_ Design Idea _ <lo~s
wogan_avai ANALYSIS § MOEDELING
OF Di6ITRL SYSTEMS

2. NAVAR|

—> Flow Graph, Pseudo Code,

Data Path Design

[—> Bus & Register Structure.

Logic Design

> Gate Wirelist, Netlist.

Physical Design

Figure 1.1 A digital system de-
sign process. (From M. R.
Barbacci, The ISPS Compu-

—> Transistor List, Layout, ...

Manufacturing ter Description Language,
_ Carnegie- Mellon University,
1981, p. 70.)
_ Chip or Board _

pseudocode. The designer specifies the overall functionality and an
input to output mapping without giving architectural or hardware de-
tails of the system under design.

The next phase in the design process is the design of the system
data path. In this phase, the designer specifies the registers and logic
units necessary for implementation of the system. These components
may be interconnected using either bidirectional or unidirectional
busses. Based on the intended behavior of the system, the procedure
for controlling the movement of data between registers and logic units
through busses is then developed. Figure 1.2 shows a possible result
of the data path design phase. Data components in the data part of a
circuit communicate via system busses, and the control procedure
controls flow of data between these components. As shown, this de-
sign phase results in the architectural design of a system with specifi-
cation of the control flow. No information about the implementation of
the controller—e.g., hardwired, encoding technique, or micropro-
grammed—is given in this phase.

Logic design is the next step in the design process and involves the
use of primitive gates and flip-flops for the implementation of data
registers, busses, logic units, and their controlling hardware. The re-
sult of this design stage is a netlist of gates and flip-flops. Components

DATA CONTROL

YV V

for Control
of Movement

| of Data
MAIN REG3 Registers
and Buses.

s
AANA

LOGIC

Figure 1.2 Result of the data path design phase.

used and their interconnections are specified in this netlist. Gate
technology and even-gate-level details of flip-flops are not included in
this netlist.

The next design stage transforms the netlist of the previous stage
into a transistor list or layout. This involves the replacement of gates
and flip-flops with their transistor equivalents or library cells. This
stage considers loading and timing requirements in its cell or transis-
tor selection process.

The final step in the design is manufacturing, which uses the tran-
sistor list or layout specification to burn fuses of a field-programma-
ble device or to generate masks for integrated-circuit (IC) fabrication.

1.1.1 Design automation

In the design process, much of the work of transforming a design from
one form to another is tedious and repetitive. From the point of view
of a digital system designer, the design phase is complete when an
idea is transformed into an architecture or a data path description.
The rest is routine work and involves tasks that a machine can do
much faster than a talented engineer. The same can be said about the
verification process; that is, a machine can be programmed to verify
functionality or timing of a designed circuit much easier than any
human can.

Activities such as transforming one form of a design into another,
verifying a design stage output, or generating test data can be done at
least in part by computers. This process is referred to as design au-
tomation (DA).

Design automation tools can help the designer with design entry,
hardware generation, test sequence generation, documentation, veri-

fication, and design management. Such tools perform their specific
tasks on the output of each of the design stages of Fig. 1.1. For exam-
ple, to verify the outcome of the data path design stage, the bussing
and register structure is fed into a simulation program. Also, to gen-
erate tests for register transfer faults, a design automation tool can
be used for processing this level of system description and producing
tests that can be used by a test engineer. Other DA tools include a
synthesizer that can automatically generate a netlist from the regis-
ter and bus structure of the system under design.

HDLs provide formats for representing the outputs of various de-
sign stages. An HDL-based DA tool for the analysis of a circuit uses
this format for its input description, and a synthesis tool transforms
its HDL input into an HDL which contains more hardware informa-
tion. In the sections that follow, we discuss HDLs, digital system sim-
ulation, and hardware synthesis.

1.2 The Art of Modeling

The dictionary! defines model and modeling as follows:

mod-el (mod’l) noun. 1. A small object, usually built to scale, that repre-
sents in detail another, often larger object. 2.a. A preliminary work or con-
struction that serves as a plan from which a final product is to be made. b.
Such a work or construction used in testing or perfecting a final product. 3.
A schematic description of a system, theory, or phenomenon that accounts for
its known or inferred properties and may be used for further study of its
characteristics.

-

mod-el-ing (m6d’l-ing) noun. 1. The act or art of sculpturing or forming in
a pliable material, such as clay or wax. 2.a. Representation of depth and so-
lidity in painting, drawing, or photography. :

We can even go further in defining model and modeling from the
point of view of a hardware designer and digital system design envi-
ronments. Modeling is an art, and a modeler is one who uses certain
modeling tools for representing an event, an object, or an idea as best
as possible. The modeling tools, however, may be different from one
art to another. For a painter, the modeling tools are the paintbrush,
easel, paint, and the paint palette. In addition to being different in
the way things are represented by various modelings, the level of de-
tails of representation in a model may be different from one model to
another. For example one painting may represent a mountain at the

'The American Heritage® Dictionary of the English Language, Third Edition, copy-
right © 1992 by Houghton Mifflin Company.

detailed level of rocks and plantation, while another painting of the
same mountain may represent it from a distant view showing its
peak and the hills around it.

Models are used for different purposes. A painting may be used for
decorating a room, while another type of a model, for instance a piece
of music, may be used to express a political view or an event.
Shostakovich wrote his Symphony No. 7, the Leningrad Symphony,
about the siege of his native city of Leningrad (St. Petersburg) by
German troops. The symphony models the spirit of this city during
the war, life in this city under siege, and the eventual victory over the
invaders. In this model, he employs a certain level of details and uses
his general modeling schemes for doing so.

