L10 - State Machine Design Topics

States Machine Design

- Other topics on state machine design
- Equivalent sequential machines
- Incompletely specified machines
- One Hot State Machines

ㅁ Ref: text Unit 15.4, 15.5, 15.8

Equivalent State Machines

\square So far have seen that equivalent states in the state table of a sequential machine are equivalent and can be removed.

- How about the equivalence between two sequential circuits?
- Two sequential circuits are equivalent if they are capable of doing the same work.

Formally

- Definition 15.2
- Sequential circuit N_{1} is equivalent to sequential circuit N_{2} if for each state p in N_{1}, there is a state q in N_{2} such that $p \equiv q$, and conversely, for each state s in N_{2} there is a state t in N_{1} such that $s \equiv t$.
- Simply said they have the same states which can be seen if the circuit is small enough.
- An implication table can be used to prove this.

An example

- State tables and state graphs of two sequential machines. Figure 15-6 from the text.
- Equivalent?

(a)

	N_{2}			
	$X=0$	1	$X=0$	1
S_{0}	S_{3}	S_{1}	0	1
S_{1}	S_{3}	S_{0}	0	0
S_{2}	S_{0}	S_{2}	0	0
S_{3}	S_{2}	S_{3}	0	1

(b)

Proving equivalence

\square Again will use an implication table.

- Only this time, it is the full square.
- Along bottom are the states of one machine
- Along the side are the states of the second.
- Start by removing output incompatible states.

The equivalence implication table

\square X squares where the outputs are incompatible
\square Enter implied equivalence pairs for remaining states.

	N_{1}			
	$X=0$	1	$X=0$	1
A	B	A	0	0
B	C	D	0	1
C	A	C	0	1
D	C	B	0	0

(a)

	$x=0{ }^{\text {N }}$		$X=0$	1
S_{0}	S_{3}	S_{1}	0	1
S_{1}	S_{3}	S_{0}	0	0
S_{2}	S_{0}	S_{2}	0	0
S_{3}	S_{2}	S_{3}	0	1

(b)

(a)

Step 2

\square Go back through and remove the implied equivalence pairs that were Xed on the first pass. Continue until no further Xs are entered.

- If there is one square not Xed in each row and each column, the state machines are equivalent. (When both are minimal)
- Consider problem 15-17 in text Does this work if the state tables

(b) are of different size?

Problem 15.17

- The problem statement

15.17 Circuits N and M have the state tables that follow.
(a) Without first reducing the tables, determine whether circuits N and M are equivalent.
(b) Reduce each table to a minimum number of states, and then show that N is equivalent to M by inspecting the reduced tables.

M			
	$X=0$	1	
S_{0}	S_{3}	S_{1}	0
S_{1}	S_{0}	S_{1}	0
S_{2}	S_{0}	S_{2}	1
S_{3}	S_{0}	S_{3}	1

N			
	$X=0$	1	
A	E	A	1
B	F	B	1
C	E	D	0
D	E	C	0
E	B	D	0
F	B	C	0

Problem 15.17

- Can be Worked on board
- Or here in the slides
- Start with an equivalence implication table

Output compatible

\square Go through and X output incompatible states

Next State

\square Fill in the next state pairs on the table

$1^{\text {st }}$ Pass through table

- Check implied pairs (S3-E)x (S0-B)x
- Remainder are compatible. It seems machine has redundant states

Minimize both machines?

\square Start with the Sx machine - can it be minimized? If so, what are implications?

15.17 Circuits N and M have the state tables that follow.
(a) Without first reducing the tables, determine whether circuits N and M are equivalent.
(b) Reduce each table to a minimum number of states, and then show that N is equivalent to M by inspecting the reduced tables.

Minimize both machines

\square Implied Next States

15.17 Circuits N and M have the state tables that follow.
(a) Without first reducing the tables, determine whether circuits N and M are equivalent.
(b) Reduce each table to a minimum number of states, and then show that N is equivalent to M by inspecting the reduced tables.

Minimize both machines

- Can it be reduced?

Reduced machine

- Can be seen from state graph
- States S2 and S3 are equivalent - in fact S 2 is not reachable unless the machine comes up in that state at startup and it can never reach S2 again.

Now for the A,B,..,E machine

- Start with incompatible outputs

15.17 Circuits N and M have the state tables that follow.
(a) Without first reducing the tables, determine whether circuits N and M are equivalent.
(b) Reduce each table to a minimum number of states, and then show that N is equivalent to M by inspecting the reduced tables.

