states will require n flip flops 
in its realization. 

 One hot realization is excellent for controllers 
that step through a set sequence of linear 
steps. 

 Text gives example of a multiplier controller 
state graph which is not linear. 
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Linear one hot 
 Linear one hot sequential controllers requires 

no next state logic. 
 On Reset the output of the 4 F/F is 1000 
 On clocks 0100, then 0010, then 0001, then 0000 
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Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

reset

0

clk

A B C D

reset



One hot use 
 Have been use in such things as  
 Successive approximation A-D converters 
 Various automotive control systems 
 Automated machinery control systems 

 Also commonly used in processor controllers 
 Process controller states 

 F1,F2,F3,F4,F5,F6,F7,F8   always followed by 
 E0,E1,E2,E3,E4,E5,E6,E7  if direct addressing 
 E20,E21,E22,E23,E24,E25,E26,E27  if indirect 
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One hot application 
 One hot could have been used in the sequence 

detector problems 
 Detect an input sequence ending in 101. 
 Construct a shift register that holds the last 3 

inputs of an input X. 
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The full circuit 
 Desire Z=1 when X-1 X-2 X-3 is 101. 
 Simply construct the combinational logic with 

inputs from the F/F outputs. 
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Compare the gates 
 Traditional implementation for sequence 

detector (from text) 
 2 F/Fs 
 2  2-input AND gates 
 1  INV 

 One hot implementation 
 3 F/Fs 
 1 3-input AND gate 
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Another example 
 Design a sequence detector that detects input 

sequences ending in 010 or 1001.  Z = 1 when 
a sequence is detected. 

 Start with a 4 bit shift register to hold the last 
4 inputs. 
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Now add Z generation logic 
 Construct the combinational logic for Z 
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Implementation comparison 
 Traditional 
 3 F/Fs 
 Need to work problem 
     more than 1 hot 

 One hot 
 4 F/Fs 
 2 AND gates (1- 3 inp, 1- 4 inp) 
 1 OR gate (2 inp) 
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The state table 
 For the Mealy Machine 
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      NEXT STATE  OUTPUT 
Present State X=0 X=1 X=0     X=1 

S0 S1 S4 0             0 
S1 S1 S2 0             0 
S2 S3 S4 1             0 
S3 S5 S2 0             0 
S4 S3 S4 0             0 
S5 S1 S2 0             1 

 



Comparison 
 This was worked to gates in lect 9. 

 3 D F/Fs 
 2 – 3 input AND gates 
 3 – 2 input AND gates 
 2 – 2 input OR gates 
 1 – 3 input OR gate 

 Versus one hot 
 4 F/Fs 
 1 – 3 input AND gate 
 1 – 4 input AND gate 
 1 – 2 input OR 

 Comments from class?????? 
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Lecture summary 
 Have looked at state machine equivalence. 
 Incompletely specified machine implicaiton. 
 One hot encoding and how it may not be all 

that bad an alternative. 
 

9/2/2012 – ECE 3561 Lect 
10 

Copyright 2012 - Joanne DeGroat, ECE, OSU 35 


	L10 – State Machine Design Topics
	States Machine Design
	Equivalent State Machines
	Formally
	An example
	Proving equivalence
	The equivalence implication table
	Step 2
	Problem 15.17
	Problem 15.17
	Output compatible
	Next State
	1st Pass through table
	Minimize both machines?
	Minimize both machines
	Minimize both machines
	Reduced machine
	Now for the A,B,..,E machine
	And then implied next state
	Result is reduced state table
	Significance
	Incompletely Specified
	One Hot
	What is one hot?
	Linear one hot
	One hot use
	One hot application
	The full circuit
	Compare the gates
	Another example
	Now add Z generation logic
	Implementation comparison
	The state table
	Comparison
	Lecture summary

