Chapter 7: High-Level Design in Construction

cQPE comMPLeT:

160

. _o\ S+teve a.\,_nmottmﬁﬁ.

M~ m:n._uomzn at which you've identified the object interfaces and
_mam_m.d_sm the noaa to mcvv.o: :.e?. you usually switch to m:.:n..”“,.,_d H;a.&
Yyou _.w working in an object-oriented language, it's hard 1o sy ., s
still doing object-oriented design because you're still worki A
methods or messages or other object-oriented constructs; If .:m .5, i
a more traditional procedural language, it's easier to m@ wm“._ ““v”‘“.rf
¢

plain old structured design, which is appropriate at that point o

Object-oriented design is applicable to any system that acts a5 objee
real QQE.QO. Examples of such systems include highly interactiv, _.:= .
that use windows, dialog boxes, buttons, and so on; object-oriented _._.. e
(by definition); and event-driven systems that require specifi):?s
randomly ordered events. 1% Speclic repomen

S

Much of Sw research being done on object-oriented techniques is focuse

successful implementation of systems from 100,000 to over a 3=,=cx ___..? ‘
nomo. mﬂz.unnc:& techniques have too often failed on such large prc _“.3_3 -
ov_nnn.-o:o:”a techniques seem to be a better solution. :oinwsv___x,.ﬁ
techniques are still useful on any but the largest projects, and :..,.,u ., :
of object-oriented design for smaller problems has yet no.ca vaﬁ.r:?:q:

Round-Trip Design

It’s ._uo%mv_m to combine the major design approaches, making the muw
their m:.a_.._%:m and minimizing their weaknesses. Fach of the design
vann_._nm is a tool in the programmer’s toolbox, and different design tools r
appropriate for different jobs. You'll benefit from exploiting the __954..
power of any or all of the approaches.

”;% following mcvmnn.:o:m describe some of the reasons that software devy
is hard, roﬂ.ao make it easier, and how to combine structured design, ._7_9.‘..
oriented design, and other design approaches.

What's a Round Trip?

,.<o: might have had an experience in which you learned so much from szt
“MM a omqwmsa E.um you wished you could write it again, knowing what v«
. rned Irom writing it. The same phenomenon applies to design, but
esign the cycles are shorter and the effects downstream are bigger, 0 vu
can afford to whirl through the design loop a few times. |

The term “round-trip design” captures the idea that design is an iterative >
cess: You don't usually go from point A just to point B; you go from poini Ar
point B and back to point A. The term is inspired by a similar term in O
Oriented Design: With Applications (Booch 1991). .

7.5 Round-Trip Design

FUATHER READING

b 3 Y% exploration of
™45 viewpoint, see “A
Spceat Design Process:
oo 1 Why to Fake It”
{Prras and Clements
1986).

As you cycle through candidate designs and try different approaches, you'll
look at both high-level and low-level views. The big picture you get from
working with high-level issues will help you to put the low-level details in
perspective. The details you get from working with low-level issues will pro-
vide a foundation in solid reality for the high-level decisions. The tug and pull
between top-level and bottom-level considerations is a healthy dynamic; it
creates a stressed structure that is more stable than one built wholly from the
top down or the bottom up.

Many programmers—many people, for that matter—have trouble ranging
between high-level and low-level considerations. Switching from one view of
a system to another is mentally strenuous, but it's essential to effective design.
For entertaining exercises to enhance your mental flexibility, read Conceptual
Blockbusting (Adams 1980), described in the “Further Reading” section at the

end of the chapter.

Design Is a Sloppy Process

J. P. Morgan said that every person has two reasons for doing things: the one
that sounds good and the real reason. In design, the finished product usually
looks well organized and clean, as if the designers had never taken a wrong
turn. The process used to develop the design is rarely as tidy as the end result.

Design is a sloppy process. It's sloppy because the right answer is often hard
to distinguish from the wrong one. If you send three people away to design
the same program, they might easily return with three vastly different
designs, each of which is perfectly acceptable. It's sloppy because you take
many false steps and go down many blind alleys—you make a lot of
mistakes. Design is also sloppy because it’s hard to know when your design is
“good enough.” When are you done? Since design is open-ended, the answer
to that question is usually “When you're out of time.”

Design Is a Wicked Problem

Horst Rittel and Melvin Webber defined a “wicked” problem as one that could
be clearly defined only by solving it, or by solving part of it (1973). This
paradox implies, essentially, that you have to “solve” the problem once in
order to clearly define it and then solve it again to create a solution that
works. This process is almost motherhood and apple pie in software
development.

