ECE 3561
Advanced Digital Design
Department of Electrical and Computer Engineering
The Ohio State University
Today

- Syllabus
- The Course
- Intro
 - Syllabus detail discussion
Course Philosophy and Objective

- Familiarize students with advanced digital design principles and practice
- Learn to use actual chips for designing practical digital circuits
- Learn modern design technologies with Quartus software and programmable chips
- See the role HDLs have played in design methodology
Modern Digital Design

- Real logic designs are too large to solve by straight theoretical approach
- Today’s methodology
 - Requires use of subdivision of system into Logic Building Blocks. Far above the gate level of AND/OR gates but far below the processor level.
 - Use of CAD
 - Use of PLDs and FPGA – state of the art programmable chips.
Course Topics

- Review of combination and sequential logic
- Analysis of sequential circuits
- Logic Building Blocks and applications
 - Counters, shift registers, comparators
- Review of traditional approaches to sequential design
- FPGAs and CPLDs
Course Topics (2)

- **Structured Sequential Design**
 - Based on Logical Building Blocks (LBBs)
 - Complex System = Sum of smaller systems
 - Organize functions, inputs, outputs from word description of problem
 - Art (creative process) – choose LBBs and organize
 - Science – function and timing

- **Design Technology**
 - Using modern CAD
 - Use programmable chips – PLDs and FPGAs
 - Use of HDLs – VHDL, Verilog, System Verilog, System C
Combination Logic Design

- In today’s world digital circuits, both combinational and sequential, have millions of gates and several hundred, if not thousands, of inputs and outputs.

- How do you handle this?
 - Challenges the scope of human comprehension.
 - How much information can a human comprehend?
“Good documentation is essential for correct design” (from text)

Design specification must be accurate, complete and understandable

The starting place is a good specification of the circuit or system.
The Specification

- Describes exactly what the circuit of system is supposed to do.
- All inputs and outputs are accurately specified.
- The internal function performed is fully specified.
 - Algorithm implemented is documented
 - Data format and transformations are specified
- Timing is clear and precise
Other aspects of documentation

- Block Diagram
- Schematic Diagram
- Timing Diagram
-Structured Logic Description
 - HDL description both documents and allows for simulation and synthesis of the design
- Circuit Description
Block Diagrams

- Shows inputs and outputs and functional modules
Gate Symbols

Figure 6-3 Shapes for basic logic gates: (a) AND, OR, and buffers; (b) expansion of inputs; (c) inversion bubbles.

Figure 6-4 Equivalent gate symbols under the generalized DeMorgan’s theorem.

Thus, an AND gate may be symbolized as an OR gate with inversion bubbles on.
Active high and Active low

<table>
<thead>
<tr>
<th>Active Low</th>
<th>Active High</th>
</tr>
</thead>
<tbody>
<tr>
<td>READY-</td>
<td>READY+</td>
</tr>
<tr>
<td>ERROR.L</td>
<td>ERROR.H</td>
</tr>
<tr>
<td>ADDR15(L)</td>
<td>ADDR15(H)</td>
</tr>
<tr>
<td>RESET*</td>
<td>RESET</td>
</tr>
<tr>
<td>ENABLE-</td>
<td>ENABLE</td>
</tr>
<tr>
<td>~GO</td>
<td>GO</td>
</tr>
<tr>
<td>/RECEIVE</td>
<td>RECEIVE</td>
</tr>
<tr>
<td>TRANSMIT_L</td>
<td>TRANSMIT</td>
</tr>
</tbody>
</table>

(a) Diagram showing logic gates and connections.
(b) Diagram showing another set of logic gates and connections.
“Timing is everything”
- In Comedy
- In Investing
- In digital design

When the inputs change the output of the gate will respond to that change. The output will change (if it does) after the internal circuitry of the gate settles to the new output state.
Circuit Timing (2)

- Glitches on the output occur when the inputs do not arrive simultaneously.
- It is almost impossible to design a combinational logic circuit that is 100% glitch free. It is possible to create a design in which the glitches that do occur are insignificant.
- This is why synchronous systems have a minimum clock period.
Timing Analysis Tools

- Circuit timing waveforms
This slide will explain the specifics of how each course objective will be achieved.

Slide 5 – Logic building blocks
- The datapath of a simple microcontroller will be implemented by creating small components from gates and then integrating them together.

Sequential circuits
- The controller for the simple microcontroller will be implemented, illustrating the complexity of controllers of modern processors.
1971 TMS 1000 – 8000 transistors – 8um
1971 Intel 4004 – 2300 transistors – 10 um
1972 Intel 8008 – 3500 transistors
1979 Motorola 68000 – 68,000 transistors
1993 Pentium – 3.1 M transistors – .8um
2000 Pentium 4 – 55 M
2006 Pentium 4 Cedar Mill – 184 M – 65nm
2008 Core i7 – 731 M – 45nm
2010 Quad Core Itanium – 2 B
2015 IBM z13 Storage Controller – 7.1 B 22nm
All these processors are constructed from arrangement of basic components:

- Multiplexors
- Adders
- Selectors – priority encoders
- Registers, latches and flip-flops
- Memory arrays
- Bus drivers
Assignment

- None today – Read in text
 - Read Chapter 9
 - Will start in Chapter 11 and come back for Chapter 10
- Assignments will be due 2 classes after assigned to the drop box on Carmen. No paper submissions – all are electronic.