
L10 – State Machine
Design Topics

States Machine Design
 Other topics on state machine design
 Equivalent sequential machines
 Incompletely specified machines
 One Hot State Machines

 Ref: text Unit 15.4, 15.5, 15.8

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 2

Equivalent State Machines
 So far have seen that equivalent states in the

state table of a sequential machine are
equivalent and can be removed.

 How about the equivalence between two
sequential circuits?
 Two sequential circuits are equivalent if they are

capable of doing the same work.

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 3

Formally
 Definition 15.2
 Sequential circuit N1 is equivalent to sequential

circuit N2 if for each state p in N1, there is a state
q in N2 such that p ≡ q, and conversely, for each
state s in N2 there is a state t in N1 such that s ≡ t.

 Simply said they have the same states which can
be seen if the circuit is small enough.

 An implication table can be used to prove
this.

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 4

An example
 State tables and state graphs of two sequential

machines. Figure 15-6 from the text.
 Equivalent?

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 5

Proving equivalence
 Again will use an implication table.
 Only this time, it is the full square.
 Along bottom are the states of one machine
 Along the side are the states of the second.

 Start by removing output incompatible states.

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 6

The equivalence implication table
 X squares where the outputs are incompatible
 Enter implied equivalence pairs for remaining

states.

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 7

Step 2
 Go back through and remove the

implied equivalence pairs that
were Xed on the first pass.
Continue until no further Xs are
entered.

 If there is one square not Xed in
each row and each column, the
state machines are equivalent.
(When both are minimal)

 Consider problem 15-17 in text
Does this work if the state tables
are of different size?

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 8

Problem 15.17
 The problem statement

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 9

Problem 15.17
 Can be Worked on board
 Or here in the slides
 Start with an equivalence implication table

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 10

S0

S1

S2

S3

A B C D E F

Output compatible
 Go through and X output incompatible states

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 11

S0

S1

S2

S3

A B C D E F

Next State
 Fill in the next state pairs on the table

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 12

S3 – E
S1 – D

S0 – E
S1 – D

S0 – E
S1 – C

S0 – B
S1 – D

S0 – B
S1 – C

S0 – E
S2 - A

S0 – F
S2 – B

S0 – E
S3 - A

S0 – F
S3 – B

S0

S1

S2

S3

A B C D E F

S3 – E
S1 – C

S3 – B
S1 – D

S3 – B
S1 – C

1st Pass through table
 Check implied pairs (S3-E)x (S0-B)x
 Remainder are compatible. It seems machine has

redundant states

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 13

S3 – E
S1 – D

S0 – E
S1 – D

S0 – E
S1 – C

S0 – B
S1 – D

S0 – B
S1 – C

S0 – E
S2 - A

S0 – F
S2 – B

S0 – E
S3 - A

S0 – F
S3 – B

S0

S1

S2

S3

A B C D E F

S3 – E
S1 – C

S3 – B
S1 – D

S3 – B
S1 – C

Minimize both machines?
 Start with the Sx machine – can it be

minimized? If so, what are implications?

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 14

S1

S2

S3

S0 S1 S2

Minimize both machines
 Implied Next States

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 15

S1

S2

S3

S0 S1 S2

S3-S0
S1-S1

S0-S0
S2-S3

S1

S2

S3

S0 S1 S2

Minimize both machines
 Can it be reduced?

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 16

S1

S2

S3

S0 S1 S2

S3-S0
S1-S1

S0-S0
S2-S3

S1

S2

S3

S0 S1 S2

S3-S0
S1-S1

S0-S0
S2-S3

S1

S2

S3

S0 S1 S2

Reduced machine
 Can be seen from state

graph
 States S2 and S3 are

equivalent – in fact S2 is
not reachable unless the
machine comes up in that
state at startup and it can
never reach S2 again.
 9/2/2012 – ECE 3561 Lect

10
Copyright 2012 - Joanne DeGroat, ECE, OSU 17

Now for the A,B,..,E machine
 Start with incompatible outputs

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 18

And then implied next state
 And run though algorithm

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 19

Result is reduced state table
 Find that

 D ≡ C
 E ≡ F
 A ≡ B

 So state table reduces to AND for Sx version

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 20

Significance
 Now consider the equivalence implication

table. What is the implication if S2 replaces
state S2 and S3?

