Common Elements in Sequential Design

Lecture 3 topics

- Registers and Register Transfer
- Shift Registers
- □ Counters
 - Basic Counter
 - Partial sequence counters
 - Other counters
- State Machine Basics
- Review of solution to 11.1Units 11 and 14

11.1 solution from text

□ The Problem

Assume that the inverter in the given circuit has a propagation delay of 5 ns and the AND gate has a propagation delay of 10 ns. Draw a timing diagram for the circuit showing X, Y, and Z. Assume that X is initially 0, Y is initially 1, after 10 ns X becomes 1 for 80 ns, and then X is 0 again.

□ The solution

8/22/2012 - ECE 3561 Lect 2 Copyright 2012 - Joanne DeGroat, ECE, OSU

Register and Register Transfer

- □ Computers, embedded systems, and other digital devices usually have a data word of a given size.
- □ Where is the data when it is actively being used?
- Data is typically in a register => register is the size of the data
- Registers are implemented by D F/Fs grouped together.

Loading and using registers

- May have a gated clock or a setup with enable.
- □ May just have a load signal.

When data needs to be moved

□ Typically data is transferred between registers on tri-state busses.

Register with tri-state output

Logic Diagram

Shift Registers

Data can be shifted right, left, and sometimes both ways.

Binary Counters

□ Simply count

Present State				Next State				Flip-Flop Inputs		
	С	В	A	C ⁺	B ⁺	A^+		T_{c}	TB	TA
	0	0	0	0	0	1		0	0	1
	0	0	1	0	1	0		0	1	1
	0	1	0	0	1	1		0	0	1
	0	1	1	1	0	0		1	1	1
	1	0	0	1	0	1		0	0	1
	1	1	1	-/1/	1	0		0	1	1
	1	1	1	1	1	1		0	0	1
	·		. 32	0	0	0		1	1	1
		$\geq c$				\mathbf{b}				
		BA	0	1		BA	0	1		
		00	0	0		00	0	0		
		01	0	0	N.	01	1	1	1	
		11	1	1		11	1	1		
		10	0	0		10	0	0		
T				c			1	B	1	

Counter with D F/F

□ Fig 12-15 and Fig 12-16

Up/Down Counter

Other sequences

- In a computer assignment you will implement a Gray Code counter. You should famiralize yourself with Gary Code. (wikipedia)
- □ From it you can see how to implement any counting sequence.

□ Will not be covering counters with J-K F/Fs.

State Machine Types

- In digital designs there are two fundamental ways that state machines are implemented
- Mealy Machine
 - Outputs are a function of the current state and the inputs

State Machine Types (2)

□ Moore Machine

• Outputs are a function of the current state only

Some historical info

- Mealy machine is names after George H. Mealy who presented a paper in 1955, "A Method for Synthesizing Sequential Circuits."
- □ Formal definition A Mealy machine is a 6-tuple,
 - A finite set of states
 - A start state (initial state)
 - A finite set called the input alphabet
 - A finite set called the output alphabet
 - A transition function (T: S x $\Sigma \rightarrow$ S) mapping pairs of a state and an input symbol to the corresponding next state.
 - An output function (G : S x $\Sigma \rightarrow \Delta$) mapping pairs of a state and an input symbol to a corresponding output symbol.

Formal Definition of Moore Machine

- Moore machine is names after Edward F. Moore who presented a paper in 1956, "Gedanken-experiments on Sequential Machines." (formulated)
- □ Formal Definition:
 - A finite set of states
 - A start state (initial state)
 - A finite set called the input alphabet
 - A finite set called the output alphabet
 - A transition function (T: S x $\Sigma \rightarrow$ S) mapping a state and the input alphabet to the next state.
 - An output function (G : S $\rightarrow \Delta$) mapping each state to the output alphabet.

State Machine Design Process

- Either Traditional or Modern
- Tradition Design Methodology for creation of a state machine:
 - From a detail word specification of the problem generate a state graph or state table translating the word specification into a more formal description of the state machine.
 - If a state diagram is used, generate a state table
 - Pick the sequential element for implementation : D F/F, T T/F, J-K F/F, RS F/F
 - Select state machine type Mealy or Moore
 - Generate the next state and output logic.

State Machine HDL Design Process

- □ HDL Design Methodology for creation of a state machine:
 - From a detail word specification of the problem generate a state graph or state table translating the word specification into a more formal description of the state machine. Typically it will be a state graph.
 - Select state machine type Mealy or Moore
 - Write the 3 processes of a HDL description that capture the specification.
 - □ The process that specifies the F/Fs
 - □ The process for generation of the next state
 - □ The process for generation of the outputs.

Assignment

Read and study textbook problems of Unit 11 and Unit 14.