Sequential Design Basics

Lecture 2 topics

- □ A review of devices that hold state
 - A review of Latches
 - A review of Flip-Flops
- □ Unit 11 of text
 - Set-Reset Latch/Flip-Flops/D latch/ Edge triggered D Flip-Flop

Latches and Flip-Flops

- □ What is the difference?
 - Flip-flops use a clock and are clock edge triggered
 - □ When the clock edge occurs the data on the data inputs determines the next state of the flip-flop
 - Latches are level sensitive
 - □ Use a clock, and when the clock (or enable) is active the output of the latch <u>follows</u> the data input.
 - Latches are very common in VLSI circuits. (Used as they require fewer transistors.)

The basis

- □ How do you design logic that holds state?
- Individual logic gates are feed forward devices who's output depends on the value of the inputs to that device.
- □ So how to create a device that holds a state?

The basis

- □ How do you design logic that holds state?
- Individual logic gates are feed forward devices who's output depends on the value of the inputs to that device.
- So how to create a device that holds a state?
 FEEDBACK!!!

The Set-Reset (SR) Latch

□ The circuit has no memory

- Output depends not only on present inputs and the state of the latch when the current inputs were applied.
- □ The state 1 1 on the inputs is not allowed. Why?

HDL code for SR Latch

- □ The core of the model
 - --set up dataflow for SR latch
 - Q <= R NOR Qbar AFTER 5 ns;
 - Qbar <= S NOR Q AFTER 5 ns;
- □ Apply stimulus to S and R
 - What does simulation show

HDL simulation of SR latch

The next state

- \square The state 11 is S not allowed 0 RQ 00 0 \square S=1 Q to 1 01 1 \square R=1 Q to 0 11 0 \square S and R 00 10 0
 - Hold state

Next state truth table

- □ From the table you can get the next state equation
 - $\blacksquare Here Q^+ = S + R'Q$
- An equation that expresses the state of a latch (or flip flop) in terms of its present state and inputs is referred to as the *characteristic equation*.

The D Latch

The D Latch is the most common element in CMOS design.

Timing diagram for a D Latch

The D F/F

The D Flip-Flop has edge triggered operation
 Can be positive edge triggered (as here) or negative edge triggered

Timing for a D Flip-Flop

□ Important to note relationships

D F/F Behavior

□ Some important timing parameters

- Clock to output
- Setup and hold time

D F/F with Preset and Clear

Can add preset and clear for easier circuit initialization.

Scan Chains

\square D F/F is the F/F used in scan chains.

□ What are scan chains?

Scan Chains

 Can use scan chains to inputs data or extract data

The T Flip Flop

Toggle Flip Flop

More on Basic Sequential Elements

The S-R F/F
 Q*=S+R'Q

Q* is next value or next state

D F/F and J/K F/F

A simple up down counter

- □ Start with state diagram
- \Box Control is x

Then add state table

□ Will use T F/Fs table reflect T F/Fs

	Next State		T F/F inp	uts	
Pr St	x=0	x=1	x=0	x=1	I
y1 y2	y1 y2	y1 y2	T1 T2	T1 T2	
0 0	0 1	1 1	0 1	1 1	
0 1	1 0	0 0	1 1	0 1	
1 0	1 1	0 1	0 1	1 1	
1 1	0 0	1 0	1 1	0 1	
				l	I

K Maps for the toggle F/Fs

 $= x x or y^2$

Implementation

Some final notes

Sequential elements (F/Fs) are bistable
 Def: Bistable – can be in one of two states

Digital Circuit Types

- Combinational Logic Circuit one whose outputs depend only on its current inputs.
 - A more descriptive term might be feedforward combinational logic circuits. These are circuits in which there is no feedback.
- Sequential Logic Circuit one whose output depends not only on its current inputs, but also on the past sequence of inputs.

State changes

- A sequential circuit changes its state at times specified by a clock
- \Box Clock frequency $C_f = 1 / T$
 - Where T is the Clock period

Homework L2

- □ Read Unit 11
- Problem 11.1 not for turn in work for understanding – answer is in the text.
- □ (borrow a text or go to library)
- □ Go through the study guide of Unit 11