A hardware designer models a circuit using any available tools. The
level of abstraction for this modeling depends on the purpose for
which the model is intended. If the model is to be used for document-
ing the functionality of a circuit at a very abstract behavioral level, a
relatively simple abstract model is all that is necessary. On the other
hand, if the model is to be used for verification of the timing of the cir-
cuit, a more detailed description is needed. A hardware engineer mod-
els his or her circuit such that it imitates the actual hardware compo-
nent as closely and accurately as possible for its intended purpose. A
good modeler uses available hardware modeling tools to produce an
elegant and artistic model of the hardware part.

Available modeling tools to a hardware engineer include paper and
pencil, schematic capture programs, breadboarding facilities, and
hardware description languages. The newest and the most promising
of all such tools are hardware description languages. These modeling
tools enable a hardware designer to model his or her circuit at many
levels of abstractions for various design, analysis, and documentation
purposes. Although all hardware description languages may be re-
garded as such, the level of model elegance and artistic representa-
tion of hardware may be different from one language to another.

1.3 Hardware Description rn:n:mnom

HDLs are used to describe hardware for the purpose of simulation,
modeling, testing, design, and documentation. These languages pro-
vide a convenient and compact format for the hierarchical representa-
tion of functional and wiring details of digital systems. Some HDLs
consist of a simple set of symbols and notations that replace schematic
diagrams of digital circuits, while others are more formally defined
and may present the hardware at one or more levels of abstraction.
Available software for HDLs include simulators and hardware synthe-

o

Design Idea
SIMULATION TOOLS
Behavioral Design < Behavioral Simulator
————> Flow Graph, Pseudo Code, . . . l||.VI_
Data Path Design < Dataflow Simulator
——» Bus & Register Structure. .I.IYI_
Logic Design — Gate Level Simulator
—— Gate Wirelist, Netlist. |I.||V|_
Physical Design < Device Simulator
———» Transistor List, Layout, . . . |||Y_
Manufacturing < Final Testing
L——» Product Sample.
Chip or Board

Figure 1.7 Verifying each design stage by simulating its output.

level or device simulation, runs much more slowly but provides more
detailed information about the timing and functionality of the circuit.
To avoid the high cost of low-level simulation runs, simulators should
be used to detect design flaws as early in the design process as possible.

Regardless of the level of design to which a simulation program is
applied, digital system simulators have generally been classified into
oblivious and event-driven simulators. In oblivious simulation, each

circuit component is evaluated at fixed time points, while in event-
driven simulation, a component is evaluated only when one of its in-
puts changes.

1.4.1 Oblivious simulation

As an illustration of the oblivious simulation method, consider the gate
network of Fig. 1.8a. This is an exclusive-OR circuit that uses AND,
OR, and NOT primitive gates and is to be simulated with the data pro-
vided in Fig. 1.8b.

The first phase of an oblivious simulation program converts the
input circuit description to a machine-readable tabular form. A simple
example of such a table is shown in Fig. 1.9. This table contains infor-
mation regarding the circuit components and their interconnections,
as well as the initial values for all nodes of the circuit.

After the initialization of the circuit, the simulation phase of an
oblivious simulation method reads input values at fixed time inter-
vals, applying them to the internal tabular representation of the cir-
cuit. At time ¢,, input values of a and b are read from an input file.
These values replace the old values of a and b in the value column of
the table of Fig. 1.9. Using these new values, the output values of all

—

®

Figure 1.8 An exclusive-OR function in terms of AND, OR, and NOT
gates. (a) Logical diagram; (b) test data.

13

b

Design Idea

Behavioral Design

e
0 SYNTHESIS ,JOOHm _ Flow Graph, Pseudo Code, . .

1 Data Path Design

A

>

Bus & Register Structure.

»
Y

A

2 Logic Design

_ _
5 > > »
Gate Wirelist, Netlist.

A

3 Physical Design

>
L

Transistor List, Layout, . . .

Y

Manufacturing

Chip or Board

Figure 1.11 Categories of synthesis tools in a design process.

propriate sets of inputs. Resource sharing may be directed by a syn-
thesis tool user through synthesis directives, or may be decided by the
tool based on the input description. For example, as shown in Fig.
1.13, an add operation on register outputs a and b, placing the result
on bus ¢, in one instance, and another operation adding the same in-
puts and placing the result on bus d, in another instance, can share
the same adder unit without any hardware overhead. On the other
hand, if the two instances of add operations use different inputs (e.g.,

] Synthesizable -
: Model ... \ . . .
Synthesis . © , Synthesis Engine N
Description
Logic
Scheduling Optimization Binding
Synthesis
Directives

Synthesized

(Netlist)
Figure 1.12 Synthesis process.

c<=a+b; c<=a+b;
d<=a+b; c<=x+y;

« ADDER

Figure 1.13 Resource sharing.

a and b in one instance, and x and y in another), multiplexers should
be used for adder unit input selections.

In the logic optimization pass, boolean expressions are manipulated
for better utilization of FPGA cells or chip area. The binding phase in
a synthesis tool maps operations of an intermediate data structure,
often in the form of a BDD (Binary Decision Diagram), to predefined
library cells of a target hardware.

Tools that generate layout from netlists (tool category 3 in Fig. 1.11)
have been available and in use for over two decades. These tools are

|7