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 21

S3 – E
S1 – D

S0 – E
S1 – D

S0 – E
S1 – C

S0 – B
S1 – D

S0 – B
S1 – C

S0 – E
S2 - A

S0 – F
S2 – B

S0 – E
S3 - A

S0 – F
S3 – B

S0

S1

S2

S3

A B C D E F

S3 – E
S1 – C

S3 – B
S1 – D

S3 – B
S1 – C

Incompletely Specified
 Incompletely Specified State Tables
 State tables that contain don’t cares.
 Results in reduced logic

 Determining the best way to fill in the don’t

cares is another of the n-p complete problems.
 For this course do the most logical approach.

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 22

One Hot
 CPLDs and FPGAs have a good number of F/Fs

onboard. The F/Fs are there whether they are
used or not, so a circuit with the minimum
number of F/Fs is not the ultimate objective.

 For these devices the objective is to reduce the
total number of logic cells used and the
interconnection between cells.

 One hot encoding is one approach to have shorter
signal paths and reduce logic cells.

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 23

What is one hot?
 One hot is a method where a flip flop is used

for each state in the state machine. A state
machine with n states will require n flip flops
in its realization.

 One hot realization is excellent for controllers
that step through a set sequence of linear
steps.

 Text gives example of a multiplier controller
state graph which is not linear.

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 24

Linear one hot
 Linear one hot sequential controllers requires

no next state logic.
 On Reset the output of the 4 F/F is 1000
 On clocks 0100, then 0010, then 0001, then 0000

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 25

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

reset

0

clk

A B C D

reset

One hot use
 Have been use in such things as
 Successive approximation A-D converters
 Various automotive control systems
 Automated machinery control systems

 Also commonly used in processor controllers
 Process controller states

 F1,F2,F3,F4,F5,F6,F7,F8 always followed by
 E0,E1,E2,E3,E4,E5,E6,E7 if direct addressing
 E20,E21,E22,E23,E24,E25,E26,E27 if indirect

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 26

One hot application
 One hot could have been used in the sequence

detector problems
 Detect an input sequence ending in 101.
 Construct a shift register that holds the last 3

inputs of an input X.

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 27

The full circuit
 Desire Z=1 when X-1 X-2 X-3 is 101.
 Simply construct the combinational logic with

inputs from the F/F outputs.

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 28

Compare the gates
 Traditional implementation for sequence

detector (from text)
 2 F/Fs
 2 2-input AND gates
 1 INV

 One hot implementation
 3 F/Fs
 1 3-input AND gate

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 29

Another example
 Design a sequence detector that detects input

sequences ending in 010 or 1001. Z = 1 when
a sequence is detected.

 Start with a 4 bit shift register to hold the last
4 inputs.

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 30

Now add Z generation logic
 Construct the combinational logic for Z

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 31

Implementation comparison
 Traditional
 3 F/Fs
 Need to work problem
 more than 1 hot

 One hot
 4 F/Fs
 2 AND gates (1- 3 inp, 1- 4 inp)
 1 OR gate (2 inp)

 9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 32

The state table
 For the Mealy Machine

9/2/2012 – ECE 3561 Lect
7

Copyright 2012 - Joanne DeGroat, ECE, OSU 33

 NEXT STATE OUTPUT
Present State X=0 X=1 X=0 X=1

S0 S1 S4 0 0
S1 S1 S2 0 0
S2 S3 S4 1 0
S3 S5 S2 0 0
S4 S3 S4 0 0
S5 S1 S2 0 1

Comparison
 This was worked to gates in lect 9.

 3 D F/Fs
 2 – 3 input AND gates
 3 – 2 input AND gates
 2 – 2 input OR gates
 1 – 3 input OR gate

 Versus one hot
 4 F/Fs
 1 – 3 input AND gate
 1 – 4 input AND gate
 1 – 2 input OR

 Comments from class??????

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 34

Lecture summary
 Have looked at state machine equivalence.
 Incompletely specified machine implicaiton.
 One hot encoding and how it may not be all

that bad an alternative.

9/2/2012 – ECE 3561 Lect
10

Copyright 2012 - Joanne DeGroat, ECE, OSU 35

	L10 – State Machine Design Topics
	States Machine Design
	Equivalent State Machines
	Formally
	An example
	Proving equivalence
	The equivalence implication table
	Step 2
	Problem 15.17
	Problem 15.17
	Output compatible
	Next State
	1st Pass through table
	Minimize both machines?
	Minimize both machines
	Minimize both machines
	Reduced machine
	Now for the A,B,..,E machine
	And then implied next state
	Result is reduced state table
	Significance
	Incompletely Specified
	One Hot
	What is one hot?
	Linear one hot
	One hot use
	One hot application
	The full circuit
	Compare the gates
	Another example
	Now add Z generation logic
	Implementation comparison
	The state table
	Comparison
	Lecture summary