M						N			
	$X=0$	1							

And then implied next state

- And run though algorithm

Result is reduced state table

- Find that
- $\mathrm{D} \equiv \mathrm{C}$
- $\mathrm{E} \equiv \mathrm{F}$
- $\mathrm{A} \equiv \mathrm{B}$
- So state table reduces to AND for Sx version

	$\mathrm{X}=0$	$\mathrm{X}=1$	OUTPUT
A	E	A	1
C	E	C	0
E	A	C	0

	$\mathrm{X}=0$	$\mathrm{X}=1$	OUTPUT
S3	S0	S3	1
S1	S0	S1	0
S0	S3	S1	0

Significance

- Now consider the equivalence implication table. What is the implication if S 2 replaces state S2 and S3?

Incompletely Specified

- Incompletely Specified State Tables
- State tables that contain don't cares.
- Results in reduced logic
\square Determining the best way to fill in the don't cares is another of the $n-p$ complete problems.
\square For this course do the most logical approach.

One Hot

- CPLDs and FPGAs have a good number of F/Fs onboard. The F/Fs are there whether they are used or not, so a circuit with the minimum number of F/Fs is not the ultimate objective.
\square For these devices the objective is to reduce the total number of logic cells used and the interconnection between cells.
\square One hot encoding is one approach to have shorter signal paths and reduce logic cells.

What is one hot?

- One hot is a method where a flip flop is used for each state in the state machine. A state machine with n states will require n flip flops in its realization.
ㅁ One hot realization is excellent for controllers that step through a set sequence of linear steps.
\square Text gives example of a multiplier controller state graph which is not linear.

Linear one hot

- Linear one hot sequential controllers requires no next state logic.
- On Reset the output of the $4 \mathrm{~F} / \mathrm{F}$ is 1000 - On clocks 0100, then 0010, then 0001, then 0000

One hot use

- Have been use in such things as
- Successive approximation A-D converters
- Various automotive control systems
- Automated machinery control systems
- Also commonly used in processor controllers
- Process controller states
- F1,F2,F3,F4,F5,F6,F7,F8 always followed by
- E0,E1,E2,E3,E4,E5,E6,E7 if direct addressing
- E20,E21,E22,E23,E24,E25,E26,E27 if indirect

One hot application

- One hot could have been used in the sequence detector problems
- Detect an input sequence ending in 101.
- Construct a shift register that holds the last 3 inputs of an input X.

The full circuit

\square Desire $\mathrm{Z}=1$ when $\mathrm{X}_{-1} \mathrm{X}_{-2} \mathrm{X}_{-3}$ is 101.

- Simply construct the combinational logic with inputs from the F/F outputs.

Compare the gates

- Traditional implementation for sequence detector (from text)
- 2 F/Fs
- 2 2-input AND gates
- 1 INV
\square One hot implementation
- $3 \mathrm{~F} / \mathrm{Fs}$
- 1 3-input AND gate

Another example

\square Design a sequence detector that detects input sequences ending in 010 or 1001 . $\mathrm{Z}=1$ when a sequence is detected.

- Start with a 4 bit shift register to hold the last 4 inputs.

Now add Z generation logic

ㅁ Construct the combinational logic for Z

Implementation comparison

- Traditional
- 3 F/Fs
- Need to work problem
- more than 1 hot
- One hot
- $4 \mathrm{~F} / \mathrm{Fs}$

- 2 AND gates (1-3inp, 1-4inp)
- 1 OR gate (2 inp)

The state table

\square For the Mealy Machine

		NEXT STATE		
OUTPUT				
Present State	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$
S0	S1	S4	0	0
S1	S1	S2	0	0
S2	S3	S4	1	0
S3	S5	S2	0	0
S4	S3	S4	0	0
S5	S1	S2	0	1

Comparison

- This was worked to gates in lect 9 .
- 3DF/Fs
- 2-3 input AND gates
- 3-2 input AND gates
- 2-2 input OR gates
- 1-3 input OR gate
- Versus one hot
- $4 \mathrm{~F} / \mathrm{Fs}$
- 1-3 input AND gate
- 1-4 input AND gate
- 1-2 input OR
- Comments from class??????

Lecture summary

\square Have looked at state machine equivalence.
\square Incompletely specified machine implicaiton.
\square One hot encoding and how it may not be all that bad an alternative.

