Common Elements in Sequential Design

Lecture 3 topics

\square Registers and Register Transfer
\square Shift Registers

- Counters
- Basic Counter
- Partial sequence counters
- Other counters
- State Machine Basics
- Review of solution to 11.1
- Units 11 and 14

11.1 solution from text

- The Problem

1 Assume that the inverter in the given circuit has a propagation delay of 5 ns and the AND gate has a propagation delay of 10 ns . Draw a timing diagram for the circuit showing X, Y, and Z. Assume that X is initially $0, Y$ is initially 1 , after $10 \mathrm{~ns} X$ becomes 1 for 80 ns , and then X is 0 again.

\square The solution

Register and Register Transfer

ㅁ Computers, embedded systems, and other digital devices usually have a data word of a given size.
\square Where is the data when it is actively being used?
\square Data is typically in a register => register is the size of the data
\square Registers are implemented by D F/Fs grouped together.

Loading and using registers

- May have a gated clock or a setup with enable.
- May just have a load signal.
(a) usmy gateu ciock

(a) Using gated clock

(b) With clock enable

When data needs to be moved

\square Typically data is transferred between registers on tri-state busses.

Register with tri-state output

- Logic Diagram

FIGURE 12-3
Logic Diagram for 8-Bit Register with Tri-State Output

Data transfer

(b)
(a)

FIGURE 12-4 Data Transfer Using a Tri-State Bus

Shift Registers

ㅁ Data can be shifted right, left, and sometimes both ways.

FIGURE 12-7 Right-Shift Register

Binary Counters

- Simply count

Present State			Next State			Flip-Flop Inputs		
\bigcirc	B	A	C^{+}	B^{+}	A^{+}	$T_{\text {c }}$	T_{B}	$T_{\text {A }}$
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Counter with D F/F

\square Fig 12-15 and Fig 12-16

Up/Down Counter

Other sequences

\square In a computer assignment you will implement a Gray Code counter. You should famiralize yourself with Gary Code. (wikipedia)

- From it you can see how to implement any counting sequence.
\square Will not be covering counters with J-K F/Fs.

State Machine Types

- In digital designs there are two fundamental ways that state machines are implemented
- Mealy Machine
- Outputs are a function of the current state and the inputs

Mealy Machine

State Machine Types (2)

■ Moore Machine

- Outputs are a function of the current state only

Moore Machine

Some historical info

ㅁ Mealy machine is names after George H. Mealy who presented a paper in 1955, "A Method for Synthesizing Sequential Circuits."
\square Formal definition - A Mealy machine is a 6-tuple,

- A finite set of states
- A start state (initial state)
- A finite set called the input alphabet
- A finite set called the output alphabet
- A transition function ($\mathrm{T}: \mathrm{S} \times \Sigma \rightarrow \mathrm{S}$) mapping pairs of a state and an input symbol to the corresponding next state.
- An output function ($\mathrm{G}: \mathrm{S} \times \Sigma \rightarrow \Delta$) mapping pairs of a state and an input symbol to a corresponding output symbol.

Formal Definition of Moore Machine

- Moore machine is names after Edward F. Moore who presented a paper in 1956, "Gedanken-experiments on Sequential Machines." (formulated)
- Formal Definition:
- A finite set of states
- A start state (initial state)
- A finite set called the input alphabet
- A finite set called the output alphabet
- A transition function (T: S x $\Sigma \rightarrow \mathrm{S}$) mapping a state and the input alphabet to the next state.
- An output function ($\mathrm{G}: \mathrm{S} \rightarrow \Delta$) mapping each state to the output alphabet.

State Machine Design Process

- Either Traditional or Modern
- Tradition Design Methodology for creation of a state machine:
- From a detail word specification of the problem generate a state graph or state table translating the word specification into a more formal description of the state machine.
- If a state diagram is used, generate a state table
- Pick the sequential element for implementation : D F/F, T T/F, J-K F/F, RS F/F
- Select state machine type - Mealy or Moore
- Generate the next state and output logic.

State Machine HDL Design Process

\square HDL Design Methodology for creation of a state machine:

From a detail word specification of the problem generate a state graph or state table translating the word specification into a more formal description of the state machine. Typically it will be a state graph.

- Select state machine type - Mealy or Moore
- Write the 3 processes of a HDL description that capture the specification.
- The process that specifies the F/Fs
- The process for generation of the next state
- The process for generation of the outputs.

Assignment

\square Read and study textbook problems of Unit 11 and Unit 14.