In my part of the world, 2 dramatic example of such a wicked problem was
the design of the original Tacoma Narrows bridge. At the time the bridge was
built, the main consideration in designing a bridge was that it be strong

161

* 7: High-Level Design in Construction

e picture of the
ftware designer
1g his design in
onal, error-free
om a statement
‘equirements is
unrealistic. No
1 has ever been
red in that way,
probably none
r will. Even the
program devel-
1ents shown in
ks and papers
real. They have
en revised and
>d until the au-
- has shown us
it he wishes he
fone, not what
ly did happen.
vid Parnas and
Paul Clements

The Tacoma Narrows bridge—an example of a wicked problem.

Mwommr to mMEuo: its planned load. In the case of the Tacoma Narrows bridge
1nd created an unexpected, side-to-side harmonic ri .
\ : R pple. One blustery d:

in 1940, the ripple grew uncontrollably until the bridge collapsed. v

w.:_m is a monﬁ axva._m of a wicked problem because until the bridge col-
apsed, its engineers didn’t know that aerodynamics needed to be considered
Hm such an extent. Only U.< building the bridge (solving the problem) could
they learn about the additional consideration in the problem that all

them to build another bridge that still stands. owed

One of the main differences between programs you develop in school and
EMmm you develop as a professional is that the design problems mO?QOM
H:MM“ M.MVMMMWM MM Hnm_x if ever, Mﬁwma. Programming assignments mw_\
ove you in a beeli inni '
probably want to lynch a HmmM\:mn who mm<m:vwomw:wnwwcwwﬁ%_wa HOmMMa. mont
then nrwnmma the assignment as soon as you finished the Qmmmm n mmm_ﬂmsr
changed it again just as you were about to turn in the completed mzw ram wm:
that very process is an everyday reality in professional Unoma:dm::mm o

7.5 Round-Trip Design

KEY POINT

When in doubt,
use brute force.

Butler Lampson

More alarming, the
same programmer is
quite capable of doing
ihe same task himself
in two or three ways,
sometimes uncon-
sciously, but quite
often simply for a
change, or to provide
¢legant variation, or to
find a way that will
ke less core or time.

A. R. Brown and
W. A. Sampson

Design Is a Heuristic Process

A key to effective design is recognizing that it’s a heuristic process. Design al-
ways involves some trial and error. The round-trip design concept accounts
for the fact that design is heuristic by treating all design methodologies as
tools in an intellectual toolbox. One tool works well on one job or on one
phase or aspect of a job; other tools work well on others. No tool is right for
everything, and it’s useful to have several tools at your disposal.

One powerful heuristic ol is brute force. Don't underestimate it. A brute-
force solution that works is better than an elegant solution that doesn't work. It
can take a long time to get an elegant solution to work. In describing the his-
tory of searching algorithms, for example, Donald Knuth pointed out that
even though the first description of a binary search algorithm was published
in 1946, it took another 16 years for someone to publish an algorithm that cor-
rectly searched lists of all sizes (1973b).

Diagrams are another powerful heuristic tool. A picture is worth 1000 words—
kind of. You actually want to leave out most of the 1000 words because one
point of using a picture is that a picture can represent the problem at a higher
level of abstraction. Sometimes you want to deal with the problem in detail,
but other times you want to be able to work with it at a more general level.

An additional aspect of the heuristic power of round-trip design is that you
can leave some details unresolved during early design cycles. You don't have
to decide everything at once. Remember that a point needs to be decided, but
recognize that you don't yet have enough information to resolve that specific
issue. Why fight your way through the last 10 percent of the design when il
wil! drop into place easily the next time through? Why make bad decisions
based on limited experience with the design when you can make good deci-
sions based on more experience with it later? Some people are uncomfortable
if they don’t come to closure after a design cycle, but after you have created 2
few designs without resolving issues prematurely, it will seem natural to leave
issues unresolved until you have more information (Zahniser 1992).

One of the most effective guidelines is not to get stuck on a single approach. I
writing the program in PDL isn't working, make a picture. Write it in English
Write a short test program. Try a completely different approach. Think of z
brute-force solution. Keep outlining and sketching with your pencil, and you
brain will follow. If all else fails, walk away from the problem. Literally go fo:
a walk, or think about something else before returning to the problem. I
you've given it your best and'are getting nowhere, putting it out of your mir
for a time often produces results more quickly than sheer persistence can.

16¢

